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Abstract

Distance computation is one of the most computation-
ally intensive operations employed by many data mining
algorithms. Performing such matrix computations within
a DBMS creates many optimization challenges. We pro-
pose techniques to efficiently compute Euclidean distance
using SQL queries and User-Defined Functions (UDFs).
We concentrate on efficient Euclidean distance computa-
tion for the well-known K-means clustering algorithm. We
present SQL query optimizations and a scalar UDF to com-
pute Euclidean distance. We experimentally evaluate per-
formance and scalability of our proposed SQL queries and
UDF with large data sets on a modern DBMS. We bench-
mark distance computation on two important data mining
techniques: clustering and classification. In general, UDFs
are faster than SQL queries because they are executed in
main memory. Data set size is the main factor impacting
performance, followed by data set dimensionality.

1 Introduction

Many machine learning algorithms such as clustering,
classification, similarity joins and nearest neighbor algo-
rithms require distance computation as one of the most crit-
ical and complex computations involved in attaining the ob-
jective. The distance computation involves computing arith-
metic operations such as multiplication, subtraction among
two or more matrices. Using a high level language to
compute these matrix computations may require the ma-
trices to be held in memory, for larger matrices the pro-
gram should some complex matrix transfers to and from
disk. There many types of distances used in machine learn-
ing algorithms such as Euclidean, Mahalanobis, Manhattan
etc which involve quadratic matrix computations. We use
Euclidean distance here to demonstrate the distance com-
putation as it is popular and the other distances are gener-
alizations of the Euclidean distance. The applications of
the Euclidean distance in machine learning algorithms for

performance purposes is demonstrated using clustering and
classification. K-Means [1, 6, 13], is one of the most popu-
lar clustering algorithms used widely due to its robustness,
convergence and it applies Euclidean distance to compute
the clusters. We use K-Means clustering and a Bayesian
classification based on K-Means to demonstrate the compu-
tation of Euclidean distance.

Computing the distance using SQL provides many ad-
vantages than when using a high-level language. The
DBMS is designed to handle large matrices which are rep-
resented as tables in a DBMS efficiently. It avoids the ex-
port of the matrices outside the DBMS which would be re-
quired in a high-level program. Thus, it does not compro-
mise on the data security. The SQL provides many pro-
gramming features to handle these complex matrix compu-
tations. However, SQL has many limitations such as the
number of computations that can be performed in a sin-
gle SQL statement. The DBMS provides yet another pro-
gramming extensibility in the form of User-Defined Func-
tions(UDFs), [12, 10] to perform multiple computations.
They can be easily plugged into a DBMS and called from a
SELECT statement. We compare the SQL and UDF imple-
mentations of distance computation varying all parameters
which affect the complexity of the computation.

In Section 2 we present formal definitions for the input
data set, output matrices and parameters required for dis-
tance computation. Section 3 explains the Euclidean dis-
tance computation, as used by K-Means. Then we dis-
cuss the implementation alternatives of the Euclidean dis-
tance computation using SQL and UDFs, introducing sev-
eral query optimizations. Section 4 contains an experi-
mental evaluation on a modern DBMS, focusing on perfor-
mance. We analyze the complexity of distance computation
for clustering and classification. We study SQL query opti-
mizations. We compare SQL queries and UDF implemen-
tations varying different parameters. Finally, we analyze
scalability.
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Table 1. Subscripts summary.
Index range used for

i 1 . . . n points
j 1 . . . k clusters
h 1 . . . d dimensions
g 1 . . .m classes

2 Definitions

We require a data set X = {x1, x2, . . . , xn} as
input where each xi refers to a d-dimensional data
point. The schema for the data set is defined as
X(i, X1, X2, . . . , Xd, g) where g is the class attribute used
only for the classification. The clustering does not require
the class attribute g as the whole data set X is divided into
k clusters. In classification, the clustering is a particular
case of the classification problem with m = 1 classes. The
number of clusters required for both clustering and classifi-
cation is provided. The notation for subscripts of the data
set is given in Table 1. We focus on computing the distance
between each of the n points and m × k clusters centers,
and computing the nearest centroid to each point for the K-
Means algorithm. For purpose of clarity and explanation the
parameters d = 3, k = 2, m = 2 used in the SQL and UDF
examples are same throughout the remainder of the paper.

3 Distance Computation

We present here an implementation of the Euclidean
distance computation used in K-Means clustering and a
Bayesian classification based on K-Means using SQL and
User-Defined Functions(UDFs). A collection of SQL query
optimizations are explained in detail in order to arrive at our
optimized distance computation technique.

3.1 Euclidean Distance

The Euclidean distance can be defined as the square root
of the sum of squares of difference between two point co-
ordinates among all dimensions. In simple terms, it is the
geometric distance between two data points. Consider two
points x1 and x2. The Euclidean distance between these
two points is expressed by the equation

d(x1, x2) = (x1 − x2)T (x1 − x2) (1)

The square root has been eliminated here for simplicity
and the equation is computed as discussed in [4, 1].

3.2 K-Means Clustering

K-Means Clustering involves computing the nearest
cluster among k clusters for each data point i. The cluster
centers are initialized randomly and k Euclidean distances
for each data point i to the k clusters are computed. The
nearest cluster for each data point is found comparing the k
distances. Now, the cluster centers are re-computed for the
computed clusters in the current iteration. The process is re-
peated until the cluster centers do not move which requires
several iterations. Thus, the distance computation is re-
peated for each iteration becoming the most expensive oper-
ation. For testing the computed model on a new data set, the
process is repeated but only once, i.e the distance computa-
tion and finding the nearest cluster are done based on com-
puted k cluster centers during training. Thus, the data set
X of n data points is grouped into k clusters. The SQL and
UDF implementation to compute the Euclidean distance are
given below. The SQL computes the Euclidean distance in
XD using a cartesian product, however the UDF computes
the Euclidean distance and nearest cluster for each i over a
single table scan over the data set X , the details of which
are explained later. The schemas of tables used here are
given in Tables 2 and 3.

/* Clustering: Distance computation */
/* using SQL. */
INSERT INTO XD
SELECT

i
,(X1-C1_X1)**2
+(X2-C1_X2)**2
+(X3-C1_X3)**2
,(X1-C2_X1)**2
+(X2-C2_X2)**2
+(X3-C2_X3)**2

FROM XH,CH;

3.3 Classification Based on K-Means

The Bayesian classification is built upon the K-Means
clustering, computing multiple clusters per class. Here the
data points from each class are clustered into k clusters.
Thus the computation of the classification model involves
finding k clusters per class g or m × k clusters. The al-
gorithm for training and testing is similar to the standard
K-Means clustering algorithm. During training, k cluster
centers are initialized randomly for each class g. Now the
distance between each data point and the k cluster centers
are computed corresponding to the appropriate g. The near-
est cluster among the k clusters for each data point i is found
and the cluster centers are recomputed. The process is re-
peated until the k cluster centers from all m classes do not
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move. The m × k cluster centers forms the model used for
model testing. For testing, the distances from a data point i
to all m × k clusters are computed and the nearest cluster
among them is found. The class g belonging to the found
nearest cluster for the data point i is predicted as the win-
ning class. For a K-Means clustering over the whole data
set with n data points, we can assume the number of classes
as m = 1. The following statements present the SQL and
UDF implementation for computing the distance for clas-
sification involving m classes. Here the SQL requires a
join on the class attribute g. As already explained, the UDF
computes the nearest cluster for each class g along with the
distance computation.

/*Classification: Distance computation*/
/*using SQL.*/
INSERT INTO XD
SELECT

i
,XH.g
,(X1-C1_X1)**2
+(X2-C1_X2)**2
+(X3-C1_X3)**2
,(X1-C2_X1)**2
+(X2-C2_X2)**2
+(X3-C2_X3)**2

FROM XH,CH
WHERE XH.g=CH.g;

3.4 Query Optimizations

We propose several SQL query optimizations for com-
puting the Euclidean distance and nearest cluster. We do
discuss the database operations involved in each technique.
The most optimized SQL distance computation is compared
with a UDF implementation.

3.4.1 Distance Computation in SQL

The distance computation step is the most important and ex-
pensive task in the iteration, which involves a join on nor-
malized input data XH and center table CH . For each data
point i, k distances are computed using all the d dimensions
in the row, and hence, the complexity of this computation
becomes O(dkn). We discuss different approaches for dis-
tance computation in SQL, each offering a better optimiza-
tion, starting from the slowest technique progressing until
the fastest. The database operations involved and complex-
ity or I/Os involved in each of the techniques are given in
Table 4. The description of cluster center tables used in each
of the five different techniques including the UDF are given
in Table 2, and the schemas of all other tables including the
input table are given in Table 3. The following optimiza-

tions discussed are in reference to the Euclidean distance
computation for classification.

Vertical Distance: As the name suggests, the approach
uses a pivoted version of the input table XV and the cluster
center table C. Here, the aggregation sum() is used to add
the products of the differences across dimensions. Thus,
it requires a sum() for each point i totaling n aggregation
calls.

/*Updating XD */
DELETE FROM XD;
INSERT INTO XD
SELECT

i
,C.g
,sum((val-C1)**2)
,sum((val-C2)**2)

FROM XV,C
WHERE XV.h=C.h AND XV.g=C.g
GROUP BY i,C.g;

Horizontal-d-nested: We eliminate the use of expen-
sive sum() aggregations with the horizontal arithmetic op-
erator. The distances are calculated for each cluster per i
making a total of n×k rows. Now the k distances per point
are transformed to one horizontal record i.e. n× k rows are
un-pivoted to n rows to fit the structure of XD. The dis-
tance computation and un-pivoting operations are required
here to obtain XD combining both into a single nested
query. The distance computation is significantly faster than
the vertical method. However, the un-pivoting operation is
more expensive to compute than distance computation in
the nested query.

Horizontal-d-temp: This method is similar to
Horizontal-d- nested, in the sense that obtaining XD in-
volves distance computation and un-pivoting operations.
Both operations are not done in a single nested query, but
as two separate queries. The computed distance is materi-
alized into a table XDV and the un-pivoting on XDV is
done separately in the next query.

INSERT INTO XDV
SELECT

i
,XH.g
,CH.j
,(XH.X1-CH.X1)**2
+(XH.X2-CH.X2)**2
+(XH.X3-CH.X3)**2

FROM XH,CH
WHERE XH.g=CH.g;

INSERT INTO XD
SELECT
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Table 2. Distance computation: Table Descriptions for cluster center matrices.
Technique Description: Cluster center table
Horizontal m tables each 1 row and k × d columns.
Horizontal-dk A table with m rows and k × d columns.
Horizontal-d-temp A table with m × k rows and d columns.
Horizontal-d-nested A table with m × k rows and d columns.
Vertical A table with m × k × d rows and 1 column.
UDF A table with m rows and k × d columns.

Table 3. Distance computation: Table schemas used.
Technique Center Table
Input table: All Horizontal schemes XH(i,g,X1,X2,. . . ,Xd)
Input table: Vertical Scheme XV(i,g,h,val)
Distance Table: All schemes XD(i,g,D1,D2,. . . ,Dk)
Nearest Cluster Table: All schemes XN(i,g,j)

Table 4. Distance computation: Query optimization.
Technique Database Operations I/Os
UDF Join on g and UDF call overhead. n
Horizontal m cartesian joins. n
Horizontal-dk Join on g. n
Horizontal-d-temp Join on g and a cartesian join on j. 2kn + 2n

Materialization in XDV.
Un-pivoting on attribute j.

Horizontal-d-nested Join on g and a cartesian join on j. 2kn + 2n
Un-pivoting on attribute j.

Vertical Join on g and h with GROUP BY on i,g,j. dkn
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i
,g
,SUM(CASE WHEN j = 1
THEN distance ELSE NULL END)
,SUM(CASE WHEN j = 2
THEN distance ELSE NULL END)

FROM XDV
GROUP BY i,g;

Horizontal-dk: As can be seen from previous distance
techniques, aggregations and un-pivoting operations con-
tribute to most of the time. We eliminate these operations
here and compute the XD with a join operation on the class
attribute g.

INSERT INTO XD
SELECT

i
,XH.g
,(X1-C1_X1)**2
+(X2-C1_X2)**2
+(X3-C1_X3)**2
,(X1-C2_X1)**2
+(X2-C2_X2)**2
+(X3-C2_X3)**2

FROM XH,CH
WHERE XH.g=CH.g;

Horizontal: This method is similar to Horizontal - dk,
we apply a cartesian join on class g in place of the join.

INSERT INTO XD
SELECT

i
,g
,CASE
WHEN g=0 THEN
(XH.X1-CH_0.C1_X1)**2

+(XH.X2-CH_0.C1_X2)**2
+(XH.X3-CH_0.C1_X3)**2
WHEN g=1 THEN
(XH.X1-CH_1.C1_X1)**2

+(XH.X2-CH_1.C1_X2)**2
+(XH.X3-CH_1.C1_X3)**2
END

,CASE
WHEN g=0 THEN
(XH.X1-CH_0.C2_X1)**2

+(XH.X2-CH_0.C2_X2)**2
+(XH.X3-CH_0.C2_X3)**2
WHEN g=1 THEN
(XH.X1-CH_1.C2_X1)**2

+(XH.X2-CH_1.C2_X2)**2
+(XH.X3-CH_1.C2_X3)**2
END

FROM XH,CH_0,CH_1;

3.4.2 Nearest Cluster

In clustering, after computing the distance from each data
point i to k clusters, the nearest cluster among them is
found. There are two basic alternatives: pivoting distances
and using SQL standard aggregations, using case statements
to determine the minimum distance. For the first alternative
XD must be pivoted into a bigger table. Then, the mini-
mum distance is determined using the min() aggregation.
The the closest cluster is the subscript of the minimum dis-
tance, which is determined joining XH . In the second al-
ternative we just need to compare every distance against the
rest using a CASE statement. Since the second alternative
does not use joins and is based on a single table scan, it is
much faster than using a pivoted version of XD.

For classification, we have computed k distances per i
for each class g i.e m × k distances and we need to deter-
mine the closest cluster among all clusters for every class g.
The SQL to determine closest cluster per class for our run-
ning example is given below. This statement is also used
for model testing and therefore it is convenient to include g.
This statement must be modified if a different k per class is
desired.

/* Classification */
INSERT INTO XN
SELECT

i
,g
,CASE

WHEN d1<=d2 THEN 1
ELSE 2

END AS j
FROM XD;

3.5 User-Defined Functions

User-Defined Functions (UDFs) allow the user to extend
the functionality of a DBMS with a function where table
attributes are passed as parameters. The function can be
called or evaluated from within a SQL statement such as
SELECT. UDFs allows the user to leverage the power of
high-level language such as C allowing more operations to
be done using arrays eliminating the limitation posed by
SQL. There are two types of UDFs: scalar and aggregate
UDFs. Scalar UDFs are called every row in a SELECT
which returns a single scale numeric or string. Aggregate
UDFs can store a portion of some variables in memory over
many rows used in aggregation operations such as sum().

The Euclidean distance computation is solved here us-
ing a scalar UDF. But this technique differs from the earlier
techniques in that it not only computes the distance but the
nearest cluster as well. The dimensions and cluster cen-
ters for all k clusters are passed as parameters to the UDF.

537537

Authorized licensed use limited to: University of Houston. Downloaded on January 6, 2009 at 14:45 from IEEE Xplore.  Restrictions apply.



The UDF computes the distance and returns the computed
cluster for each data point i. The distance computation us-
ing UDF provides some advantages over SQL. Many tech-
niques to solve vector and matrix computations using UDFs
are discussed in [12]. It avoids materializing the computed
distances in XD for the n data points and an extra table scan
on XD to find the nearest cluster. Each UDF call computes
k distances for each i and returns the nearest among the k
clusters. The k cluster centers for each class g required for
each UDF call is accessed from table CH using the primary
key g in a single I/O. For each UDF call, it requires memory
allocation apart from the join database operation involved.
However, the memory overhead introduced by the UDF is
constant for each i and thus should scale linearly with n.
The UDF call using a SELECT statement is given below.

/* Clustering */
INSERT INTO XN
SELECT

i
,udf_distance([string of XH values]

,[string of CH values])
FROM XH,CH;

/* Classification */
INSERT INTO XN
SELECT

i
,XH.g
,udf_distance([string of XH values]

,[string of CH values])
FROM XH,CH
WHERE XH.g=CH.g;

3.6 Comparing SQL and UDFs

The vertical distance technique involves a pivoted ver-
sion of the input table XV of nd rows and the horizontal
techniques require the input table XH of n rows. Comput-
ing the Euclidean distance using horizontal technique re-
quires accessing only n rows against nd rows for a vertical
technique. In a vertical technique, the d dimensions of each
data point xi is represented in XV as d rows. Thus, it re-
quires sum() aggregation to sum the squares of the differ-
ence between the data point and cluster center. The cluster
center table is also similar to the input table XV i.e the d
dimensions of each of the k cluster center are distributed
among d rows per cluster center. The SQL computation us-
ing a vertical technique involves a join on the dimension
attribute i.e h and another join on the class attribute, g.

When using a horizontal technique, the n data points can
be accessed using n I/Os and the schema of the cluster cen-
ter table is modified to compute the distances from a data
point xi to all k clusters in a single I/O. The input(XH)

and cluster center table(CH) are joined only on the class
attribute g. Thus the optimized horizontal technique -
Horizontal-dk requires only n I/Os for distance computa-
tion.

The UDFs are based on the schemas of the input and
cluster center tables introduced by the Horizontal-dk tech-
nique which makes it possible to access each data point i
and k cluster centers in a single I/O. The UDF makes two
computations i.e distance and nearest cluster in a single
UDF call. However, it introduces a memory overhead for
every UDF call in addition to the join required as in the
Horizontal-dk technique.

4 Experiments

We study the performance of Euclidean distance com-
putation in clustering and classification. The experiments
here demonstrate the scalability of the distance computation
using SQL and UDFs. The computation of Euclidean dis-
tance here refer to the distance computation used in scoring
a new data set based on the computed model . It assumes
the model is computed and the m× k clusters are available.
The input data set approximates a Gaussian distribution per
class g is provided for testing and the cluster center table is
readily available.

4.1 SetUp

The experiments were run on Teradata V2R6 DBMS
with a CPU of 3.2GHz, 2GB memory and 650GB disk
space. All the parameters which affect the Euclidean dis-
tance computation - number of dimensions, clusters and
data points except classes are varied to demonstrate the
computational performance. The number of classes are
fixed at m = 1 for clustering and m = 2 for classification.

4.2 Profiling: Clustering & Classification

Computing or training a clustering or Bayesian model
is an expensive process which requires several scans over
the input table. The initialization step involves perform-
ing any preprocessing on the input table such as handling
missing values, normalization, etc, and randomly initializ-
ing the k cluster centers for each class g. The E-Step in-
volves the distance computation and computing the near-
est cluster. It also involves computing NLQ, the sufficient
statistics - count(N ), linear sum(L), and quadratic sum(Q)
of data points for each of the m × k clusters. This is a rel-
atively small table with m × k rows. The M-Step involves
recomputing the WCR, cluster information - weight(W ),
centers(C) and squared radii(R) from the sufficient statis-
tics table NLQ. The E-Step and M-Step are repeated until
the clusters from all m classes converge. There are only
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two steps which require the scan/join on the input table,
computing the distance XD and sufficient statistics NLQ
tables. The distance employed here is the most optimized
SQL technique among all, the Horizontal-dk which requires
an join on the input table XH and cluster center table on
class attribute g. Computing the sufficient statistics table
NLQ requires a join on the primary index i and sum() ag-
gregation over the input table. The aggregations get com-
plex with a higher m and k. Thus each iteration during
training requires two scans on the input table for every iter-
ation until the model converges. Table 5 lists the percentage
of time allocated for each step in a single iteration distinc-
tively illustrating the most expensive computations. Thus,
clearly any computation involving a scan or join on the in-
put table is expensive requiring optimizations. Although the
computation of XN involves finding the nearest cluster for
n points, the process is made simpler with the usage of a
CASE statement.

4.3 SQL Optimizations

Figure 1 demonstrates the performance of five differ-
ent SQL query optimization techniques. As can be seen
here, the Vertical and Horizontal-d-nested techniques per-
form more poorly. The Vertical approach requires access-
ing a pivoted input table of n × d rows and sum() aggre-
gation for each i to compute k distances. Thus, a heavy I/O
and usage of aggregations here make this computation ex-
pensive. With Horizontal-d-nested, a horizontal input table
of n rows is used and aggregations are replaced by arith-
metic expressions. However, this technique requires an ex-
pensive un-pivoting operation where k distances on k rows
are transformed to a single row. With a higher k, it per-
forms as bad as the Vertical technique, but is much better
with an increasing d. The un-pivoting is achieved using a
nested query on the already computed distance table. This
un-pivoting takes place in a temporary space in the DBMS
making it extremely slow. This transformation is essential
to take advantage of the CASE statement to compute the
nearest cluster in table XN .

To avoid the un-pivoting operation in the temporary
space, the temporarily computed distance table is material-
ized in XDV and the un-pivoting is performed on this table
XDV to obtain XD. This optimization gives a significant
performance than the Nested technique. However, we need
to eliminate the un-pivoting operation completely which re-
duces the number of I/O accesses. The cluster center table
CH is modified to compute the k distances for each data
point i in a single I/O access on the input table. We obtain
two optimization techniques which satisfy our requirement.
The Horizontal-dk technique requires a join on the input ta-
ble and cluster center table over class attribute g. The cluster
center table CH here contains m rows. In Horizontal tech-
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nique, the CH is divided into m tables each with one row.
Here the input table is cartesian joined with all m cluster
center tables requiring the same number of I/Os.

4.4 Comparing UDF with SQL

Figures 2,3,4,5 compare the performance of the distance
computation varying n, d, k for both clustering and clas-
sification. The best SQL optimization technique is com-
pared here with the User-Defined Function(UDF) imple-
mentation. Both SQL and UDF require the same input and
cluster tables joined on the class attribute g, thus requir-
ing the same number of I/Os. The graph grows linearly in
SQL with increasing d, k, n and m. The size of the out-
put table XD is affected by all the four parameters. For
k = 2, 4 the times are almost same due to the overhead in-
troduced by the SQL but it becomes linear beyond k = 4.
The UDF presents some interesting results. The times scale
linear with increasing n but increase slightly or almost same
with a higher d, k, m. As it involves in-memory compu-
tations, even larger computations with a higher d, k, m af-
fect the times to a lesser extent as it does not require more
I/Os. The only parameter which affects the performance is
n, which translates to a higher number of the UDF calls and
I/Os. Though the UDF places an additional memory over-
head for every UDF call, the overhead is constant for every
call regardless of the d, k, m and scales linearly with n.

Table 6 makes a time comparison between the time to
export the data set outside a DBMS using ODBC and the
distance computation inside the DBMS.

4.5 Discussion

SQL and UDFs each has its unique pros and cons for
handling large data sets. For clustering, the performance of
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Table 5. Classification: Benchmarking queries. Defaults: d = 8, k = 8, m = 2, n = 1M.
Computation Input Output Time

tables tables secs %
Setup, initialize X all tables 136
E step: distance XH, CH XD 79 42%
E step: nearest centroid XD XN 15 8%
E step: update NLQ XN, XH NLQ 80 42%
M step: update WCR NLQ, MODEL WCR 0 1%
M step: Remaining WCR CH, MODEL 13 7%
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Figure 3. Distance computation for classification: SQL vs UDF: Time growth varying n, d and k for
m=2; defaults d = 4, k = 4, n = 1M .
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Figure 5. Distance computation for classifica-
tion: SQL vs UDF: Time growth varying d for
m=4; defaults d = 4, k = 4, n = 1M .

SQL and UDFs are almost similar varying n, d, k. How-
ever, for classification, the UDF is slightly better than SQL
for m = 2, and UDF performs extremely well for a higher
m = 4. The UDFs can execute multiple computations such
as distance and nearest cluster in this case, more computa-
tions can be performed based on the provided parameters.
The SQL requires a materialized table for storing the com-
puted values for every computation which poses some un-
necessary I/O overhead. However, the UDF in itself poses
a memory overhead for every UDF call, but the overhead is
constant for every call and thus it linearly scales with n. For
handling large and dense data sets with a high m, n, d, k,
UDFs are better way to handle than the SQL as it scales
linearly only with the number of data points(n).

Table 6. Comparing SQL and ODBC d = 8
k = 8; Distance Using SQL vs export; times
in seconds.

n × 1k SQL ODBC
100 4 53
200 32 106
400 76 213
800 181 423

1600 372 727

5 Previous Work

The integration of data mining algorithms in DBMS such
as [7, 14], discuss some well researched issues. Some pa-
pers such as [3, 15, 17] discuss some DBMS extensions and
primitives for programming the data mining algorithms in-
side the DBMS. Our work is based on K-Means clustering
[1, 6, 13] which requires the Euclidean distance computa-
tion as an integral part of the clustering process. Efficient
techniques to implement the K-Means clustering in SQL
have been discussed in [11, 9, 8] where the data sets are
stored inside the DBMS. They discuss efficient exploita-
tion of SQL programming capabilities to implement K-
Means and EM clustering algorithms. Some research such
as [5, 16] has been devoted to discuss techniques to perform
expensive aggregations on large data sets. Several query op-
timizations introduced here such as [2] discuss an overview
for query optimizations in a DBMS. Applications of User-
Defined functions(UDFs) employed to handle complex ma-
trix computations are discussed in [12] and [10] discuss its
usefulness to build and score complex statistical models.
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6 Conclusions

Complex I/O and memory intensive matrix computa-
tions require scalable and parallel architectures for handling
larger matrices. We introduce a technique to perform such
a matrix computation i.e distance inside a DBMS using
the standard portable SQL queries and User-Defined func-
tions(UDFs). Both SQL and UDFs pose unique challenges
for handling the increasing scalability. We consider a Eu-
clidean distance computation in K-Means clustering and a
classification based on K-Means to demonstrate the perfor-
mance of the computation inside the DBMS. The introduc-
tion of classification in a distance computation introduces
a whole new dimension to the complexity of the computa-
tion. The complexity of the computation or the amount of
the time invested in this step in a classifier training was il-
lustrated. The factors which affect the complexity of the
computation - classes, data points, dimensions, clusters are
varied to demonstrate the performance. Five different SQL
techniques and a UDF implementation were discussed each
introducing unique schemas for the input tables and thus
different database operations. These database operations
were simplified over many optimizations to arrive at a tech-
nique which can handle a maximal number of computations
in a single I/O. The SQL implementation scales linearly for
all four factors but the UDF only for the number of data
points. The UDF has an advantage in-memory computa-
tions and computes the distance and finding the nearest clus-
ter in a K-Means in a single scan/join over the input data set.
The testing process for classification also scales linear sim-
ilar to the distance computation. The distance computation
is the most computationally intensive step.

The SQL and UDF optimizations introduced here can
efficiently handle distance computations for clustering and
Bayesian classification based on the clustering. The com-
putation becomes an issue in a different environment such
as the nearest neighbor classifiers. For each data point, the
distance to each of the other data points are computed in
a nearest neighbor computation wherein clustering the dis-
tance to each of the relatively small number of clusters are
found. The SQL and UDF implementations proposed here
require major modifications to handle computation of the
nearest neighbor classifiers.
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