
Discovering Interesting Association Rules in Medical Data

Carlos Ordonez
Georgia Institute of

Technology
Atlanta, GA, USA

Cesar A. Santana
Emory University Hospital

Atlanta, GA, USA

Levien de Braal
Georgia Institute of

Technology
Atlanta, GA, USA

ABSTRACT
We are presently exploring the idea of discovering associa-
tion rules in medical data. There are several technical as-
pects which make this problem challenging. In our case med-
ical data sets are small, but have high dimensionality. In-
formation content is rich: there exist numerical, categorical,
time and even image attributes. Data records are generally
noisy. We explain how to map medical data to a transac-
tion format suitable for mining rules. The combinatorial
nature of association rules matches our needs, but current
algorithms are unsuitable for our purpose. We thereby in-
troduce an improved algorithm to discover association rules
in medical data which incorporates several important con-
straints. Some interesting results obtained by our program
are discussed and we explain how the program parameters
were set. We believe many of the problems we come across
are likely to appear in other domains.

1. INTRODUCTION
Data Mining is an active research area. One of the most

popular approaches to do data mining is discovering associ-
ation rules [1, 2]. Association rules are generally used with
basket, census or financial data. Medical data is generally
analyzed with classifier trees, clustering, or regression. For
an excellent survey on these techniques consult [12].

In this work we explore the idea of discovering association
rules in medical data, which we believe to be an untried ap-
proach. One of the most important features of association
rules is that they are combinatorial in nature. This is partic-
ularly useful to discover patterns that appear in subsets of all
the attributes. However, most patterns normally discovered
by current algorithms are not useful since they may contain
redundant information, may be irrelevant or describe trivial
knowledge. The goal is then to find those rules which are
medically interesting besides having minimum support and
confidence. In our research project the discovered rules have
two purposes: validate rules used by an expert system to aid
in heart disease diagnosis (PERFEX [11]) and discover new
rules that relate causes to heart disease and thus can enrich
the expert system knowledge. At the moment all rules used
by our expert system [11] were discovered and validated by
a group of domain experts.

This paper is a continuation of previous joint research by
Georgia Tech and Emory University to discover knowledge
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in medical data to predict heart disease [10, 6]. In [10] asso-
ciation rules are proposed and preliminary results are justi-
fied from the medical point of view. In [6] neural networks
are used to predict reversibility images based on stress and
myocardial thickening images.

Throughout the paper we try to provide a general frame-
work to understand our approach. We believe many of the
problems we are facing are likely to appear in other domains.
As such this work tries to isolate those problems which we
consider will be of most interest to the database community
doing research on association rules.

1.1 Contributions and paper outline
The main contributions of our work include the following.

Explain why mining medical data for association rules is
an interesting problem. Justify the use of association rules
for the medical domain. Phrase the problem in a general
manner so that this work can be applied to other domains.
Explain why many rules discovered by a straightforward ap-
proach are not useful as they contain redundant informa-
tion, are trivial, are too complex or simply make no medical
sense. Identify useful constraints to make association rules
useful for the medical domain. Propose an algorithm to dis-
cover constrained association rules with very low support
and fairly high confidence. Identify open problems that re-
quire further research.

Paper outline. Section 2 states the definition of associ-
ation rules and addresses the problem of mapping medical
data to binary attributes to be treated as items. We use a
small example to motivate the use of association rules in the
medical field and explain the kind of rules we are after. Sec-
tion 3 outlines the classical algorithm to mine association
rules, explains the main difficulties encountered using as-
sociation rules, discusses useful constraints and presents an
improved a-priori algorithm. Theoretical results and related
work are briefly explained. Experimental results with med-
ical data sets are described in Section 4. Section 5 contains
the conclusions of this paper.

2. DEFINITIONS, DATA MAPPING AND IN-
TERESTING RULES

2.1 Association rules
Here we give the classical definition of association rules.

Let {t1, t2 . . . tn} be a set of transactions, and let I be a set
of items, I = {i1, i2 . . . im}. An association rule is an impli-
cation of the form X ⇒ Y , where X, Y ⊂ I, and X ∩Y = ∅.
X is called the antecedent and Y is called the consequent of



the rule. In general, a set of items, such as the antecedent or
the consequent of a rule, is called an itemset. Each itemset
has an associated measure of statistical significance called
support. For an itemset X ⊂ I, support(X) = s, is the frac-
tion of transactions in the database containing X. The rule
has a measure of strength called confidence defined as the
ratio support(X ∪ Y ) / support(X).

The problem of mining association rules is to generate
all rules that have support and confidence greater or equal
than some prespecified minimum support and minimum con-
fidence thresholds, respectively.

2.2 General description of our medical data
The medical data set we are mining describes the pro-

files of patients of a hospital being treated for heart disease.
Each record corresponds to the most relevant information of
one patient. This profile contains personal information such
as age, race, smoker/non-smoker. Measurements on the pa-
tient such as weight, heart rate, blood pressure, are included.
Preexistence or existence of certain diseases are stored. The
diagnostics made by a medical doctor or technician are in-
cluded as well. Time attributes mainly involve medical his-
tory dates. Then we have a complex set of measurements
that estimate the degree of disease in certain regions of the
heart, how healthy certain regions remain, and quality num-
bers that summarize the patient’s heart effort under stress
and relaxed conditions. Finally imaging (perfusion) infor-
mation from several regions of the heart is stored as binary
data. The image data is just a summarization of the heart
divided into a few regions; these number of regions varies
between 3 and 32. As we can see this type of data is very
rich in information content.

2.3 Mapping attributes
Our medical data has to be transformed into a trans-

action format suitable to discover association rules. The
medical data contains categorical, numerical, time and im-
age attributes. To make the problem simpler we treat all
the attributes as being either categorical or numerical. Let
A1, A2, . . . Ap be all the attributes, let R = {r1, r2, . . . rn}
be a relation with n tuples whose values are taken from
A1 ×A2 ×· · · ×Ap, where Ai is either categorical or numer-
ical. The data set size is n and its dimensionality is p. In
the process described below we take one attribute at a time
and map it to a series of consecutive integers that we will
treat as items.

Here we explain missing information management. We
reserve the first available integer to missing information for
both categorical and numerical values for each Ai. It is im-
portant to create an item for missing information in each
medical variable for two reasons: missing values are com-
mon and mapping would be incorrect without them. Besides
there is an interest by doctors in analyzing missing informa-
tion to track errors. This treatment of missing information
is not complete. In some cases a missing value may mean
that the person has no disease whereas in other cases it may
be inapplicable or not available. For some of the records
almost all fields have missing information and then it be-
comes a challenge to get reliable rules involving them. Also,
not all attributes are equally likely to have missing informa-
tion. In any case, since our data sets are so small and it is
important to take into account every sample we do not dis-
card records which have many missing values. We need to

Gender Age Smokes LAD % RCA %
F 53 Y 85 100
M 62 N 80 0
M 75 Y 70 80
M 73 Y 40 99
M 66 N 50 45

Table 1: Original medical data

M F Age < 70 70 ≤ Age S=Y S=N LAD < 50
1 2 3 4 5 6 7

50 ≤ LAD < 70 70 ≤ LAD RCA < 50 50 ≤RCA
8 9 10 11

Table 2: Mapping table

conduct further research to find rules which involve missing
values.

The data table has categorical attributes that are easily
mapped to items by associating an integer to each different
categorical value. Each categorical value is a good candidate
to appear in a rule. Obviously this may be a problem if the
cardinality of the attribute domain is high; but that is un-
common with medical data. Binary attributes are a special
case in which sometimes both the 1 and 0 occurrences may
be interesting or only either of them is interesting. So we
assume the medical doctor decides which categorical values
are relevant.

The second important type of attributes is numerical. To
simplify the problem time and image attributes are uni-
formly treated as numerical attributes. To use association
rules on numerical data attributes must be partitioned into
intervals, those intervals are indexed and the index is used
to generate rules. An important work that deals with this
problem is [20]. The authors prove equidepth partitioning
minimizes information loss. In our case this technique was
not used because medical doctors tend to have an idea how
to partition ranges. That is, intervals have some seman-
tics. Example: there are generally known cutoff points for
weight to classify an adult patient as overweight or not. In
a similar manner there are certain conventions to consider a
person young, adult or elder with respect to age. Also, since
these ranges are manipulated by domain experts they prefer
to partition quantitative attributes into a few intervals to
make result interpretation easier. However, an automatic
partitioning could be helpful. So we do not discard that
this task could be automated if it could be related back to
domain knowledge.

In short, we assume the domain expert maps each at-
tribute Ai to a series of items. For each categorical attribute
Ai all relevant categorical values become an item including
missing information. Each numerical attribute Ai is parti-
tioned into a number of intervals and each of them is mapped
to an item. This mapping algorithm discretizes the problem
and does not increase data dimensionality.

2.4 Example
Here we provide a small example with 5 medical fields and

5 patients (p = 5, n = 5). Table 1 contains the original data,
table 2 has all medical attributes mapped to items and and
table 3 contains the data converted to items in transaction
format. We also refer to the mapping table as the trans-



A′
1 A′

2 A′
3 A′

4 A′
5

2 3 5 9 11
1 3 6 9 10
1 4 5 9 11
1 4 5 7 11
1 3 6 8 10

Table 3: Mapped medical data to items

lation table. Note that identifying attributes such as name
or SSN are not included because they are irrelevant to the
mining process, and more importantly, there exist privacy
policies which restrict access to us. Age is a numerical at-
tribute and Gender and Smokes are categorical attributes.
The columns LAD and RCA store the percentage of heart
disease about specific arteries obtained from complex mea-
surements. Their meaning is the following: LAD means Left
Anterior Descending artery, RCA stands for Right Coro-
nary Artery. The value 50% is a commonly accepted cutoff
point to consider an artery diseased or not. However, not
all arteries are equally important. In this case LAD is more
important than RCA and that is why it is divided into 3
ranges to analyze it in greater detail.

By following the mapping procedure described above we
map each tuple in the original data to a tuple that is a
transaction containing items. The resulting table will have
the same number of columns as the original one, but each
column will contain only integers which correspond to the
indexes of the mapping process. We must stress that a bi-
nary vector representation would be inefficient for two rea-
sons: the dimensionality of our data which is already high
and the potential high number of categorical values per cat-
egorical attribute and the number of intervals per numerical
attribute would increase it further.

2.5 Discovering interesting association rules
The reader is asked to read this subsection carefully as it

provides the motivation for the algorithm we will describe
in the next section. Several medically important association
rules are discussed as well as rules which are not interesting.
In the previous example the last two columns in the original
table contain information about the degree of heart disease.
So, as the reader may guess we want to relate the age, gen-
der, etc, with the possible absence or presence of disease in
the heart. 70 ≤ Age AND Smoke = Y AND Gender =
M ⇒ 50 ≤ RCA is an interesting rule with 40% support
and 100% confidence because it provides a detailed profile
of people having problems in the RCA artery. Although a
rule like 70 ≤ Age ⇒ Smokes = Y has 100% confidence, in
general, it is not medically interesting. If the doctor wants
to relate age to smoking habits then the rule can be help-
ful but if he is just trying to know the impact of these two
factors together on heart disease then the rule is irrelevant.
The rule 70 ≤ LAD AND 50 ≤ RCA ⇒ Smoke = Y is
irrelevant because it does not make medical sense; we want
to relate causes to disease but not viceversa. The associ-
ation 70 ≤ LAD AND 50 ≤ RCA is irrelevant because
medical doctors know this is a trivial case: when some heart
region is diseased then the adjacent region has high likeli-
hood of also being diseased; an example of such rule is 70 ≤
LAD ⇒ 50 ≤ RCA. Therefore, any rule that includes these
two items is of little interest. The rule Male AND Age >

70 AND Smoke = Y ⇒ 70 ≤ LAD AND 50 ≤ RCA is
not interesting for two reasons. First, it involves two dis-
eased heart regions and second, it is extremely selective as
it involves all items and only one patient. Our data is high
dimensional and then rules discovered by most current al-
gorithms may involve many medical fields. Our experience
has shown that rules with more than 5 medical variables
are hard to interpret and slow down the mining task even
though they are potentially relevant to the medical doctor.

3. DISCOVERING RULES IN MEDICAL
DATA

Here we present our most important contributions. First
we outline the widely known a-priori algorithm to find as-
sociation rules, then we describe the problems we faced and
finally an improved version of the algorithm.

3.1 Algorithm to mine association rules
The problem of mining association rules is to generate

all rules that have support and confidence greater or equal
than some prespecified minimum support and minimum con-
fidence thresholds, respectively. The classical algorithm [2]
has two phases:

• Phase 1: All itemsets that have support above the user
specified minimum support are generated. These itemset
are called the frequent itemsets. All others are said to be
infrequent. We refer to itemsets having k elements as k-
itemsets. First all 1-itemsets are generated as candidates
and then those that turn out to be frequent after computing
their support are used to generate and check for support
2-itemsets, then 3-itetmsets are generated and tested and
so on. So the size of itemsets is incremented by one at
each iteration and each iteration requires one scan over the
transactions. This phase stops when there is no frequent
itemset.

• Phase 2: For each frequent itemset, all the rules that have
minimum confidence are generated as follows: for a frequent
itemset X and any Y ⊂ X, if support(X)/support(X − Y )
≥ minimum confidence, then the rule X−Y ⇒ Y is a valid
rule.

3.2 Problems with association rules
Here we summarize the main difficulties we have isolated

so far trying to discover interesting association rules in the
medical domain. For each problem we propose a solution
that is generally a constraint. We describe the problems
in an abstract manner. Hence, whenever we mention the
word ”item” we are referring to a mapped medical field as
described in the previous section. Whenever we say ”trans-
action” we mean the mapped record containing all medical
information about one patient. And when we say irrelevant,
trivial, redundant, complex and the like we imply that the
given association or rule was not interesting for the domain
expert (medical doctor).

Items that can appear only in the antecedent, only in the
consequent or in either. Note that given the interesting rule
X ⇒ Y no matter where an item appears the association
X ∪ Y must be a frequent itemset, but where the item ap-
pears prunes out many uninteresting rules. In other words,
support is still needed to prune uninteresting associations
but confidence is not enough to prune out uninteresting rules
because there may be many rules having high confidence
containing forbidden items in the antecedent or in the con-
sequent. Therefore items need to be constrained to appear
in a specific part of the rule.



Association size. Associations and rules that involve many
items are hard to interpret and can potentially generate a
very high number of rules. And further, they slow down the
interactive process by the user. Therefore, there should be a
default threshold for association size. Most approaches are
exhaustive in the sense that they find all rules above the
user-specified thresholds but in our domain that produces a
huge amount of rules. The biggest size of found associations
is a practical bottleneck for algorithm performance. If for
a given support the k-itemset X is frequent then all Y 6= ∅
s.t. Y ⊂ X are frequent and then there are O(2k) frequent
itemsets included. It is easy to see that no matter how
efficient the algorithm the approach above will be slow for
a large k. In our case even k > 8 produces too many rules
rendering the results useless. Another reason to limit size is
that if there are two rules X1 ⇒ Y and X2 ⇒ Y s.t. X1 ⊂
X2 the first rule is more interesting because it is simpler and
it is more likely to have higher support. Or if Y1 ⊂ Y2 and
X ⇒ Y1 and X ⇒ Y2 then the 2nd rule is likely to have
higher confidence but lower support.

Associations having uninteresting combinations of items.
This is the case where certain combinations are known to
be trivial or have such a high support that do not really
tell something new about the data set. Consider items ij

and ij′ . If the association X1 = {ij , ij′} is not interesting
then any other association X2 s.t. X1 ⊂ X2 will not be
interesting. Therefore, many of the items (if not all) can
be grouped by the domain expert to discard uninteresting
associations. If no grouping is done that means that item
ij is always relevant no matter which other items ij′ appear
together with it. We assume small groups can be identified
either automatically by running a straight association rules
algorithm or by previous knowledge.

Maximal frequent itemset. There are schemes [3] that
efficiently search for the longest frequent itemset without
looking at all subsets. In our case limiting the size of asso-
ciations automatically discards the possibility of finding all
longest itemtsets. But all subsets are precisely what we are
searching. Thus this strategy, even though being efficient, is
not helpful in this domain.

Low support. It is well known that support is the perfor-
mance bottleneck for association rules. It should be desir-
able to run the algorithm with a very low support so that
repeated runs with decreasing supports are avoided. In the
best case, it is desirable that the algorithm could run with-
out support using the other constraints to prune the search
space but avoiding finding rules that involve only one trans-
action.

Noisy data. This problem is never tackled by association
rule programs since they are run over transactional data that
is assumed to be complete and correct. However, in our case
many transactions have missing information. The algorithm
should avoid at all cost returning prediction rules involving
missing information and the justification is evident: those
rules are not reliable. However, there is an interest in track-
ing errors by mining tuples having missing values; we are
currently investigating this problem.

High support. Even though the algorithm may prune out
many rules by the above criteria, since we are working with
high dimensional data there may still be lots of rules involv-
ing a few items having a high support. This problem is duly
identified in [20] for quantitative association rules; and it ba-
sically appears because of the high number of combinations

of partitioned intervals. So this idea is helpful: the algorithm
should have a maximum support threshold maxsupport.

3.3 Theoretical results
Proofs are omitted for brevity. Extend items with two

attributes as constraints. Let I = {i1, i2, . . . im} be the set
of items to be mined. Let C = {c1, c2, . . . cm} be a set an-
tecendent and consequent constraints for each item. Each
constraint cj can have one out of 3 values: 1 if item ij can
only appear in the antecedent of a rule, 2 if it can only ap-
pear in the consequent and 0 if it can appear in either. We
define the function antecendent/consequent ac : I → C as
ac(ij) = cj to make reference to one such constraint. Let G
= {g1, g2, . . . gm} be a set of group constraints for each item;
gi is a positive integer if the item is constrained to belong to
some group or 0 if the item is not group contrained at all.
We define the function group : I → G as group(ij) = gj .
Note that we make the simplifying assumption that items
belong only to one group. We have faced cases in which
one item can belong to several groups but that compli-
cates the algorithm and obscures user understanding; this
aspect requires further research. Let X = {i1, i2, . . . , ik}
be a k-itemset. X is said to be antecendent-interesting if
∀ij ∈ X ac(ij) 6= 2. X is said to be consequent-interesting
if ∀ij ∈ X ac(ij) 6= 1. X is said to be group-interesting if
∀ij∀ij′ ∈ X ij 6= i′j ⇒ group(ij) 6= group(ij′).

Lemma 1 Itemset interestingness is antimonotonic in
both ac(i) and group(i) constraints. 2

Lemma 2 The ac(i) constraints cannot be used to prune
away associations because of the rule generation phase. 2

3.4 Improved association rule algorithm
With all the above requirements we propose the following

algorithm. All the basic notation and definitions are taken
from section 2. Let ∆ be the maximum number of items
appearing in one rule. Let X1, X2 . . . XM be all frequent
itemsets obtained in phase 1.

• Phase 1:

Generate all 1-itemsets as candidates and make one pass
over t1, t2, . . . , tn to compute their supports.

for k = 2 to ∆ do

Extend frequent (k − 1)-itemsets by one item belonging
to any frequent (k − 1)-itemset. Let X = {i1, i2, . . . , ik}
be a k-itemset. If group(ij) 6= group(ij′ ) and group(ij) ∗
group(ij′ ) > 0 for j 6= j′ ∧ 1 ≤ j, j′ ≤ k then X is a can-
didate. Check support for all candidate k-itemsets mak-
ing one pass over the transactions. Those itemsets X s.t.
minsupport ≤ support(X) ≤ maxsupport will be the input
for the next iteration. If there is no frequent itemset stop
(sooner) this phase.

• Phase 2:

for j = 1 to M do for k = 1 to M do

Let X = Xj , Y = Xk,

if X∩Y = ∅ and minsupport ≤ support(X∪Y ) ≤ maxsupport
and (ac(i) 6= 2 ∀i ∈ X) and (ac(i) 6= 1 ∀i ∈ Y ) and
(support(X∪Y )/support(X) ≥ minconfidence) then X ⇒
Y is valid.

Lemma 3 Let X be a frequent k-dimensional itemset.
Assume ∆ < k then there are 2k −

(

k

∆

)

2∆ pruned associa-
tions. 2

Lemma 4 Let X ⇒ Y be a valid rule where all items
are ac(i) constrained. Then there are O(2|X|+|Y |) discarded
rules. 2



Lemma 1 is used to prune out associations based on the
group(i) constraint. Lemma 2 states that the algorithm can-
not take advantage of ac(i) constraints in Phase 1. Lemma 3
gives the number of pruned associations when the maximal
frequent itemset is big. In our case this produces significant
speedup to make computation more interactive. Lemma 4
gives an idea about the number of discarded rules; it is not
a tight bound.

3.5 Related work
Literature on association rules has become extensive since

their introduction in the seminal paper [1]. Given space con-
straints it is impossible to compare our approach against ev-
erybody else’s. Most of the proposed approaches are used
with basket data. Medical data sets are more complex and
thus present many new challenges. This paper incorporates
some ideas from our previous work to mine rules on seg-
mented images [17]. Most papers published in the database
literature concentrate on optimizing the first phase [8, 9, 13,
14, 15, 19, 18] but a few look at the problem of also improv-
ing rule generation (2nd phase) [7, 8, 16]. For instance, [15]
proposes an algorithm to summarize associations when they
are too many. [9] attacks the problem of inserting transac-
tions on an already mined set and proposes an algorithm
that incrementally maintains associations. [7] proposes a
scheme to identify true correlations and [8] proposes a new
metric called conviction to identify strong implications; we
find this approach interesting.

Our work shares some similarities with [5, 16, 21]. In [21]
the authors propose a few algorithms that can incoporate
constraints to include or exclude certain items in the asso-
ciation generation phase; they focus only in two types of
constraints: items constrained by a certain hierarchy [19] or
associations which include certain items. This approach is
limited for our purposes since we do not use hierarchies and
excluding/including items is not enough to mine medically
meaningful rules. The work which addresses the constrain-
ing problem in the most general way is [16]. Their approach
based on succintness and 2-var constraints is different being
more query oriented and not dealing with rule semantics,
mapping, rule size, noisy data. Some authors support the
idea of finding more complex rules discarding their simplifi-
cations for frequent itemsets [5].

Perhaps most of the effort on improving rules has been in
developing new interestingness metrics; Bayardo et. al. [4]
give a good overview on this theme and show that support
and confidence are still fundamental metrics. So, instead of
developing yet another metric we decided to constrain asso-
ciation rules to our needs, but maintaining their simplicity.
Most of the improvements we propose were easy to incorpo-
rate but essential for our problem, and then do not change
the basic framework described in [2].

4. EXPERIMENTAL EVALUATION
This work is preliminary. Therefore, we do not present

extensive experiments to assess quality of results and perfor-
mance. Because of space constraints we present experiment
results in tabular form rather than graphs. Our experiments
were run on a Sun multiprocessor computer having 4 Sparc
Processors, each running at 125MHz. This computer has 128
Mb of main memory and a disk array with several gigabytes
of available storage space. Our algorithm implementation
was done in the C language.

4.1 Medical significance of association rules
The goal of the following experiment was to relate perfu-

sion measurements to vessel disease (a.k.a. stenosis) to val-
idate actual diagnosis rules used by an expert system [11].
In this case the purpose was not to find new rules but to
confirm the validity of medical knowledge.

The data set consisted of n = 655 patients having 113
attributes. First of all the 12 most important medical at-
tibutes were selected for mining (p = 12). These attributes
included perfusion measurements for 9 regions of the heart
and heart vessel disease for 3 vessels. The perfusion mea-
surements quantify the deviation each heart region has from
the corresponding region of a normal heart. The normal
values for the 9 regions are taken as the means from which
deviations are computed. The three vessels are identified by
the acronyms LAD, RCA and LCX. LAD means Left An-
terior Descending artery. RCA stands for Right Coronary
Artery. LCX is the Left CircumfleX artery. The correspond-
ing numerical attributes measure the percentage of disease
in the vessel. Each of these numerical attributes referring
to vessels were partitioned into < 50% and ≥ 50%. As we
mentioned before a finer partitioning is used sometimes for
more important arteries, such as LAD, but in this case it
was not required.

The constraints for the association rule mining program
were set as follows. The 9 perfusion regions were constrained
to appear in the antecedent of the rules, i.e. ac(i) = 1. The 3
heart arteries were constrained to appear in the consequent
of the rule, that is, ac(i) = 2. Since we wanted to study the
three vessels separately they were further group constrained.
That is, LAD, RCA and LCX are attributes belonging to the
same group (say group 1) and therefore should never appear
together (in pairs or the three of them). Rule size ∆ was set
to 2. We are after simple rules having a single item in both
the antecendent and the consequent. Since our data set is
small and we want to find any possible association involving
2 or more patients minsupport was set to 0.2%. We want
to find out confidence for rules so we set minconfidence

to 30%. Rules having a confidence lower than this value
are considered irrelevant. Rules whose confidence is greater
than 80% are considered reliable. Note that the values for
the thresholds are very low. Without the constraints above
it would be impossible to set the thresholds to such low
values (the number of potential associations would be 212).

We ran the association rule program with the parameters
previously described. The program discovered 89 associa-
tions and 27 rules in less than 5 seconds. All rules were
interesting but not equally important. Here we explain in
detail the three most relevant rules in order of significance.
Each of these rules relate a different vessel. The first impor-
tant rule is SeptoAnterior ⇒ LAD ≥ 50% with s = 18%
and c = 80%. This rule has a normal support and high
confidence, and confirmed medical opinion. When there is
a heart defect in the Septo Anterior region then it is very
likely that the LAD artery is diseased. The second rule
was InferoSeptal ⇒ RCA ≥ 50% which had lower support
equal to 12% and lower confidence, equal to 65%. This rule
also confirmed the expected relationship between the Infero
Septal region of the heart and the RCA vessel. The third
rule was InferoLateral ⇒ LCX ≥ 50%. This rule was
surprising because it had a relatively higher support (20 %)
but its confidence was only 53%. This confidence was much
lower than what medical doctors expected and opened a new



minsupp minconf # assocs # rules time in secs
0.40 0.20 8 0 3
0.20 0.30 336 12 10
0.10 0.40 2939 60 95
0.05 0.50 20852 301 2018

Table 4: Experimental results with medical data

n time in secs
655 11

6550 88
65500 643

Table 5: Times for large files

set of questions.
In short, our program discovered 27 rules out of which 3

were considered very important. Two of the rules confirmed
prediction rules stored in an expert system. Their support
and confidence measures were more or less close to that was
expected. The third rule had higher support and lower con-
fidence than expected. This rule surprised medical doctors
and challenged the Confidence Factor (CF) used in a spe-
cific rule of the expert system. Thus data mining helped
validating old knowledge.

4.2 Performance evaluation
Our medical data set only has n = 655 records but p = 113

dimensions. In practice, we work with projections of the
data focusing in subsets of medical attributes as described
in the previous subsection. So the following experiments are
performed under pessimistic conditions. According to do-
main expert opinion we tentatively set values for C and G
that are too long to describe here. We ran experiments with
maxsupport = 100%, threshold for association size ∆ = 4.
We varied minimum confidence and minimum support to
measure execution time. The program cannot be run with-
out constraining because the number of association even for
60% minsupport was >500,000. Increasing ∆ for low sup-
ports grows time/associations exponentially and it is not
reported. Look at tables 4 and 5. Note the ladders of val-
ues for minsupport and minconfidence. These numbers
show what we are after: rules with very low support having
high confidence. Note the increasing number of associations.
This points out to several optimizations that can be done in
Phase 2.

Performance results with larger data sets. Setting for pa-
rameters was minsupport = 0.20, minconfidence = 0.30,
∆ = 5. Results are summarized in table 5. Getting ac-
cess to more medical data sets is difficult for a number of
reasons. Since all we have at this moment is a patient file
containing only 655 records we decided to replicate it several
times to get larger files. This keeps the problem complexity
constant. Medical data sets, as described, are very different
from typical transaction files used to benchmark association
rules programs. Generating synthetic data to benchmark
our approach is something worthy of future research. In any
case fairly large medical data sets exist but they are not
available to us. Also, it would be interesting to apply these
ideas in other domains where large complex data sets are
available.

5. CONCLUSIONS
Our research effort goes into making association rules more

useful for medical data rather than proposing a novel scheme
for mining them. One of the main appeals of association
rules is their simplicity. Most of the improvements we pro-
pose are simple but useful. Association rules have a combi-
natorial nature; in that spirit we isolated those combinations
that are interesting for our domain. We briefly address the
problem of mapping complex medical data to items. We con-
strain associations to exclude certain combinations of items.
We constrain rules to have certain items in the antecedent
and certain items in the consequent. We limit rule size to
get higher confidence and higher support rules. Our modi-
fied algorithm is then faster and finds fewer rules; but those
rules tend to be concise and relevant.

Aspects which deserve further research. Automate map-
ping of attributes relating machine-generated partitions back
to domain kowledge. Examine problems with noisy data
more closely. Identify other useful constraints besides group-
ing and antecedent/ consequent. Extend grouping contraints
to include several groups in a user-friendly manner. Run
without support as a pruning strategy but reporting sup-
port and confidence always. Optimize the rule generation
phase. We believe association rules can be used in more do-
mains besides transactional data (basket or financial data).
We presented a case in the medical domain in which associ-
ation rules are useful, but we expect many of our research
issues to appear in other complex real life domains.
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