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ABSTRACT
Microarray data sets contain expression levels of thousands
of genes. The statistical analysis of such data sets is typ-
ically performed outside a DBMS with statistical packages
or mathematical libraries. In this work, we focus on ana-
lyzing them inside the DBMS. This is a difficult problem
because microarray data sets have high dimensionality, but
small size. First, due to DBMS limitations on a maximum
number of columns per table, the data set has to be pivoted
and transformed before analysis. More importantly, the cor-
relation matrix on tens of thousands of genes has millions of
values. While most high dimensional data sets can be ana-
lyzed with the classical PCA method, small, but high dimen-
sional, data sets can only be analyzed with Singular Value
Decomposition (SVD). We adapt the Householder tridiago-
nalization and QR factorization numerical methods to solve
SVD inside the DBMS. Since these mathematical methods
require many matrix operations, which are hard to express
in SQL, query optimizations and efficient UDFs are devel-
oped to get good performance. Our proposed techniques
achieve processing times comparable with those from the R
package, a well-known statistical tool. We experimentally
show our methods scale well with high dimensionality.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; G.1.3 [Numerical Analysis]: Numerical Lin-
ear Algebra—Singular value decomposition

General Terms
Algorithms, Performance
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1. INTRODUCTION
Microarray technology enables rapid analysis of expres-

sion levels of thousands of genes. Data sets generated from
microarray experiments are typically stored in a DBMS in
the form of a very large matrix that is organized by genes
versus tissue samples from patients. Due to the lack of com-
prehensive statistical tools inside a DBMS and the high-
dimensional nature of the data set, researchers generally ex-
port data sets from the DBMS to a client machine to per-
form analysis with external statistical packages. Previous
research has shown it is possible to extend the statistical
capabilities of the DBMS with SQL code generation and
User Defined Functions (UDFs) [14]. This eliminates the
time-consuming process of exporting the data, thus reduc-
ing client and network overhead. Such approach exploits
the computational resources of the server, which is typically
more powerful both in terms of processing power and avail-
able memory. Furthermore, performing analysis inside the
DBMS enhances data security.

We propose a system that efficiently performs the two
most common statistical analyses for microarray data inside
a DBMS (see Figure 1): correlation analysis and Princi-
pal Component Analysis (PCA)[10]. The correlation ma-
trix can be used as input for PCA, a technique to reduce
the number of dimensions. This is especially useful when
applied to microarray data sets due to their high dimen-
sionality. Microarray data set typically have a high number
of dimensions obtained from a few records. Interestingly,
the number of correlation coefficients derived from such mi-
croarray data is the square of the number of dimensions, a
value that could be as high as 100 million values. Such size
evidently creates challenges to analyze the data set inside
the DBMS: The data set has to be pivoted to overcome lim-
itations on the maximum number of columns. This paper
explains how to solve PCA using Singular Value Decompo-
sition instead of traditional methods. SVD is a method to
compute PCA more efficiently for ill-conditioned data sets,
such as the microarray data set. SVD requires solving the
Householder tridiagonalization and QR factorization [3, 7],
(an eigen-value decomposition method), two techniques that
require numerical analysis computations. We introduce sev-
eral optimizations in SQL and UDFs, which are necessary
to improve the efficiency of the SVD implementation.

The article is organized as follows. Section 2 presents def-
initions. Section 3 presents our contributions and includes
univariate and bivariate analysis, PCA with SVD imple-
mentation, and component scores and loadings. Section 4
presents experiments comparing different methods of cor-
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Figure 1: Analysis Diagram.

relation analysis, SVD implementation inside and outside
DBMS, SVD optimizations, and time complexity. Section 5
discusses related work. Section 6 concludes the article.

2. DEFINITIONS
Let X̃ = {x̃1, . . . , x̃n} be the input data set (microarray

data set) and X = {x1, . . . , xn} be the the transformed mi-
croarray data set having zero mean (i.e. centered at the ori-
gin). X has n records (tissue samples), d dimensions (gene
expression levels), an additional disease binary variable, and
k rank, where d ≥ n ≥ k. The data set dimensions need to
be scaled especially when the units of measurement are dif-
ferent. We use the subscript i for records and subscripts
h, a, b for the dimensions. For one dimension, each xhi rep-
resents the gene expression level of the tissue sample. X
may have an additional target variable (cancer disease in
our case), where yi indicates whether the tissue sample is
diseased or not.

3. MICROARRAY DATA ANALYSIS
In this section, we explain how to calculate the correla-

tion matrix in SQL. The correlation matrix is used as an
input matrix for PCA. We explain why traditional meth-
ods cannot solve PCA due to microarray data sets having
more dimensions than records. Based on such limitation we
explain how to implement the Singular Value Decomposi-
tion (SVD) method combining optimized SQL queries and
efficient UDFs.

3.1 Correlation Analysis
A correlation matrix describes the degree of correlation

among d dimensions or the degree of correlation among n
records. It is a symmetric d× d or n× n matrix consisting
of correlation coefficients. Since the matrix is symmetric, it
is sufficient compute a triangular matrix.

The correlation matrix can be calculated using two fun-
damental matrices, L and Q. Let L =

∑
xi, resulting in

a d × 1 matrix. Let Q =
∑
xix

T
i be the quadratic sum of

points for each pair of dimensions across all records resulting
in a d× d matrix. Thus, the d× d linear correlation matrix

Table 1: Number of rows and columns of the Verti-
cal, L-Horizontal, and I-Horizontal initial tables.

Initial Tables No. of rows No. of columns
Vertical dn 3
L-Horizontal n d
I-Horizontal d n

can be expressed in terms of L and Q as:

ρab =
nQab − LaLb√

nQaa − L2
a

√
nQbb − L2

b

(1)

SQL queries are used to compute n,L,Q. There are three
alternatives to generate the correlation matrix: SQL-Vertical,
SQL-L-Horizontal, and SQL-I-Horizontal. For comparison
purposes, we also compute the correlation matrices using
aggregate UDFs for the L-Horizontal table and scalar UDF
for the I-Horizontal table. The critical issues for correlation
analysis of high-dimensional data are memory space con-
sumption and execution time.

When the data set is in vertical format, the table stores
one value per row (see Table 1). The number of rows of
the resulting correlation matrix is equal to the total number
of correlation pairs (d(d − 1)/2 rows). In the SQL-Vertical
method, the L and Q matrices are first created. In order to
create the Q matrix, a self-join operation is performed on
the input table to get the set of different pairs of dimensions
without duplication. Afterwards, L and Q are computing
using an aggregation. We now present the L-Horizontal and
I-Horizontal Methods in more detail.

L-Horizontal Method
When d is small, the SQL-L-Horizontal method is the most
efficient approach to get the Q matrix[14]. This approach
takes an n× d input matrix (see Table 1) and returns a ta-
ble with 1 × (d(d − 1)/2) columns. The method requires
just a single table scan to compute L and Q. Unfortu-
nately, database tables typically have a limit on the num-
ber of columns. In the case of high-dimensional data, this
method presents important drawbacks since the data set has
to be partitioned into several tables. To work within DBMS
limitations, the SQL-L-Horizontal method takes the n × d
data set and partitions it vertically into several “lean” ta-
bles. However, within the correlation matrix, each dimen-
sion needs to be paired with all other dimensions, not only
within the same table, but also with those in the other ta-
bles. Therefore, every table must be joined with every other
table, rendering the method impractical due to excessive
memory resources.

I-Horizontal Method
The I-Horizontal output table is a d×n table is obtained by
pivoting the vertical format table to get records as rows and
dimensions as columns. The SQL-I-Horizontal method is an
optimized version of the SQL-Vertical method. Since the I-
Horizontal table has less rows than the vertical format table,
joining the tables is more efficient. As the number of dimen-
sions increases, the SQL-I-Horizontal method takes signifi-
cantly less execution time than the SQL-Vertical method. In
addition, the I-Horizontal method is more efficient than the
L-Horizontal method because it requires only one self-join,
whereas the L-Horizontal method needs several joins for all
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different pairs of small tables. The computation with SQL
queries is shown below:

SELECT h, (A.rec1 + ... + A.recN) FROM X; /*L*/

SELECT A.h, B.h

,(A.rec1 * B.rec1 + ... + A.recN * B.recN) /*Q*/

FROM X A CROSS JOIN X B

WHERE A.h >= B.h;

The SQL statements produces the number of result values
for a triangular matrix not for the full matrix, which elim-
inates the duplicate pairs from the calculation. The UDF-
I-Horizontal method is implemented similar to the SQL-I-
Horizontal method. It accepts n, L and Q of a dimension
pair as parameters and returns a correlation coefficient of
the dimension pair. The UDF is called d(d − 1)/2 times
to produce correlation coefficients of all dimension pairs.
The method requires a self-join operation similar to SQL-I-
Horizontal method. Though the UDF-I-Horizontal method
requires less execution time than the SQL-Vertical method,
it is faster than the SQL-I-Horizontal method only when
the number of dimensions is small (less than 400). As the
number of dimensions involved in the calculation rises, the
SQL-I-Horizontal method eventually matches and then out-
performs the UDF-I-Horizontal method.

3.2 PCA Overview
We are now ready to solve PCA, the classical technique

used to reduce dimensionality of a high-dimensional data set
with the goal of representing the statistical structure of the
data set with fewer variables [15]. This method requires a
covariance or a correlation matrix as an input matrix and
computes their eigen-decomposition to get the diagonal ma-
trix of eigenvalues and the orthogonal matrix of eigenvectors.
These eigenvectors that correspond to the k largest eigen-
values are the principal components of the data set. For our
experiments, PCA is derived from the correlation matrix.
The eigen-problem to solve PCA can be stated as:

XXT = US2UT (2)

XTX = V S2V T (3)

To solve the eigen-problem of equation (2), XXT , the
large d × d correlation matrix, is needed to obtain the left
eigenvector matrix U . On the other hand, the right eigen-
vector matrix V can be obtained by solving the eigen decom-
position of the smaller n×n correlation matrix, XTX. PCA
on a d× d matrix is slow when the number of dimensions d
is larger than the number of records n. We overcome such
limitation by solving PCA using SVD on an n× n matrix.

3.3 Solving PCA with SVD
For microarray data sets, PCA is typically solved using

SVD [8], which can deal with ill-conditioned matrices. A
matrix becomes ill-conditioned when the number of dimen-
sions is larger than the number of records. For an iterative
method, small errors in the dimensions can result in much
larger errors in the model. The solution of SVD for X pro-
duces two orthonormal bases, one defined by the right sin-
gular vectors, V , and a second one given by left singular vec-
tors, U . The right singular vectors, V , spans d-space of the
dimensions and the left singular vectors U span n-space. S is

a diagonal matrix whose diagonal elements are eigenvalues.
If the problem is to understand linear relationships among
dimensions, then the principal component matrix or load-
ing matrix is the left singular matrix, U . The matrix SV T

or UTX contains the principal component scores, which are
the transformed coordinates of input records in the space
of principal components. The loading of records is given by
the column vectors of V . The matrix US or XV contains
the principal component scores, which are the coordinates
of the dimensions in the space of principal components. The
equation for SVD of X is as follows.

X = USV T (4)

For a square, symmetric matrix, SVD is equivalent to the
eigen-decomposition of a square matrix. The problem can
be solved from either XXT or XTX (See Equation (5) and
(6)).

XXT = USV TV SUT = US2UT (5)

XTX = V SUTUSV T = V S2V T (6)

For a data set where d is larger than the number of records
n, computing SVD from an n × n matrix, XTX, is more
efficient than from a d × d matrix, XXT . This method
first calculates the eigen-decomposition of XTX (equation
7) to produce V T and S, and then to calculate d × n ma-
trix U (equation 8). This approach alleviates the array size
limit problem in UDFs because we avoid using the large
d × d matrix, XXT . As a result, this mathematically opti-
mized method dramatically reduces execution time and re-
quired memory compared with the classical PCA method.
Note that Equations 5 and 6 of SVD are equivalent to the
Equation 2 and 3 in the classical PCA method. In our ex-
periments, the eigen-decomposition method is performed by
using Householder tridiagonalization and QR factorization.

XTX = V S2V T (7)

U = XV S−1 (8)

3.4 SVD Method
The SVD method has considerable advantages in terms

of execution speed and memory space over traditional PCA
methods for high d data with very few records. The method
exploited in our system uses Householder tridiagonalization
followed by QR factorization [3, 7]. The main algorithm is
as follows:

1. Start by centering the data at the global mean and
computing a covariance matrix or a correlation matrix,
A : A = XTX, where X is the centered data.

2. Apply Householder method by reducing the covariance
or correlation matrix to a tridiagonal matrix, B0, with
an orthogonal matrix
P1 : B0 = An−2 = Pn−2An−3P

T
n−2

3. Find the eigen-decomposition of B0 : B0 = QsBsQ
T
s

by applying the QR factorization method, where Bs
is the diagonal matrix of eigenvalues and Q is the or-
thogonal matrix.

4. Combine both decompositions to get
XTX = (PQ)Bn(QP )T . As a result, columns of V =
PQ are the eigenvectors XTX.
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The details of mathematics computation and SVD program-
ming are explained later in Section 3.5. We will first focus
on the basic matrix operations used for solving problems of
calculating SVD by using SQL and UDFs.

3.5 SVD Implementation
The main algorithm of SVD is explained in section 3.4.

In this section we explain the techniques for matrix multipli-
cation and matrix transposition, since those are the funda-
mental operations used in our SVD implementation. Later,
the detailed implementation is explained in mathematical
terms, and then we will explain the SQL and scalar UDF
implementation of each step. Finally, we present the method
using SQL and table-valued user-defined function (TVF).

Transposing Matrix for Multiplication
Matrix transposition is needed for SVD calculation, partic-
ularly to perform matrix multiplication, in which matrix
transposition is applied to conveniently pair a row from one
matrix to a column of another matrix. To transform rows of
a matrix to columns, we unpivot a table into a long and slim
vertical table indexed by a row and column, and then pivot
the unpivoted table to a transposed table where its rows are
transformed into columns.

Matrix Multiplication
The most frequently used matrix operation in SVD is matrix
multiplication. Several approaches can be exploited to im-
plement matrix multiplication with SQL queries and UDFs.
Suppose we want to multiply matrices A and B, then one
approach is to transpose the table A before calculating the
sum of products by using an aggregation. Another approach
is to transpose the table B instead of A, and then sum
the products of elements of each row in matrix A and B.
Our method of choice is the second approach since the first
method uses aggregate sum, which are considerably slower
than row summation. We also explored another method to
performing matrix multiplication where the result table can
be transposed without any extra effort. For example, when
computing PAP , we first compute AP , and then transpose
AP to compute PAP . The matrix transposition of AP can
be performed by altering the pivoting command in the mul-
tiplication process by interchanging rows to columns. This
allows the matrices to be multiplied and transposed in a
single step.

Mathematical Computation of SVD
1. The system first computes a zero-mean data set and

then compute a correlation matrix, A. In here, we
use a correlation matrix instead of a covariance matrix
since correlation matrix scales dimensions better.

2. The n × n correlation matrix, A, is used to calculate
Householder tridiagonalization to get B0. The process
of reducing A to a symmetric tridiagonal form costs
O(n3). The process takes n− 2 iterations.

3. We then compute Pr = I − 2vrv
T
r .

4. Then an iterative step is executed to obtain a tridi-
agonal matrix B0 = An−2 such that Ar = PrAr−1Pr,
where r = 1, ..., n− 2.

After n− 2 successive steps, matrix Ai eventually be-
comes a tridiagonal matrix. The matrix An−2 is re-

named as B0 and it will be used for QR factorization
in the next step.

5. matrix T : T = P1P2...Pn−2 is computed to multiply
with matrices Q in the final step to obtain eigenvector
matrix, V .

B0 = Pn−2An−3Pn−2

B0 = Pn−2Pn−3...P1A0P1...Pn−3Pn−2

Let T = P1P2...Pn−2

B0 = TAT = T−1AT

6. We are now ready to compute the stepwise QR factor-
ization method. In the first step, B0 is factorized as
Q0R0: B0 = Q0R0, where Q0 is orthogonal and R0

is upper triangular. Then B1 is obtained by comput-
ing B1 = R0Q0. In the second step, B1 is factorized
as Q1R1. Then again B2 is obtained by computing
B2 = R1Q1. In general, the stepwise computation con-
tinues as BS = QSRS and then at each iteration the
algorithm computes BS+1 = RSQS until convergence.

The algorithm starts by multiplying B0 from the left
by a Givens [6] rotation matrix Cj , where j = 2, ..., n,
n-1 times. To obtain R0 we factorize and multiply by
B0 as follows.

CnCn−1...C3C2B0 = R0 (9)

The Givens rotation matrix, Cj , contains the following
submatrix in rows j − 2 and j − 1 and columns j − 2
and j − 1. [

cosθ −sinθ
sinθ cosθ

]
7. Then R0 can be obtained from R0 = Cn...C3C2B0.

8. The program then continues calculating B1 = R0Q0.
Similarly in the second step, the program factorizes
B1 = Q1R1 obtaining Q1 and R1 followed by get-
ting B2 = R1Q1. The program continues its execu-
tion in the same way for the next k steps until con-
vergence. Finally, the program produces Bk, a di-
agonal matrix with eigenvalues in its diagonal. The
right eigenvectors, V , can be easily computed from the
product of QkQk−1...Q0 and the matrix T obtained
from the Householder method. Subsequently, the ma-
trix with left eigenvectors, U , can be obtained from
U = XV B−1

k , where B−1
k = Diag( 1

λ1
, 1
λ2
... 1
λn

), λi de-
notes an eigenvalue of Bk.

SQL and scalar UDF Implementation
1. The detailed implementation of the zero-mean data

and correlation analysis was explained in section 3.1.

2. Compute unit vector Vr

To calculate vr, we first transform A to an unpivoted
form, AUnpvt(rowID, colID, val), then we compute
the required variables, @Sr.

The alternative method to compute vr is to pass all the
elements in the rth column of A matrix as parameters
to a UDF, which will compute and then return vr as
a result.
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3. Compute Pr: Pr = I − 2vrv
T
r , r = 1, ..., n− 2

Matrix P can be computed row by row with n − 2
queries and n entries of the matrix per query.

4. Compute Ai = PiAi−1Pi, where i = 1, .., n− 2

To efficiently compute the iterative step, our algorithm
performs query optimization by multiplying and trans-
posing Ai−1Pi in a single step as explained earlier in
Section 3.5. The matrix, Ai−1Pi is transposed to mul-
tiply to the right of Pi obtaining a matrix, Ai. The
queries are performed iteratively to obtain An, which
will be called B0, and used as an input matrix for the
QR factorization method.

5. Compute T = P1P2...Pn−2

T = P1P2...Pn−2 can be computed by a single step
matrix multiplication and transposition in for every
iteration, except for the last iteration where the trans-
position is not needed.

6. Compute Q = CT2 C
T
3 ...C

T
n

To optimize the computation of Q, matrix multiplica-
tion can be avoided since we only need to update two
columns for each iteration. In the first iteration, a base
matrix Q: Q = C2 is created. Then the Q matrix is
updated with a stored procedure.

7. Compute R0 = (Cn...C3C2)B0.

Then R0 can be obtained from R0 = (Cn...C3C2)B0.
Similarly, this calculation does not need a matrix mul-
tiplication of the whole matrix. To obtain R0 we only
need to update two rows. In the jth iteration, the jth
and the (j + 1)th rows are deleted and two updated
rows are inserted with the same subscripts.

8. Compute the eigenvalues, right singular vectors and
left singular vectors using matrix multiplication and
matrix transposition, as explained in Section 3.5.

TVF Implementation
A single microarray experiment can generate thousands of
measurements. Existing microarray data sets typically con-
sist of less than one hundred records, but in the future they
can consist of a few hundreds. Since a d×n microarray data
set X, has a small number of records (n), the covariance ma-
trix and correlation matrix on the data set are small enough
to allow the implementation of SVD using UDFs as available
in a modern DBMS. This method requires a table-valued
function (TVF), which is a User-Defined Function (UDF)
that returns a table. The table returned by the UDF can
be referenced in the FROM clause of a query. In steps 1-7
of SVD computation, the method is implemented inside the
TVF, which then returns the diagonal matrix S, containing
the eigenvalues and the right singular matrix V that can be
obtained and stored in the database. Thus, the large d× n
left singular matrix U (U = XV S−1) and data set scoring
can be calculated using SQL queries.

4. EXPERIMENTAL EVALUATION
Experiments on SVD analysis were conducted on SQL

Server 2005. The server had an Intel Dual Core CPU, 2.6
GHz, 4 GB of memory, and 160 GB on disk. The DBMS

Table 2: Execution time of different correlation anal-
ysis methods (* denotes “Out of memory”.) (time
in seconds).

d SQL-V SQL-I UDF-I SQL-L UDF-L
100 10 8 2 12 43
200 20 10 4 67 170
400 61 17 17 * 725
600 130 29 39 * 1760
800 224 49 68 * *

1,000 346 71 105 * *
2,000 2287 240 417 * *
3,000 5580 521 942 * *
4,000 10256 899 1678 * *
5,000 16687 1363 2641 * *

ran under the Windows XP operating system. For compar-
ison purposes we also used R, a popular statistical package.
We conducted experiments with the R statistical software
running on the same machine as SQL Server.

4.1 Data Sets
We used real and synthetic data sets to evaluate our sys-

tem. The microarray datasets were obtained from GEO
Gene Expression Omnibus, a well-known gene expression
and gene molecular repository. The dataset has 176 sam-
ples of 36, 864 genes. Samples are from kidney tissue with
renal clear cell carcinoma (malignant tumor) and non cancer
tissue (benign tissue). For our correlation analysis, the num-
ber of genes was reduced to d = 100− 5, 000 genes. We also
generated synthetic data sets varying n (50, 100, 200 and
300 records) and d (15,000, 30,000, and 60,000 dimensions)
to study performance optimizations and to test scalability.
The values were randomized between 0 and 1.

4.2 Correlation Analysis Optimizations
In order to compute a correlation matrix of ten thousands

by ten thousands dimensions, optimizations are essential
(see Table 2). The data set is initially formatted vertically,
but by pivoting the table, the I-Horizontal table can be ob-
tained. The system performance is greatly improved by piv-
oting the table because the I-Horizontal table has fewer rows
than the vertical table, and is faster to execute the self-join
operations. As another optimization, the UDF-I-Horizontal
method was created to optimize the SQL-I-Horizontal. The
UDF performs faster than the regular SQL implementation
with small sets; however, the SQL implementation outper-
forms the UDF when the number of dimensions exceeds 400.
The least efficient method for high-dimensional data is the
SQL-L-Horizontal which involves joining all possible pairs of
small input tables. Similarly, the UDF-L-Horizontal requires
more execution time compared with the SQL-L-Horizontal
method.

4.3 SVD Implementation Alternatives
The SVD computation for microarray data analysis, is

usually performed outside the DBMS using statistical pack-
ages. For performance comparison with our implementation
inside databases, we conducted experiments on the R statis-
tical software. Data sets are exported from DBMS to a tab
delimited file before importing them into R for analysis.

The classical PCA method reduces dimensionality by ap-
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Table 3: Execution time to calculate classical PCA
of d × d correlation matrix using TVF (* denotes
“Out of memory”.) (time in seconds).

d PCA with TVF
1K 68
2K 590
3K 2273
4K *

Table 4: Execution time of SVD using R, TVF, and
SQL and scalar UDF (* denotes “Out of memory”.)
(time in seconds).

Outside DB Inside DB
d n Using R TVF SQL and scalar UDF

30K 50 20 3 176
30K 100 33 8 783
30K 200 57 26 4176
30K 300 172 54 12212
60K 50 33 6 188
60K 100 119 14 829
60K 200 231 48 4398
60K 300 * 103 12733

Table 5: Execution time of SVD using R (* denotes
“Out of memory”, time in seconds).

d n Export R Import XTX+SVD TOTAL
30k 50 2 14 4 20
30k 100 4 21 8 33
30k 200 8 36 13 57
30k 300 13 137 22 172
60k 50 4 20 9 33
60k 100 10 98 11 119
60k 200 15 194 22 231
60k 300 28 304 * *

Table 6: Execution time of SVD using Table-Valued
Function (time in seconds).

d n XTX SVD TOTAL
30k 50 2 1 3
30k 100 7 1 8
30k 200 24 2 26
30k 300 50 4 54
60k 50 5 1 6
60k 100 13 1 14
60k 200 46 2 48
60k 300 99 4 103

Table 7: Execution time of SVD using SQL, and
aggregate and scalar UDFs (time in seconds).

d n XTX HH QR TOTAL
30k 50 13 18 145 176
30k 100 50 108 625 783
30k 200 248 1288 2640 4176
30k 300 514 5298 6400 12212
60k 50 25 18 145 188
60k 100 97 108 624 829
60k 200 468 1289 2641 4398
60k 300 1012 5301 6420 12733

plying eigen-decomposition of the d × d correlation matrix
among dimensions(see Table 3). If the data set is high di-
mensional, PCA computation can be very expensive. PCA
computation using TVF can compute data sets up to only
3,000 dimensions and failed to compute a data set with 4,000
dimensions due to insufficient memory. Table 4 compares
performance of three methods that include a method using
SQL commands and scalar UDFs, a method using table val-
ued function, and a method using R statistical packages.
For the approach that uses R packages (see Table 5), we
assume that the data is originally in the database. Thus,
the time to export microarray data sets out of a DBMS
and the time to import the data set into R are included in
the time to calculate SVD. The method using Table Valued
Function (see Table 6) outperforms the other two methods
in all cases. When the number of dimensions reaches 60,000
and the number of record reaches 300, the method using R
produces an out of memory error, which means it cannot
allocate very large vectors. Such error does not occur in
the other two methods. Even though the TVF method is
the fastest, it is less portable than the method using SQL
queries and scalar UDF (see Table 7). In real-life applica-
tions, microarray data sets are very small due to the cost
to produce them. In fact, statisticians almost never analyze
a data set where the number of records exceeds n = 100.
However, that is not to say the number of records cannot be
in the hundreds, but one will find it difficult to find a data
set larger than n = 300. Therefore, the three methods are
compared varying the number of records between 50 to 300.
Figure 3 shows that computing SVD in R does not scale well
when the number of records, n, grows.

4.4 Time Complexity
The Householder method reduces A : A = XTX to a

symmetric tridiagonal form from T costing 8
3
n3 + O(n2).

In addition, to find all the eigenvectors and eigenvalues of
the tridiagonal matrix costs O(6n3 + n2). The total cost
of the Householder tridiagonalization and QR factorization
is 8 2

3
n3 + O(n2). Figure 2 shows that the running time

grows linearly when varying the number of dimensions. The
number of dimensions d only impacts the time to obtain the
zero-mean data and to create the initial correlation matrix.
After we obtain a n× n correlation matrix, d no longer has
any effect on the Householder tridiagonalization or the QR
factorization calculation. The total time to compute SVD in
all three methods is quadratic. Therefore the running time
in axis Y is represented in logarithmic scale. However, in
a real-life application the number of records rarely reaches
hundreds. The small number of records, n, also gives us
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Figure 2: Running time of SVD computation vary-
ing the number of dimensions (d).

the opportunity to exploit the O(n3) computation of the
Householder tridiagonalization and the QR factorization in
TVF. Then SQL queries are used for the computations that
are impacted by the high number of dimensions, such as the
computation to obtain the d×n left eigenvector and U , the
scores of PCA.

5. RELATED WORK
PCA [6, 8] and correlation analysis [11] are two common

techniques to analyze microarray data. The correlation ma-
trix is also used as an input matrix for PCA. There is a
wide range of applications based on PCA, such as, cluster-
ing[10], significant genes selection [1], and gene shaving [5,
4]. SVD has been combined with clustering [13], and also
with support vector machines and least-squares regression
[17]. Microarray data have not been gained enough atten-
tion from the database community. Most researchers put
microarray data in flat files without a database system to
keep the data in more organized manner. There are less
tools available inside the DBMS for the statistical analysis
than outside.

There exists work on computing statistical models inside a
DBMS [15, 14]; this paper explains how to compute sufficient
statistics n,L,Q in order to to enable fast computation of
several linear statistical models. The L-Horizontal method
for the correlation analysis extended the idea from that pa-
per and was adapted for the high dimensional microarray
data. Our research shows that although the L-Horizontal
method performs the best when the number of dimensions
is low, our novel I-Horizontal method performs best for high
dimensional microarray data sets. Compared to previous re-
search, our paper focuses on the application involving PCA
using SVD for microarray data, which is much different from
the classical PCA. We delved into the details of SVD imple-
mentation in both SQL and UDFs including the detailed
implementation of Householder tridiagonalization and QR

factorization. Furthermore, the system performance is com-
pared with a statistical tool outside the DBMS (using the
R statistical package). Several SQL and UDF optimizations
were also exploited and discussed. SVD has been used in
database research, such as Collaborative Filtering (CF) [16]
and information retrieval[2]. There are some works in mi-
croarray database involving visualization using PCA [12].
The microarray database is also being studied extensively
in text mining[9]. To the best of our knowledge, analyzing
microarray data sets implementing numerical methods with
SQL and UDFs is an unexplored topic.

6. CONCLUSIONS
We presented a system that can analyze microarray data

sets inside a DBMS exploiting optimized SQL queries and
UDFs. The problem is challenging given the high dimension-
ality, but small size, of microarray data sets. We explained
how to efficiently compute the correlation matrix and dimen-
sionality reduction models with Principal Component Anal-
ysis (PCA). Unfortunately, traditional PCA methods cannot
be applied with microarray data sets because the eigen-value
problem is ill-conditioned due to having more dimensions
than rows in the data set. This limitation motivated adapt-
ing numerical methods to solve PCA through the Singular
Value Decomposition (SVD) based on a Householder tridi-
agonalization followed by a QR factorization. Our SVD so-
lution is based on a combination of optimized SQL queries
and User-Defined Functions, tailored to exploit the DBMS
performance. We experimentally compared our system with
a state-of-de-art statistical package. We showed our system
outperformed the statistical package including export times
from the database and was competitive based purely on pro-
cessing time. We showed our SQL-based system was capable
of analyzing data sets at the highest dimensionality, whereas
the statistical package failed to do so. Our implementation
scales well with the high dimensionality found in microarray
data sets and has cubic complexity on data set size, which is
a minor limitation since dimensionality is much higher than
data set size.

There are several important and interesting directions for
future work. Our work opens the possibility of performing
advanced statistical analysis of high-dimensional data sets
inside the DBMS using other similar matrix-based numerical
methods. We would like to explore other statistical methods
which may benefit from a combination of SQL queries and
UDFs. We would like to combine dimensionality reduction
methods with methods to fit a mixture of distributions (i.e.
clustering) on high dimensional data sets. Given the high
dimensionality of text data sets our proposal has promise to
be used in information retrieval techniques integrated into a
database system.
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