
Migration of Data Mining Preprocessing into the DBMS

Carlos Ordonez
University of Houston

Dept. of Computer Science
Houston, TX, USA

Javier Garcı́a-Garcı́a
UNAM∗

Facultad de Ciencias
Mexico City, Mexico

Michael J. Rote
Teradata

Data Mining Solutions
San Diego, CA, USA

ABSTRACT
Nowadays there is a significant amount of data mining work
performed outside the DBMS. This article discusses recom-
mendations to push data mining analysis into the DBMS
paying attention to data preprocessing (i.e. data cleaning,
summarization and transformation), which tends to be the
most time-consuming task in data mining projects. We
present a discussion of practical issues and common solu-
tions when transforming and preparing data sets with the
SQL language for data mining purposes, based on experi-
ence from real-life projects. We then discuss general guide-
lines to create variables (features) for analysis. We introduce
a simple prototype tool that translates statistical language
programs into SQL, focusing on data manipulation state-
ments. Based on experience from successful projects, we
present actual time performance comparisons running SQL
code inside the DBMS and outside running programs on a
statistical package, obtained from data mining projects in
a store, a bank and a phone company. We highlight which
steps in data mining projects are much faster in the DBMS,
compared to external servers or workstations. We discuss
advantages, disadvantages and concerns from a practical
standpoint based on users feedback. This article should be
useful for data mining practitioners.

Categories and Subject Descriptors
H.2.8 [Database Management]: Systems—Relational
Databases; H.2.8 [Database Management]: Database
Applications—Data Mining

General Terms
Languages, Performance

Keywords
Data preprocessing, denormalization, SQL, translation

∗Universidad Nacional Autónoma de México

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DMCS’09, June 28, Paris, France.
Copyright 2009 ACM 978-1-60558-674-8 ...$5.00.

1. INTRODUCTION
In a modern IT environment transaction processing [7]

and data warehousing [10] are managed by database sys-
tems. Analytics on the database are a different story. De-
spite the data mining [8, 10] functionality offered by the
DBMS there exist many statistical tasks that are performed
outside [11, 10]. This is due to the existence of sophis-
ticated statistical tools and libraries [11], the lack of ex-
pertise of statistical analysts to write correct and efficient
SQL queries, the limited set of statistical methods available
offered by the DBMS and legacy code. In such environ-
ments users rely on the database to provide data, and then
they write SQL queries to extract data joining several ta-
bles. Once data sets are exported they are summarized and
transformed depending on the task at hand, but outside the
DBMS. Finally, when the data set has the desired variables
(features), statistical models are computed, interpreted and
tuned. In general, models include both descriptive and pre-
dictive techniques, coming from machine learning [14] and
statistics [11]. From all the tasks listed above preparing
the data set for analysis is the most time consuming task
[8] because it requires significant effort to transform typi-
cal normalized tables in the database into tabular data sets
appropriate for analysis. Unfortunately, in such environ-
ments manipulating data sets outside the DBMS creates
many data management issues: data sets must be recre-
ated and re-exported every time there is a change, models
need to be deployed inside the DBMS, different users may
have inconsistent version of the same data set in their own
computers, security is compromised. Therefore, we defend
the idea of transforming data sets and computing models in-
side the DBMS, exploiting its extensive functionality. Our
motivation to migrate statistical analysis into the DBMS,
yields the following benefits. The DBMS server is generally
a fast computer and thus results may be obtained sooner.
The DBMS provides powerful querying capabilities through
SQL and 3rd party tools. The DBMS has extensive data
management functionality (maintaining referential integrity,
transaction processing, fault-tolerance, security).

We assume the DBMS provides basic statistical and data
mining functionality. That is, the DBMS is capable of per-
forming common data mining tasks like regression [11], clus-
tering [11], PCA [14] or association rules, among others. The
commercial data mining tool used in our real-life projects
is called Teradata Warehouse Miner (TWM) [25]. On the
other hand, we assume the DBMS supports the SQL lan-
guage, which is used to store and retrieve information from
the DBMS [7, 10]. Based on experience from data mining



projects we have become aware that statistical analysts have
a hard time writing correct and efficient SQL code to extract
data from the DBMS or to transform their data sets for the
data mining task at hand. To overcome such issues, sta-
tistical analysts resort to statistical packages to manipulate
and transform their data sets. Since most statistical pack-
ages provide a programming language, users end up creating
long scripts mixing data transformation and modeling tasks
together. In such scripts most of the programming effort is
spent on transforming the data set: this is the main aspect
studied in this article. We discuss practical issues and com-
mon solutions for data transformation tasks. Finally, we
present evidence transforming data sets and building mod-
els on them is more efficient to do inside the DBMS than
outside with an external statistical program.

This article presents a prototype tool capable of trans-
lating common statistical language (e.g. SAS [6]) programs
into SQL [7]. The tool automates the task of translating
statistical language scripts into equivalent SQL scripts, pro-
ducing the same results. There are certain similarities and
differences between both languages that make the problem
interesting and challenging. The statistical language is an
imperative language that manipulates data sets as tables,
but not strictly as relational tables. The language includes
syntactic constructs to specify arithmetic expressions, flow
control and procedural calls. On the other hand, SQL is a
set oriented language that also manipulates data sets as ta-
bles, but which allows specifying relationships among tables
with primary/foreign keys. A set of tables is manipulated
with join operations among their keys. Both languages iden-
tify data set columns with names and not with subscripts
and both automatically scan all rows in a data set with-
out the need of a loop construct. Query optimization is a
fundamental issue in SQL.

The article is organized as follows. Section 2 discusses
important practical issues when preparing and transform-
ing data sets for statistical analysis as well as common solu-
tions. Section 3 presents a translator of data transformation
statements into SQL. Section 4 presents performance com-
parisons and users feedback from projects where statistical
programs were successfully migrated. Related work is dis-
cussed in Section 5. Finally, Section 6 concludes the article.

2. PRACTICAL ISSUES PREPARING
DATA SETS IN SQL

We present important practical issues to write and op-
timize SQL code for data transformation tasks. These is-
sues have been collected from several projects helping users
migrate statistical analysis performed in external statistical
tools into the DBMS.

In general, the main objection from users to do so is to
translate existing code. Commonly such code has existed
for a long time (legacy programs), it is extensive (there ex-
ist many programs) and it has been debugged and tuned.
Therefore, users are reluctant to rewrite it in a different lan-
guage, given associated risks. A second complaint is that, in
general, the DBMS provides elementary statistical function-
ality, compared to sophisticated statistical packages. Nev-
ertheless, such gap has been shrinking over the years. As
explained before, in a data mining environment most user
time is spent on preparing data sets for analytic purposes.
We discuss some of the most important database issues when

tables are manipulated and transformed to prepare a data
set for data mining or statistical analysis. We pay particu-
lar attention to query optimizations aspects [7]. These issues
represent experience that has been used to improve and op-
timize SQL code generated by a data mining tool tightly
integrated with the DBMS [25].

Throughout this section we present example of typical
SQL queries. Some examples refer to retail (store sales)
databases, whereas some others refer to a bank.

2.1 Main Issues

Summarization
Unfortunately, most data mining tasks require dimensions
(variables) that are not readily available from the database.
Such dimensions typically require computing aggregations at
several granularity levels. This is because most columns re-
quired by statistical or machine learning techniques require
measures (or metrics), which translate as sums or counts
computed with SQL. Unfortunately, granularity levels are
not hierarchical (like cubes or OLAP [7]) making the use of
separate summary tables necessary (e.g. summarization by
product or by customer, in a retail database). A straightfor-
ward optimization is to compute as many dimensions in the
same statement exploiting the same group-by clause, when
possible. In general, for a statistical analyst it is best to
create as many variables (dimensions) as possible in order
to isolate those that can help build a more accurate model.
Then summarization tends to create tables with hundreds
of columns, which make query processing slower. However,
most state-of-the-art statistical and machine learning tech-
niques are designed to perform variable (feature) selection
[11, 14] and many of those columns end up being discarded.

A typical query to derive dimensions from a transaction
table is as follows:

SELECT

customer_id

,count(*) AS cntItems

,sum(salesAmt) AS totalSales

,sum(case when salesAmt<0 then 1 end)

AS cntReturns

FROM sales

GROUP BY customer_id;

Denormalization
It is required to gather data from many tables and store
data elements in one place. It is well-known that on-line
transaction processing (OLTP) DBMSs update normalized
tables. Normalization makes transaction processing faster
and ACID [7] semantics are easier to ensure. Queries that
retrieve a few records from normalized tables are relatively
fast. On the other hand, analysis on the database requires
precisely the opposite: a large set of records is required and
such records gather information from many tables. Such
processing typically involves complex queries involving joins
and aggregations. Therefore, normalization works against
efficiently building data sets for analytic purposes. One so-
lution is to keep a few key denormalized tables from which
specialized tables can be built. In general, such tables can-
not be dynamically maintained because they involve join
computation with large tables. Therefore, they are periodi-
cally recreated as a batch process.



SELECT

customer_id

,customer_name

,product.product_id

,product_name

,department.department_id

,department_name

FROM sales

JOIN product

ON sales.product_id=product.product_id

JOIN department

ON product.department_id

=department.department_id;

Time window
In general, for a data mining task it is necessary to select a
set of records from one of the largest tables in the database
based on a date range. In general, this selection requires
a scan on the entire table, which is slow. When there is a
secondary index based on date it is more efficient to select
rows, but it is not always available. The basic issue is that
such transaction table is much larger compared to other ta-
bles in the database. For instance, this time window defines
a set of active customers or bank accounts that have recent
activity. Common solutions to this problem include creat-
ing materialized views (avoiding join recomputation on large
tables) and lean tables with primary keys of the object be-
ing analyzed (record, product, etc) to act as filter in further
data preparation tasks.

SELECT

customer_id

,product_id

,sales_amt

FROM sales

WHERE cast(salesDate AS char(10))>= ’2009-01-01’

and cast(salesDate AS char(10))< ’2009-03-01’;

Dependent SQL statements
A data transformation script is a long sequence of SELECT
statements. Their dependencies are complex, although there
exists a partial order defined by the order in which tempo-
rary tables and data sets for analysis are created. To debug
SQL code it is a bad idea to create a single query with mul-
tiple query blocks. In other words, such SQL statements
are not amenable to the query optimizer because they are
separate, unless it can keep track of historic usage patterns
of queries. A common solution is to create intermediate
tables that can be shared by several statements. Those in-
termediate tables commonly have columns that can later be
aggregated at the appropriate granularity levels.

CREATE TABLE X AS (

SELECT

A,B,C

FROM

) WITH DATA;

SELECT *

FROM X JOIN T1 ...

SELECT *

FROM X JOIN T2 ...

..

SELECT *

FROM X JOIN TN ...

Computer resource usage
This aspect includes both disk and CPU usage, with the sec-
ond one being a more valuable resource. This problem gets
compounded by the fact that most data mining tasks work
on the entire data set or large subsets from it. In an active
database environment running data preparation tasks dur-
ing peak usage hours can degrade performance since, gen-
erally speaking, large tables are read and large tables are
created. Therefore, it is necessary to use workload manage-
ment tools to optimize queries from several users together.
In general, the solution is to give data preparation tasks a
lower priority than the priority for queries from interactive
users. On a longer term strategy, it is best to organize data
mining projects around common data sets, but such goal is
difficult to reach given the mathematical nature of analysis
and the ever changing nature of variables (dimensions) in
the data sets.

Views vs temporary tables
Views provide limited control on storage and indexing. It
may be better to create temporary tables, especially when
there are many primary keys used in summarization. Nev-
ertheless, disk space usage grows fast and such tables/views
need to be refreshed when new records are inserted or new
variables (dimensions) are created.

Level of detail
Transaction tables generally have two or even more levels of
detail, sharing some columns in their primary key. The typ-
ical example is store transaction table with individual items
and the total count of items and total amount paid. This
means that many times it is not possible to perform a sta-
tistical analysis only from one table. There may be unique
pieces of information at each level. Therefore, such large ta-
bles need to be joined with each other and then aggregated
at the appropriate granularity level, depending on the data
mining task at hand. In general, such queries are optimized
by indexing both tables on their common columns so that
hash-joins can be used.

For instance, in a store there is typically one transaction
table containing total amounts (sales, tax, discounts) and
item counts, and another transaction detail (or line) table
containing each individual item scanned at the register. For
certain data mining analysis (market basket analysis the de-
tailed purchase information may be required). On the other
hand, in a bank there is one table with account summaries
(current and by month) and another table with individual
banking transactions (deposits, withdrawals, payments, bal-
ance inquiry).

Left outer joins for completeness
For analytic purposes it is always best to use as much data
as possible. There are strong reasons for this. Statistical
models are more reliable, it is easier to deal with missing in-
formation, skewed distributions, discover outliers and so on,
when there is a large data set at hand. In a large database
with tables coming from a normalized database being joined



with tables used in the past for analytic purposes may in-
volve joins with records whose foreign keys may not be found
in some table. That is, natural joins may discard poten-
tially useful records. The net effect of this issue is that the
resulting data set does not include all potential objects (e.g.
records, products). The solution is define a universe data
set containing all objects gathered with union from all ta-
bles and then use such table as the fundamental table to
perform outer joins. For simplicity and elegance, left outer
joins are preferred. Then left outer joins are propagated ev-
erywhere in data preparation and completeness of records is
guaranteed. In general such left outer joins have a “star”
form on the joining conditions, where the primary key of the
master table is left joined with the primary keys of the other
tables, instead of joining them with chained conditions (FK
of table T1 is joined with PK of table T2, FK of table T2 is
joined with PK of T3, and so on).

SELECT

,record_id

,T1.A1

,T2.A2

..

,Tk.Ak

FROM T_UNIVERSE

LEFT JOIN T1 ON T_UNIVERSE.record_id= T1.record_id

LEFT JOIN T2 ON T_UNIVERSE.record_id= T2.record_id

..

LEFT JOIN Tk ON T_UNIVERSE.record_id= Tk.record_id;

Filtering Records from Data Set
Selection of rows can be done at several stages, in different
tables. Such filtering is done to discard outliers [18], to dis-
card records with a significant missing information content
(including referential integrity [22], to discard records whose
potential contribution to the model provides no insight or
sets of records whose characteristics deserve separate anal-
ysis. It is well known that pushing selection is the basic
strategy to accelerate SPJ (select-project-join) queries [3],
but it is not straightforward to apply into multiple queries.
A common solution we have used is to perform as much
filtering as possible on one data set. This makes code main-
tenance easier and the query optimizer is able to exploit
filtering predicates as much as possible.

Statistics columns
Many times users build data sets with averages, which unfor-
tunately are not distributive. Common examples are com-
puting the mean and standard deviation of some numeric
column. A simple solution is to keep sums and counts for
every data set, from which it is easy to derive descriptive
statistics. In particular, sufficient statistics [26, 2, 17, 19]
prove useful for both simple statistics as well as sophisti-
cated multidimensional models. This solution is represented
by the sufficient statistics L, Q [17, 19], explained in more
detail in Section 3.6. Another particularly useful optimiza-
tion is to perform aggregations before joins, when data se-
mantics allow it. This optimization has been studied in the
database literature [3].

SELECT

,count(*) AS n

,sum(X1) AS L1

,sum(X2) AS L2

..

,sum(Xd) AS Ld

,sum(X1*X1) AS Q1

,sum(X2*X2) AS Q2

..

,sum(Xd*Xd) AS Qd

FROM DataSetX;

Multiple primary keys
Different sets of tables have different primary keys. This
basically, means such tables are not compatible with each
other to perform further summarization. The key issue is
that at some point large tables with different primary keys
must be joined and summarized. Join operations will be
slow because indexing involves foreign keys with large car-
dinalities. Two solutions are common: creating a secondary
index on the alternative primary key of the largest table, or
creating a denormalized table having both primary keys in
order to enable fast join processing.

For instance, consider a data mining project in a bank
that requires analysis by customer id, but also account id.
One customer may have multiple accounts. An account may
have multiple account holders. Joining and manipulating
such tables is challenging given their sizes.

Model deployment
Even though many models are built outside the DBMS with
statistical packages and data mining tools, in the end the
model must be applied in the database [19]. When volumes
of data are not large it is feasible to perform model deploy-
ment outside: exporting data sets, applying the model and
building reports can be done in no more than a few minutes.
However, as data volume increases exporting data from the
DBMS becomes a bottleneck [19]. This problem gets com-
pounded with results interpretation when it is necessary to
relate statistical numbers back to the original tables in the
database. Therefore, it is common to build models out-
side, frequently based on samples, and then once an accept-
able model is obtained, then it is imported back into the
DBMS. Nowadays, model deployment basically happens in
two ways: using SQL queries if the mathematical computa-
tions are relatively simple or with UDFs [19], if the compu-
tations are more sophisticated. In most cases, such scoring
process can work in a single table scan, providing good per-
formance.

2.2 Lessons Learned: Most Common Queries
Data transformation is a time consuming project, but the

statistical language syntactic constructs and its comprehen-
sive library of functions make such task easier. In general,
users think writing data transformations in SQL is not easy.
Despite the abundance of data mining tools users need to
understand the basics of query processing. The most com-
mon queries needed to create data sets for data mining are
(we omit transformations that are typically applied on an al-
ready built data set like coding, logarithms, normalization,
and so on):

• Left outer joins, which are useful to build a “univer-
sal” data set containing all records (observations) with
columns from all potential tables. In general, natural
joins filter out records with invalid keys which may
contain valuable information.



• Aggregations, generally with sums and counts, to build
a data set with new columns.

• Denormalization, to gather columns scattered in sev-
eral tables together.

3. TRANSLATING DATA TRANSFORMA-
TIONS INTO SQL

This section explains the translator, summarizes similar-
ities and differences between the statistical language and
SQL and presents common sufficient statistics for several
models.

3.1 Definitions
The goal of data manipulation is to build a data set. Let

X = {x1, . . . , xn} be the data set with n points, where each
point has d attributes (variables, features), where each of
them can be numeric or categorical. The statistical lan-
guage is a high-level programming language, based on: data
set, observation and variable. We assume SQL is well under-
stood, but we give a summary. In SQL the equivalent terms
are table, row and column. A table contains a set of rows
having the same columns. The order of rows is immaterial
from a semantic point of view. A set of tables is interrelated
by means of primary/foreign key relationships.

3.2 General Framework
A statistical language program produces data sets which

are basically tables with a set of columns. Columns can be
of numeric, string or date data types. On the other hand,
SQL manipulates data as tables, with the additional con-
straint that they must have a primary key. In general, data
sets in the statistical language are sequentially manipulated
in main memory, loading a number of rows. On the other
hand, in SQL relational operations receive tables as input
and produce one table as output. There exist two main kinds
of statements: (1) Data manipulation (data set transforma-
tion). (2) Subroutine calls (functions, procedures, methods).

Translating subroutine calls requires having stack-based
calling mechanisms in SQL, which are not generally avail-
able, or if they are available parameters are not standard-
ized. That is, the translator produces a “flat” script in SQL.

3.3 Data Manipulation

3.3.1 Importing Data
Importing is a relatively easy procedure which is used

mostly to integrate external data sources into the statis-
tical analysis tool. Despite its simplicity it is important to
carefully analyze importing statements because they may
involve data not stored in the database. Importing data
comes in the form of a statement specifying a data set with
several columns and an input file.

3.3.2 Arithmetic Equations
Columns in the data set are treated as variables. An as-

signment creates a new variable or assigns a value to an
existing one. If the variable does not exist the type is in-
ferred from the expression. In SQL there is no assignment
expression. Therefore, the assignment expression must be
converted into SELECT statements with one column to re-
ceive the result of each expression.

A sequence of variable assignments creates or updates
variables with arithmetic expressions. The first assignment
is assumed to use an expression with all instantiated vari-
ables. The sequence of assignment statements assumes a
variable cannot be used before it has a value. Given the
dynamic nature of the sequence of expressions it is neces-
sary for the SQL run-time evaluation algorithm to deter-
mine the type of the resulting column. The alternative ap-
proach, defining a DDL and then the SQL with expressions
would require doing extensive syntactic and semantic anal-
ysis when the expression is parsed. Most math functions
have one argument and they can be easily translated using
a dictionary. String functions are more difficult to translate
because besides having different names they may have differ-
ent arguments and some of them do not have an equivalent
in SQL.

Let C be the set of original variables and let V be the set
of variables created or updated by assignment. An initial
pass on all assigned variables is needed to determine which
columns are overwritten by computing C ∩V . Each column
that belongs to C ∩ V is removed from C. Then it is unse-
lected from the original list of variables. Assume then that
the input columns become a subset of the original columns:
F = F1, F2, . . . , Fp, where F ⊆ C. Then the sequence of ex-
pressions can be translated as F , followed by the arithmetic
expressions assigned to each variable.

It is important to observe the data types are dynamically
inferred by SQL at run-time and that the table is defined
as multiset. Performing a static analysis would require a
more sophisticated mechanism to infer data types storing
variables in a symbol table like a traditional compiler.

3.3.3 IF-THEN and WHERE
A high-level programming language provides great flex-

ibility in controlling assignments. This is more restricted
in SQL because only one column can be manipulated in
a term. We consider three cases: (1) Chained IF-THEN
statements with one assignment per condition; (2) General-
ized IF-THEN-DO with IF-THEN-DO nesting and two or
more assignments per condition. (3) A WHERE clause. A
chained IF-THEN statement gets translated into an SQL
CASE statement where each IF condition gets transformed
into a WHEN clause. It is important to watch out for new
columns when new variables are created. The IF-THEN-
DO construct is more complex than the previous case for
several reasons: More than one assignment can be done in
the IF body; IF statements can be nested several levels.
There may be loops with array variables. This case will be
analyzed separately. The system uses a stack [1] to keep
track of conditions given an arbitrary number of levels of
nesting. For every nested IF statement boolean expressions
are pushed into the stack. For each assignment each ad-
ditional boolean expression are popped from the stack and
are concatenated using a logical “AND” operator to form an
SQL WHEN expression. In other words, nested IF-THEN
statements are flattened into “WHEN” substatements in a
CASE statement. The WHERE clause translates without
changes into SQL. Comparison for numbers and strings use
same operators. However, date comparisons are different
and therefore special routines. Comparison operators have
similar syntax in both languages, whose translation requires
a simple equivalence table. Negation (NOT), parenthesis
and strings, require similar translation (compilation) tech-



niques.

3.3.4 Looping Constructs
In the statistical language there may be arrays used to

manipulate variables with subscripts. SQL does not provide
arrays, but they can be simulated by generating columns
whose name has the subscript appended. A FOR loop is
straightforward to translate when the subscript range can
be determined at translation time; the most common case
is a loop where the bounds are static. When an array is
indexed with a subscript that has a complex expression (e.g.
a(i∗10−j)) then the translation is more difficult because the
target column name cannot be known at translation time.

3.3.5 Combining Different Data Sets
We focus on two basic operations: (1) Union of data sets;

(2) Merging data sets.
Union: This is the case when the user wants to compute

the union of data sets where most or all the variables are
equal in each data set, but observations are different. As-
sume Di already has observations and variables. The main
issue here is that such statement does not guarantee all
data sets have the same variables. Therefore, the trans-
lation must make sure the result data set includes all vari-
ables from all data sets setting to null those variables that
are not present for a particular data set. First, we com-
pute the union of all variables. Let p be the cardinality of
R.B = {B1, . . . , Bp}. For each data set we need to compute
the set of variables from R not present: U.B − Di.A. A to-
tal order must be imposed on columns so that each position
correspond to one column from U . Such order can be given
by the order of appearance of variables in Di. At the begin-
ning variables are those from R.A = D1.A. If there are new
variables, not included in R.A then they are added to R.A.
This process gets repeated until Dm is processed. Then we
just need to insert nulls in the corresponding variables when
the result table is populated. The ith “SELECT” statement
has p terms out of which ni are taken from Di and the rest
are null.

Merging: This is the case where two data sets have a
common key, some of the remaining columns are the same
and the rest are different. If there are common columns
among both data sets columns from the second one take
precedence and overwrite the columns from the first data
set. In contrast, SQL requires the user to rename columns
with a new alias. In general, one of the data sets must be
sorted by the matching variables. Let the result columns of
M be B1, . . . , Bp. The dat sets D1 and D2 both contain the
matching columns A1, A2, . . . , Ak. A filtering process must
be performed to detect common non-key columns. If there
are common columns the column from D2 takes precedence.
The process is similar to the filtering process followed for
arithmetic expressions or the union of data sets. This trans-
lates into SQL as a full outer join to include unmatched rows
from D1 and D2.

3.4 Translating Subroutine Procedural Calls
We discuss translation of common procedural calls to equiv-

alent calls using the data mining tool and then we discuss
translation of embedded SQL. Translating procedural calls
can be done with several alternative mechanisms: A first al-
ternative is to call a data mining tool application program-
ming interface (API) to automatically generate SQL code for

univariate statistics or data mining algorithms. This issue
is that several intermediate mathematical computations are
left outside the final SQL script. Therefore, this alternative
does not produce self-contained scripts. A second alterna-
tive is to replicate automatically generated SQL code gener-
ation in the translator. The benefit of this approach is that
we can generate SQL scripts that can manage an entire data
mining process, going from basic data transformations and
descriptive statistics to actually tuning and testing models.
The last alternative is to leave the translation open for man-
ual coding into SQL, including the statistical language code
in comments. We include this alternative for completeness
because there may be specific statements and mathemati-
cal manipulations that cannot be directly translated. User
intervention is required in this case.

Interestingly enough, the translation process may be faced
with the task of handling embedded SQL statements. Such
SQL is in general used to extract data from different DBMSs.
We now explain the translation process: The most straight-
forward translation is a PROC SQL if the SQL corresponds
to the same DBMS (in our case Teradata). Care must be
taken in creating appropriate temporary tables whose names
do not conflict with those used in the code. If data elements
are being extracted from a different DBMS then the trans-
lation process becomes more complicated: it is necessary to
check each referenced table exists in the target DBMS and
SQL syntax may have differences. Therefore, it is best to
manually verify the translation. If the SQL corresponds to
some other DBMS there may be the possibility of finding
non-ANSI features. This aspect may be difficult if queries
are complex and have several nesting levels combining joins
and aggregations. Many script versions need to be main-
tained.

3.5 Similarities and Differences
In Section 3 we explained how to translate code in the

statistical language into SQL statements. Here we provide
a summarized description of common features of both lan-
guages and where they differ.

Language Similarities
We present similarities going from straightforward to most
important. In the statistical language there is no explicit
instruction to scan and process the data set by observation:
that happens automatically. In SQL the behavior is similar
because there is no need to create a loop to process each
row. Any SQL statement automatically processes the entire
table. However, in the DBMS sometimes it is necessary to
perform computations without using SQL to exploit arrays.
Then regular looping constructs are required. Processing
happens in a sequential fashion for each observation. In
the statistical language each variable is created or updated
as new assignment expressions are given for each row. In
SQL a column is created when a new term in a “SELECT”
statement is found. A column cannot be referenced if it has
not been previously created with the “AS” keyword or it
is projected from some table. Broadly speaking each new
procedural call (PROC) reads or creates a new data set.
Therefore, this aspect can be taken as a guideline to create
temporary tables to store intermediate results.



Language Differences
We discuss differences going from straightforward to those
we consider most challenging when making syntactic and
semantic analysis.

Macros are different in both languages, being represented
by stored procedures in SQL. In the statistical language
a data set name or variable name can start with under-
score, which may cause conflicts in translation. This can
be solved by enclosing the table name or column name in
SQL in quotes (e.g. “ name”). In the statistical language
a missing value is indicated with a dot ’.’, whereas in SQL
it is indicated with the keyword “NULL”. A missing value
can compared with the equality symbol ’=’ like any num-
ber, whereas SQL requires specialized syntax using the “IS
NULL” phrase. Since a number can start with ’.’ a read-
ahead scanner needs to determine if there is a digit after
the dot or not. However, equations involving with missing
values, in general, return a missing value as well. Both lan-
guages have similar semantics for missing information. In
the statistical language variable name conflicts are solved in
favor of the last reference. In SQL that conflict must be
solved by qualifying ambiguous columns or by explicitly re-
moving references to columns with the same name. To store
results a table cannot contain columns with the same name.
Therefore, for practical purposes duplicate column names
must be removed during the SQL code generation. In the
statistical language sorting procedures are needed to merge
data sets. Sorting is not needed in SQL to join data sets.
In fact, there is no pre-defined order among rows. Merg-
ing works in a different manner to joins. New variables are
added to a given data set for further processing. A data set
is always manipulated in memory, but new variables may
not necessarily be saved to disk. In SQL a new table must
be created for each processing stage. Tables are stored on
disk. Some tables are created in permanent storage, whereas
the rest of tables have to be created in temporary storage.
The statistical language allows creating a data set with up
to hundreds of thousands of variables. whereas SQL allows
table with up to thousands of columns. This limitation can
be solved by counting variables and creating a new table ev-
ery one thousand variables; this will vertically partition the
result table. Joins are required to reference columns from
different partitions. The DBMS performs more careful re-
trieval of rows into main memory processing them in blocks,
whereas the statistical language performs most of the pro-
cessing in main memory based on a single table at one time.

3.6 Sufficient Statistics
We now explain fundamental statistics computed on the

data set obtained from the data transformation process in-
troduced in Section 3. These statistics benefit a broad class
of statistical and machine learning techniques. Their com-
putation can be considered an intermediate step between
preparing data sets and computing statistical models. In
general, most statistical data mining tools provide function-
ality to derive these statistics. In the literature the follow-
ing matrices are called sufficient statistics [2, 11, 19] because
they are enough to substitute the data set being analyzed in
mathematical equations. Therefore, it is advantageous they
are available for the data set to be analyzed.

Consider the multidimensional (multivariate) data set de-
fined in Section 3.1: X = {x1, . . . , xn} with n points, where
each point has d dimensions. Some of the matrix manipula-

tions we are about to introduce are well-known in statistics,
but we exploit them in a database context. We introduce the
following two matrices that are fundamental and common
for all the techniques described above. Let L be the linear
sum of points, in the sense that each point is taken at power
1. L is a d × 1 matrix, shown below with sum and column-
vector notation. L =

∑n

i=1
xi. Let Q be the quadratic sum

of points, in the sense that each point is squared with a
cross-product. Q is d × d. Q = XXT =

∑n

i=1
xix

T
i .

The most important property about L and Q is that they
are much smaller than X, when n is large (i.e. d << n).
However, L and Q summarize a lot of properties about X

that can be exploited by statistical techniques. In other
words, L and Q can be exploited to rewrite equations so
that they do not refer to X, which is a large matrix. Tech-
niques that directly benefit from these summary matrices
include correlation analysis linear regression [11], principal
component analysis [11, 10], factor analysis [11] and cluster-
ing [14]. These statistics also partially benefit decision trees
[14] and logistic regression [11].

Since SQL does not have general support for arrays these
matrices are stored as tables using dimension subscripts as
keys. Summary matrices can be efficiently computed in two
ways: using SQL queries or using UDFs [19]. SQL queries
allow more flexibility, are portable, but incur on higher over-
head. On the other hand, UDFs are faster, but they de-
pend on the DBMS architecture and therefore may have spe-
cific limitations such as memory size and parameter passing.
Having an automated way to compute summary matrices in-
side the DBMS simplifies the translation process.

4. EXPERIENCE FROM REAL PROJECTS
This section presents a summary of performance compar-

isons and main outcomes from migrating actual data mining
projects into the DBMS. This discussion is a summary of
representative successful projects. We first discuss a typical
data warehousing environment; this section can be skipped
by a reader familiar with the subject. Second, we present a
summary of the data mining projects presenting their prac-
tical application and the statistical and data mining tech-
niques used. Third, we present time measurements taken
from actual projects at each organization, running data min-
ing software on powerful database servers. We conclude with
a summary of the main advantages and accomplishments
for each project, as well as the main objections or concerns
against migrating statistical code into the DBMS.

4.1 Data Warehousing Environment
The environment was a data warehouse, where several

databases were already integrated into a large enterprise-
wide database. The database server was surrounded by spe-
cialized servers performing OLAP and statistical analysis.
One of those servers was a statistical server with a fast net-
work connection to the database server.

First of all, an entire set of statistical language programs
were translated into SQL using Teradata data mining pro-
gram, the translator tool and customized SQL code. Second,
in every case the data sets were verified to have the same
contents in the statistical language and SQL. In most cases,
the numeric output from statistical and machine learning
models was the same, but sometimes there were slight nu-
meric differences, given variations in algorithmic improve-
ments and advanced parameters (e.g. epsilon for conver-



gence, step-wise regression procedures, pruning method in
decision tree and so on).

4.2 Organizations and Data Mining Projects
We now give a brief discussion about the organizations

where the statistical code migration took place. We also dis-
cuss the specific type of data mining techniques used in each
case. Due to privacy concerns we omit discussion of specific
information about each organization, their databases and
the hardware configuration of their DBMS servers. We can
mention all companies had large data warehouses managed
by an SMP (Symmetric Multi-Processing) Teradata server
having a 32-bit CPU with 4GB of memory on each node and
several terabytes of storage. Our projects were conducted
on their production systems, concurrently with other users
(analysts, managers, DBAs, and so on).

The first organization was an insurance company. The
data mining goal involved segmenting customers into tiers
according to their profitability based on demographic data,
billing information and claims. The statistical techniques
used to determine segments involved histograms and clus-
tering. The final data set had about n = 300k records and
d = 25 variables. There were four segments, categorizing
customers from best to worst.

The second organization was a cellular telephone service
provider. The data mining task involved predicting which
customers were likely to upgrade their call service package or
purchase a new handset. The default technique was logistic
regression [11] with stepwise procedure for variable selection.
The data set used for scoring had about n = 10M records
and d = 120 variables. The predicted variable was binary.

The third organization was an Internet Service Provider
(ISP). The predictive task was to detect which customers
were likely to disconnect service within a time window of a
few months, based on their demographic data, billing infor-
mation and service usage. The statistical techniques used
in this case were decision trees and logistic regression and
the predicted variable was binary. The final data set had
n = 3.5M records and d = 50 variables.

4.3 Performance Comparison
We focus on comparing performance doing statistical anal-

ysis inside the DBMS using SQL (with Teradata data mining
program) and outside using the statistical server (with ex-
isting programs developed by each organization). The com-
parison is not fair because the DBMS server was in general
a powerful parallel computer and the statistical server was
a smaller computer. However, the comparison represents
a typical enterprise environment where the most powerful
computer is precisely the DBMS server.

We now describe the computers in more detail. The DBMS
server was, in general, a parallel multiprocessor computer
with a large number of CPUs, ample memory per CPU
and several terabytes of parallel disk storage in high perfor-
mance RAID configurations. On the other hand, the statis-
tical server was generally a smaller computer with less than
500 GB of disk space with ample memory space. Statistical
and data mining analysis inside the DBMS was performed
only with SQL. In general, a workstation connected to each
server with appropriate client utilities. The connection to
the DBMS was done with ODBC. All time measurements
discussed herein were taken on 32-bit CPUs over the course
of several years. Therefore, they cannot be compared with

Table 1: Comparing time performance between sta-
tistical package and DBMS (time in minutes).

Statistical package DBMS
Task (outside DBMS) (inside)
Build model:
Segmentation 2 1
Predict propensity 38 8
Predict churn 120 20
Score data set:
Segmentation 5 1
Predict propensity 150 2
Predict churn 10 1

Table 2: Time to compute linear models inside the
DBMS and time to export X with ODBC (secs).

n × 1000 d SQL/UDF ODBC
100 8 4 168
100 16 5 311
100 32 6 615
100 64 8 1204

1000 8 40 1690
1000 16 51 3112
1000 32 62 6160
1000 64 78 12010

each other and they should only be used to understand per-
formance gains within the same organization.

We discuss tables from the database in more detail. There
were several input tables coming from a large normalized
database that were transformed and denormalized to build
data sets used by statistical or machine learning techniques.
In short, the input were tables and the output were tables as
well. No data sets were exported in this case: all processing
happened inside the DBMS. On the other hand, analysis
on the statistical server relied on SQL queries to extract
data from the DBMS, transform the data to produce data
sets in the statistical server and then building models or
scoring data sets based on a model. In general, data extrac-
tion from the DBMS was performed using the fast utilities
which exported data records in blocks. Clearly, there exists
a bottleneck when exporting data from the DBMS to the
statistical server.

Table 1 compares performance between both alternatives:
inside and outside the DBMS. We distinguish two phases
in each project: building the model and scoring (deploying)
the model on large data sets. The times shown in Table 1
include the time to transform the data set with joins and
aggregations and the time to compute or apply the actual
model. As we can see the DBMS is significantly faster. We
must mention that to build the predictive models both ap-
proaches exploited samples from a large data set. Then the
models were tuned with further samples. To score data sets
the gap is wider, highlighting the efficiency of SQL to com-
pute joins and aggregations to build the data set and then
compute statistical equations on the data set. In general,
the main reason the statistical server was slower was the
time to export data from the DBMS and then a secondary
reason was its more limited computing power.



Table 3: Project Outcomes.

Outcome Insurance Phone ISP
Advantages:
Decrease data movement X
Prepare data sets more easily X X X
Build models faster X
Score data sets faster X X X
Increase security X X
Improve data management X
Objections:
Traditional progr. lang. X X
Sampling on large data sets X X
Lack statistical techniques X

Table 2 compares time performance to compute a linear
model inside the DBMS and the time to export the data set
with the ODBC interface. The DBMS runs on a Windows
Server with 3.2 GHz, 4 GB on memory and 1 TB on disk,
and represents a small database server. The linear models
include PCA and linear regression, which can be derived
from the correlation matrix of X in a single table scan us-
ing SQL and UDFs [19]. Clearly, ODBC is a bottleneck
to analyze X outside the DBMS regardless of how fast the
statistical package is. Exporting small sample of X may be
feasible, but analyzing a large data set without sampling is
much faster to do inside the DBMS.

4.4 Data Mining Users Feedback
We summarize main advantages of projects migrated into

the DBMS as well as objections from users to do so. Table
3 contains a summary of outcomes. As we can see per-
formance to score data sets and transforming data sets are
positive outcomes in every case. Building the models faster
turned out not be as important because users relied on sam-
pling to build models and several samples were collected to
tune and test models. Since all databases and servers were
within the same firewall security was not a major concern. In
general, improving data management was not seen as major
concern because there existed a data warehouse, but users
acknowledge a “distributed” analytic environment could be
a potential management issue. We now summarize the main
objections, despite the advantages discussed above. We ex-
clude cost as a decisive factor to preserve anonymity of users
opinion and give an unbiased discussion. First, many users
preferred a traditional programming language like Java or
C++ instead of a set-oriented language like SQL. Second,
some specialized techniques are not available in the DBMS
due to their mathematical complexity; relevant examples in-
clude Support Vector Machines, Non-linear regression and
time series models. Finally, sampling is a standard mecha-
nism to analyze large data sets.

5. RELATED WORK
There exist many proposals that extend SQL with data

mining functionality. Teradata SQL, like other DBMSs,
provides advanced aggregate functions to compute linear
regression and correlation, but it only does it for two di-
mensions. Most proposals add syntax to SQL and optimize
queries using the proposed extensions. UDFs implement-

ing common vector operations are proposed in [21], which
shows UDFs are as efficient as automatically generated SQL
queries with arithmetic expressions, proves queries calling
scalar UDFs are significantly more efficient than equivalent
queries using SQL aggregations and shows scalar UDFs are
I/O bound. SQL extensions to define, query and deploy data
mining models are proposed in [15]; such extensions provide
a friendly language interface to manage data mining mod-
els. This proposal focuses on managing models rather than
computing them and therefore such extensions are comple-
mentary to our UDFs. Query optimization techniques and a
simple SQL syntax extension to compute multidimensional
histograms are proposed in [12], where a multiple grouping
clause is optimized. Computation of sufficient statistics for
classification in a relational DBMS is proposed in [9]. Devel-
oping data mining algorithms, rather than statistical tech-
niques, using SQL has received moderate attention. Some
important approaches include [13, 23] to mine association
rules, [20, 18] to cluster data sets using SQL queries, [20,
17] to cluster data sets using SQL queries and [24] to define
primitives for decision trees. Sufficient statistics have been
generalized and implemented as a primitive function using
UDFs benefiting several statistical techniques [19]; this work
explains the computation and application of summary ma-
trices in detail for correlation, linear regression, PCA and
clustering.

Some related work on exploiting SQL for data manipula-
tion tasks includes the following. Data mining primitive op-
erators are proposed in [4], including an operator to pivot a
table and another one for sampling, useful to build data sets.
The pivot/unpivot operators are extremely useful to trans-
pose and transform data sets for data mining and OLAP
tasks [5], but they have not been standardized. Horizontal
aggregations were proposed to create tabular data sets [16],
as required by statistical and machine learning techniques,
combining pivoting and aggregation in one function. For
the most part research work on preparing data sets for an-
alytic purposes in a relational DBMS remains scarce. To
the best of our knowledge there has not been research work
dealing with the migration of data mining data preparation
into a relational DBMS. Also, even though the ideas behind
the translator are simple, they illustrate the importance of
automating SQL code generation to prepare data sets for
analysis.

6. CONCLUSIONS
We presented our experience on the migration of statis-

tical analysis into a DBMS, focusing on data preprocessing
(cleaning, transformation, summarization), which is in gen-
eral the most time consuming, not well planned and error-
prone task in a data mining project. Summarization gener-
ally has to be done at different granularity levels and such
levels are generally not hierarchical. Rows are selected based
on a time window, which requires indexes on date columns.
Row selection (filtering) with complex predicates happens
on many tables, making code maintenance and query opti-
mization difficult. To improve performance it is necessary
to create temporary denormalized tables with summarized
data. In general, it is necessary to create a “universe” data
set to define left outer joins. Model deployment requires im-
porting models as SQL queries or UDFs to deploy a model
on large data sets. We also explained how to compute suf-
ficient statistics on a data set, that benefit a broad class



of data mining and machine learning techniques, including
correlation analysis, clustering, principal component analy-
sis and linear regression. We presented a performance com-
parison and a summary of main advantages when migrating
statistical programs into the DBMS by translating them into
optimized SQL code. Transforming and scoring data sets is
much faster inside the DBMS, whereas building a model is
also faster, but less significant because sampling can help
analyzing large data sets. In general, data transformation
and analysis are faster inside the DBMS and users can enjoy
the extensive capabilities of the DBMS (querying, recovery,
security and concurrency control).

We presented a prototype tool to translate statistical scripts
into SQL, to automate and accelerate the migration of data
preparation, which is the most time consuming phase in a
data mining project. The tool main goal is to generate SQL
code that produces data sets with the same content as those
generated by the statistical language: such data sets become
the input for statistical or machine learning techniques (a
so-called analytical data set).

7. REFERENCES
[1] A. Aho, R. Sethi, and J.D. Ullman. Compilers:

Principles, Techniques and Tools. Addison-Wesley,
1986.

[2] P. Bradley, U. Fayyad, and C. Reina. Scaling
clustering algorithms to large databases. In ACM
KDD Conference, pages 9–15, 1998.

[3] S. Chaudhuri. An overview of query optimization in
relational systems. In ACM PODS Conference, pages
84–93, 1998.

[4] J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and
P. Lohman. Non-stop SQL/MX primitives for
knowledge discovery. In ACM KDD Conference, pages
425–429, 1999.

[5] C. Cunningham, G. Graefe, and C.A.
Galindo-Legaria. PIVOT and UNPIVOT:
Optimization and execution strategies in an rdbms. In
VLDB Conference, pages 998–1009, 2004.

[6] L.D. Delwiche and S.J. Slaughter. The SAS little book:
a primer. SAS, 4th edition, 2003.

[7] R. Elmasri and S. B. Navathe. Fundamentals of
Database Systems. Addison/Wesley, Redwood City,
California, 3rd edition, 2000.

[8] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The
KDD process for extracting useful knowledge from
volumes of data. Communications of the ACM,
39(11):27–34, November 1996.

[9] G. Graefe, U. Fayyad, and S. Chaudhuri. On the
efficient gathering of sufficient statistics for
classification from large SQL databases. In ACM KDD
Conference, pages 204–208, 1998.

[10] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, San Francisco, 1st
edition, 2001.

[11] T. Hastie, R. Tibshirani, and J.H. Friedman. The
Elements of Statistical Learning. Springer, New York,
1st edition, 2001.

[12] A. Hinneburg, D. Habich, and W. Lehner.
Combi-operator-database support for data mining
applications. In VLDB Conference, pages 429–439,
2003.

[13] R. Meo, G. Psaila, and S. Ceri. An extension to SQL
for mining association rules. Data Min. Knowl.
Discov, 2(2):195–224, 1998.

[14] T.M. Mitchell. Machine Learning. Mac-Graw Hill,
New York, 1997.

[15] A. Netz, S. Chaudhuri, U. Fayyad, and J. Berhardt.
Integrating data mining with SQL databases: OLE
DB for data mining. In IEEE ICDE Conference, 2001.

[16] C. Ordonez. Horizontal aggregations for building
tabular data sets. In ACM DMKD Workshop, pages
35–42, 2004.

[17] C. Ordonez. Programming the K-means clustering
algorithm in SQL. In ACM KDD Conference, pages
823–828, 2004.

[18] C. Ordonez. Integrating K-means clustering with a
relational DBMS using SQL. IEEE Transactions on
Knowledge and Data Engineering (TKDE),
18(2):188–201, 2006.

[19] C. Ordonez. Building statistical models and scoring
with UDFs. In ACM SIGMOD Conference, pages
1005–1016, 2007.

[20] C. Ordonez and P. Cereghini. SQLEM: Fast clustering
in SQL using the EM algorithm. In ACM SIGMOD
Conference, pages 559–570, 2000.

[21] C. Ordonez and J. Garćıa-Garćıa. Vector and matrix
operations programmed with UDFs in a relational
DBMS. In ACM CIKM Conference, pages 503–512,
2006.

[22] C. Ordonez and J. Garćıa-Garćıa. Referential integrity
quality metrics. Decision Support Systems Journal,
44(2):495–508, 2008.

[23] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating
association rule mining with relational database
systems: alternatives and implications. In ACM
SIGMOD, pages 343–354, 1998.

[24] K. Sattler and O. Dunemann. SQL database
primitives for decision tree classifiers. In ACM CIKM
Conference, pages 379–386, 2001.

[25] Teradata. Teradata Warehouse Miner Release
Definition Release 5.1. Teradata (NCR), 2006.

[26] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
An efficient data clustering method for very large
databases. In ACM SIGMOD Conference, pages
103–114, 1996.


