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ABSTRACT
Clustering is one of the most important tasks performed in
Data Mining applications. This paper presents an efficient
SQL implementation of the EM algorithm to perform clus-
tering in very large databases. Our version can effectively
handle high dimensional data, a high number of clusters and
more importantly, a very large number of data records. We
present three strategies to implement EM in SQL: horizon-
tal, vertical and a hybrid one. We expect this work to be
useful for data mining programmers and users who want to
cluster large data sets inside a relational DBMS.

1. INTRODUCTION

1.1 Clustering
Clustering data is a well researched topic in Statistics [7,

13]. Unfortunately the proposed statistical algorithms are
generally inefficient and do not work well with large data
sets. Most of the work done on clustering by the database
community attempts to make clustering algorithms more ef-
ficient in order to handle large data sets. Clustering al-
gorithms can be broadly classified into distance-based and
density-based; most of them work only with numerical data.
BIRCH [17] is an important precursor in clustering for large
databases. BIRCH is a distance-based algorithm based on
the CF tree. It is linear in database size and the number
of passes over the data is determined by a user-supplied
accuracy, but it is sensitive to noisy data and is not de-
signed to handle high dimensionality. CLARANS [14] and
DBSCAN [10] are also important clustering algorithms that
work on spatial data. CLARANS, using a distance-based
approach, uses randomized search and represents clusters
by their medioids (most central point). DBSCAN clusters
data points in dense regions separated by low density re-
gions. CLIQUE [2] is a density-based clustering algorithm
that can discover clusters in subspaces of multidimensional
data and which exhibits several advantages with respect to
performance, order of data and initialization over other clus-
tering algorithms but is bad handling high dimensional data
as it prunes most subspaces and finds only low dimensional
embedded clusters. There is recent work on the problem of
selecting subsets of dimensions being relevant to all clusters;
this problem is called the projected clustering problem and
the proposed algorithm is called PROCLUS [1]. This ap-
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proach is specially useful to analyze sparse high dimensional
data focusing on a few dimensions. An outstanding recent
clustering algorithm is OptiGrid [11]. In this paper the au-
thors develop a new technique that succesively partitions di-
mensions by hyperplanes in an optimal manner to discover
dense regions. This algorithm effectively handles noisy data
of high dimensionality and has a very good performance.

1.2 The EM clustering algorithm
EM is a well established clustering algorithm in the Statis-

tics community. It was first introduced in the seminal paper
[6] and there has been extensive work in Machine Learning
and Computer Vision to apply it and extend it [4, 12, 15,
16]. EM is a distance-based algorithm that assumes the data
set can be modeled as a linear combination of multivariate
normal distributions and the algorithm finds the distribu-
tion parameters that maximize a model quality measure,
called loglikelihood. EM was our choice to cluster data for
the following reasons among others. It has a strong statis-
tical basis, it is linear in database size, it is robust to noisy
data, it can accept the desired number of clusters as input,
it provides a cluster membership probability per point, it
can handle high dimensionality and it converges fast given
a good initialization. We must stress that EM does have
some disadvantages. Sometimes the normal distribution as-
sumption does not hold for some dimensions, given a poor
initialization convergence can be slow, the algorithm may
stop at a suboptimal solution, undefined computations may
appear and interpreting results can be hard. All these issues
will be addressed throughout the paper.

1.3 Motivation to implement EM in SQL
There are several reasons for which implementing EM in

SQL turned out to be an interesting problem. One of the
main points is that this task looked trivial at first sight, but
it turned out to be challenging when we faced the problem of
handling large data sets with high dimensionality. Here we
list some of the reasons that motivated us to do this work:

• Most of the Database research papers on clustering
concentrate on developing efficient algorithms in some
high-level programming language, such as C++, but
very few concentrate on the problem of actually de-
ploying the solution inside a relational DBMS. Besides,
many of those clustering algorithms lack a strong sta-
tistical foundation.

• Transferring data out of a large data warehouse for
processing can be time consuming, error-prone and dif-
ficult. In our case transferring tables having more than



100 million records to a workstation to perform clus-
tering uncovered many unexpected problems. The two
alternatives to storing the data in a workstation were
storing the data in a large text file, or in a database.
First, having a big text file containing those 100 mil-
lion records became a problem because of access speed
(just sequential access) and susceptibility to read er-
rors. So text files had to be limited in size in order
to be used without errors. Second, we considered the
problem of putting the data inside a local DBMS but
that turned out to be a problem similar to just trying
to cluster the data inside the data warehouse itself.

• SQL is a high-level data manipulation language avail-
able in most important DBMS’s. SQL is well under-
stood and standarized. Moreover, using SQL can save
a great deal of programming.

• Data management is easier if one relies on the DBMS.
A clustering program should be freed from managing
data.

• In our case most of the times the access plan gener-
ated by the query optimizer was inefficient. Ideally,
the EM implementation should run as fast as possible
regardless of the order of the input data, the access
plan produced by the optimizer, the dimensionality of
the data and the presence of noise. In other words, the
algorithm should have a guaranteed performance.

Having identified all these issues we decided to implement
EM in SQL thinking it would be an easy task. However,
we soon faced the following difficulties. SQL is based on
the relational model and can execute relational operators
but it does not support linear algebra operations. Inside a
relational DBMS all the data is stored in tables; therefore
there are no arrays. For the same reason there is no direct
and efficient way to perform linear algebra operations which
are required by the EM algorithm.

Any relational DBMS has practical limitations. Just to
name a few, there is usually a maximum number of columns
per table (as of today in the neighborhood of 1000), the
string length of some SQL query cannot be more than a few
kilobytes, many optimizations are only available internally.
To handle high dimensional data table joins are required,
and how the corresponding queries are formulated becomes
critical to performance. A joinless solution was not feasible
for the following reasons. There is a maximum number of
columns per table and we required a number beyond that
limit. There is a maximum length for a SQL expression that
the SQL interpreter/parser can handle and some mathemat-
ical expressions were much longer. Lastly, in our case, the
DBMS executes queries in parallel and results are returned
in an unpredictable order.

Many times the DBMS becomes slower as record size and
block size grow but that may vary depending on the par-
ticular DBMS. However, there is a tradeoff with the perfor-
mance of indexes when these two numbers decrease as we
shall see. Some operations have higher overhead than oth-
ers. In some cases updates are better than inserts but in
many other cases inserts are faster. Deletes turned out to
be slow. Some database operations tend to be more efficient
as the number of columns increases and some others tend
to be faster as the number of records increases. The perfor-
mance of the algorithm can degrade considerably if the SQL

statement execution requires many joins and data needs to
be sorted.

1.4 Contributions and outline of the paper
Our main contributions are the following:

• Explain how to create a simple SQL code generator to
implement the EM clustering algorithm: SQLEM.

• Provide a solution that has good performace. Scale
well with database size. Scale well with high dimen-
sional data.

• Keep the basic behavior of the EM algorithm unchanged.
This is important to check correctness and debugging.

• Prove that SQL can be used to perform complex math-
ematical calculations with a reasonable performance
when queries are properly formulated.

• Provide a solution that does not require user-defined
functions or external data structures (matrices, trees,
hash tables). This improves portability and applica-
bility.

• Produce SQL statements that can be easily optimized
and executed in parallel by the DBMS.

• Perform most of the work inside the DBMS, having a
small program in a workstation to control execution.

This work is organized as follows. Section 2 provides the
basic background to understand our implementation. Sec-
tion 3 describes in detail the three alternatives we came up
with to implement EM in SQL and argues which was the
best. Section 4 gives a detailed performance evaluation with
synthetic and retail data to do customer segmentation. The
paper ends with section 5; here we summarize our most im-
portant results and indicate directions for future research.

2. STATISTICAL AND DATABASE BACK-
GROUND

2.1 Mixture of Gaussians
EM assumes the data can be fitted by a linear combination

(mixture) of normal (Gaussian) distributions. The probabil-
ity density function (pdf) for the normal distribution on one
variable x [8] is:

p(x) =
1√

2πσ2
exp[
−(x− µ)2

2σ2
].

This pdf has expected values: E[X] = µ, E[(x−µ)2] = σ2.
The mean of the distribution is µ and its variance is σ2.
Samples from points having this distribution tend to form
a cluster around the mean. The points scatter around the
mean is measured by σ2.

The multivariate normal pdf for p-dimensional space is a
generalization of the previous function [8]. The multivariate
normal density for a p-dimensional vector x = x1, x2, . . . , xp

is:

p(x) =
1

(2π)p/2|Σ|1/2
exp[−1

2
(x− µ)tΣ−1(x− µ)],



Size value
k number of clusters
p dimensionality
n number of data points

Figure 1: Matrices sizes

Matrix size contents
C p× k means (µ)
R p× p covariances (Σ)
W k × 1 weights (wi)

Figure 2: Gaussian Mixture parameters

where µ is the mean and Σ is the covariance matrix; µ is
a p-dimensional vector and Σ is a p × p matrix. |Σ| is the
determinant of Σ and the t superscript indicates transpo-
sition. The quantity δ2 is called the squared Mahalanobis
distance: δ2 = (x−µ)tΣ−1(x−µ). This formula will be our
basic ingredient to implement EM in SQL.

EM assumes the data is formed by the mixture of k mul-
tivariate normal distributions on p variables. The Gaussian
(normal) mixture model probability function is given by:

p(x) =
k

∑

i=1

wip(x|i),

where p(x|i) is the normal distribution for each cluster and
wi is the fraction (weight) that cluster i represents from the
entire database. It is important to note that we will focus
on the case that there are k different clusters each having
their corresponding vector µ but all of them having the same
covariance matrix Σ. However, it is not hard to extend this
work to handle a different Σ for each cluster.

2.2 Outline of the EM algorithm
There are two basic approaches to perform clustering:

based on distance and based on density. Distance-based
approaches identify those regions in which points are close
to each other according to some distance function. On the
other hand, density-based clustering finds those regions which
are more highly populated than adjacent regions. Clustering
algorithms can work in a top-down (hierarchical [13]) or a
bottom-up (agglomerative) fashion. Bottom-up algorithms
tend to be more accurate but slower.

The Expectation-Maximization (EM) algorithm [16] is an
algorithm based on distance computation. It can be seen as
a generalization of clustering based on computing a mixture
of probability distributions. It works by succesively improv-
ing the solution found so far. The algorithm stops when
the quality of the current solution becomes stable; this is
measured by a monotonically increasing statistical quantity
called loglikelihood [6]. The goal of the EM algorithm is to
estimate the means C, the covariances R and the mixture
weights W of the Gaussian mixture probability function de-
scribed above. The parameters estimated by the EM algo-
rithm are stored in the matrices described in Figure 2 whose
sizes are shown in Figure 1. The popular K-means cluster-
ing algorithm [16] is a particular case of EM when W and R
are fixed: W = 1/k, R = I. It is trivial to simplify SQLEM
to do clustering based on K-means and therefore we do not

• Input: k, # of clusters. Y = {y1 . . . yn} a set of n
p-dimensional points. ε, a tolerance for loglikelihood.
maxiterations, a maximum number of iterations.

• Output: C, R,W , the matrices containing the updated
mixture parameters. X, a matrix with cluster mem-
bership probabilities.

1. Initialize. Set initial values for C, R, W (random or
approximate solution from sample)

2. WHILE change in loglikelihood llh is greater than ε
and maxiterations has not been reached DO E and M
steps

E step

C′ = 0, R′ = 0, W ′ = 0, llh = 0

for i = 1 to n

sumpi = 0
for j = 1 to k
δij = (yi −Cj)

tR−1(yi − Cj)
pij =

wj

(2π)p/2|R|1/2
exp[− 1

2
δij ]

sumpi = sumpi + pij

endfor
xi = pi/sumpi, llh = llh + ln(sumpi)

C′ = C′ + yix
t
i, W ′ = W ′ + xi

endfor

M step

for j = 1 to k
Cj = C′

j/W ′
j

for i = 1 to n R′ = R′ +(yi−Cj)xij(yi−Cj)
t

endfor
endfor

R = R′/n, W = W ′/n

Figure 3: Pseudo code for EM algorithm

describe it.
The EM algorithm starts from an approximation to the

solution. This solution can be randomly chosen or it can
be set by the user (when there is some idea about potential
clusters). A common way to initialize the parameters is to
set C ← µ random(), R ← I and W ← 1/k; where µ is
the global mean. It must be pointed out that this algorithm
can get stuck in a locally optimal solution depending on the
initial approximation. So one of the disadvantages of EM is
that it is sensitive to the initial solution and sometimes it
cannot reach the global optimal solution. Nevertheless, EM
offers many advantages besides being efficient and having a
strong statistical basis. One of those advantages is that EM
is robust to noisy data and missing information. In fact, EM
was born to handle incomplete data as explained in [6].

2.3 The EM algorithm
The EM algorithm, shown in Figure 3, has two major

steps: the Expectation step and the Maximization step. EM
executes the E step and the M step as long as the change in
global loglikelihood (called llh inside pseudo-code below) is
greater than ε or as long as the maximum number of itera-
tions has not been reached. Setting a maximum no. of it-
erations is important to guarantee performance. The global
loglikelihood is computed as llh =

∑n
i=1 ln(sumpi). The

variables δ, P, X are n×k matrices storing Mahalanobis dis-
tances, normal probabilities and responsibilities repectively



for each of the n points.
This is the basic framework of the EM algorithm and this

will be the basis to do the translation into SQL. There are
several important observations. C ′, R′ and W ′ are tempo-
rary matrices used in computations. Note that they are not
the transpose of the corresponding matrix. ||W || = 1, that

is,
∑k

i=1 wi = 1. Each column of C is a cluster; Cj is the jth
column of C. yi is the ith data point. R is a diagonal matrix
in the context of this paper (statistically meaning that co-
variances are independent); that is, Rij = 0 for i 6= j. The
diagonality of R is a key assumption to make linear gaus-
sian models work with EM [16]. Therefore, its determinant
and its inverse can be computed in time O(p). Note that
under these assumptions the EM algorithm has complexity
O(kpn). The diagonality of R is a key assumption for the
SQL implementation. Having a non-diagonal matrix would
change the time complexity to O(kp2n).

2.4 Simplifying and optimizing computations
The first important substep in the E step is computing the

Mahalanobis distances δij [6]. Remember that we assume R
is diagonal. A careful inspection of the expression reveals
that when R is diagonal the Mahalanobis distance of point
y to cluster mean C having covariance R is

δ2 = (y − C)tR−1(y − C) =

p
∑

i=1

(yi − Ci)
2

Ri
.

This is because R−1
ii = 1/Rii. For a non-singular diagonal

matrix R−1 is easily computed by taking the mutiplicative
inverses of the elements in the diagonal and being R−1 di-
agonal all the products (yi − Ci)R

−1
j = 0 when i 6= j. A

second observation is that R being diagonal can be stored
as a vector saving space, but more importantly speeding up
computations. So we will index R with just one subscript
from now on. Since R does not change during the E step its
determinant can be computed only once, making probability
computations (pij) faster. For the M step since R is diag-
onal the covariance computation gets simplified. Elements
off the diagonal in the computation (yi − Cj)xij(yi − Cj)

t

become zero. In simpler terms, Ri = Ri + xij(yij −Cij)
2 is

faster to compute. The rest of the computations cannot be
further optimized mathematically.

2.5 Dealing with null probabilities and null co-
variances

In practice pij = 0 sometimes, as computed in the E step.
This may happen because exp[− 1

2
δij ] = 0 when δij > 600;

that is, when the Mahalanobis distance is big. There is
a simple and practical reason for this: the numeric preci-
sion available in the computer. In most DBMS’s and cur-
rent computers the maximum accuracy available for numeric
computations is double precision which uses 8 bytes. For
this precision the exp(x) mathematical function is zero when
x < −1200.

A big Mahalanobis distance for one point can be the result
of noisy data, poor cluster initialization or the point belong-
ing to an outlier. So this problem needed to be solved in
order to make SQLEM a practical solution. We must stress
that this happens because the computer cannot keep the
required accuracy, but not because EM is making a wrong
computation. So we needed to have an alternative for δij

when the distances were big and we solved it like this:

pij =
1/δij

Σk
l=11/δil

, j ∈ {1 . . . k}.

Note that this computation gives a higher probability to
points closer to cluster j and is never undefined as long as
distances are not zero. Also, if some distance δij is zero
then exp(δij) = exp(0) is indeed defined (being equal to
1) and thus it can be used without any problem. In our
current implementation this alternative computation solved
the problem.

In many cases the individual covariance for some dimen-
sions (variables) becomes zero in some clusters or more rarely
in all the clusters. This can happen for a number of rea-
sons. Missing information, in general, leaves numerical val-
ues equal to zero; clusters involving categorical attributes
tend to have the same value on the corresponding column.
Remember that the E step computes pij =

wj

(2π)p/2|R|1/2
exp[−0.5δij ]

for i = 1 . . . n, j = 1 . . . k. As we can see the computation
for pij requires dividing by

√

|R| and computing R−1 for
Mahalanobis distances δij . Therefore, the problem is really
a division by zero which is undefined and computing R−1

which is also undefined. But our EM implementation uses
only one global covariance matrix for all the clusters and
then R =

∑k
i=1 Ri, where Ri is the corresponding covari-

ance matrix for cluster i. This can clearly be seen in the
M step. In short, one global covariance matrix R solves the
problem. We have found in practice that as k grows the
chance of having Ri = 0 is very small, but it may happen.
Having only one global covariance matrix R solves the prob-
lem in part, but there is a price to pay: we sacrifice cluster
description accuracy a bit.

In the event that ∃i, s.t. i ∈ {1 . . . k} and Ri = 0 we
do the following to compute |R| and R−1. To compute the
Mahalanobis distances we skip variables whose covariance is
zero and then we avoid dividing by zero (Ri = 0). Having a
null covariance means all the points have zero distance be-
tween them in the corresponding dimensions and then this
does not affect δij . In other words, we compute R−1 for
the subspace in which covariances are not zero. To compute
|R| we do an analogous thing. Remember that noise inde-
pendendence implies |R| = Πp

i=1Ri and then we can also
skip null covariances. Therefore, |R| = Πp

i=1,Ri 6=0Ri. But
again, there is a price to pay: loglikelihood computation is
affected. Skipping null covariances solves the problem of
undefined computations but we have observed that loglike-
lihood decreases sometimes. We believe this is the way to
solve the problem but it requires further research.

2.6 Database background
The relational model represents data as relations, each

having a primary key and a number of attributes. Each
attribute has a simple data type. Arrays, for instance, are
not allowed. This gets translated into SQL having tables
with a number of columns. A subset of those columns will
be the primary key. In general in a relational DBMS the
primary key has a corresponding physical index to search
data rows efficiently. Relation tuples become data rows in a
table. Relational operations such as select, project and join
get translated into SQL queries.

SQL is a standarized data manipulation language used in
databases. SQL can save a considerable amount of program-
ming and is effective to write high-level queries. However,



SQL is neither efficient nor adequate to do linear algebra
operations, but we managed to get around that problem by
converting matrices to relational tables and using arithmetic
operators (+-*/) and functions (exp(x) ln(x)) available in
our DBMS. The most important SQL commands we used in
our implementation were the following: CREATE TABLE,
used to define a table and its corresponding primary index,
DROP TABLE, to delete tables, INSERT INTO [table] SE-
LECT, used to add data rows to one table from a select
expression, DELETE, used to delete a number of rows from
a table and UPDATE, to set columns to different values.

3. SQLEM: THE EM ALGORITHM PRO-
GRAMMED IN SQL

This is the most important part of this work. The reader
is referred to the EM description given in the previous sec-
tion to understand the explanations given. Also, many op-
timizations and improvements to EM are assumed to be un-
derstood from the previous section.

3.1 Overview of alternatives
After analyzing and experimenting we discovered two ba-

sic strategies to implement EM in SQL: horizontal and ver-
tical. These two strategies represent two extreme points
to implement EM in SQL and there are tradeoffs regard-
ing performance, flexibility and functionality. Experimental
evaluation and practical constraints lead to a third hybrid
approach.

The first challenge is to compute the k squared Maha-
lanobis distances for each point to each cluster. The next
problem is to compute the k probabilities and k responsibil-
ities. These are computed by evaluating the normal density
function with the corresponding distance for each cluster.
After responsibilities are computed we just need to update
the mixture parameters; this requires computing several re-
lational aggregate functions. Updating C and R requires
several matrix products that are expressed as aggregate SQL
sums of arithmetic expressions. Updating W requires only
doing a SUM on computed responsibilities.

For the three approaches we will present we assume that
in general k ≤ p (for high-dimensional data) and p << n.
These assumptions are important for performance. In any
case our solution will work well for big n as long as p ≤
100, k ≤ 100. For the horizontal and vertical approaches we
only show the SQL code for the E step. Since the hybrid
approach turned out to be the best one it is analyzed in
more detail and we show both the E and the M steps in
SQL. The SQL statements required to create/drop tables
and their indexes, to delete rows, and to transpose C, R are
omitted for brevity.

Given a good initialization SQLEM converges fast; as seen
before, we either initialize clusters to random values or bet-
ter to parameters obtained from a sample (usually 5% for
large data sets or 10% for medium data sets). Nevertheless,
in some cases SQLEM does not converge soon because of
noisy data or bad initialization. To avoid making useless
computations we limit the maximum number of iterations
to some fixed number. For large data sets we have found
that 10 iterations is a good number. In some cases we may
run SQLEM up to 20 iterations, but for large data sets we
never let the program go beyond that limit. Otherwise, con-
vergence can become a bottleneck for performance.

Table PK columns # Contents
Y RID y1,y2...yp n data points
YD RID d1,d2...dk n distances
YP RID p1,p2...pk,sump n probabilities
YX RID x1,x2...xk,llh n responsib’s
C1..CK - y1,y2...yp 1 means
R - y1,y2...yp 1 covariances
W - w1,w2...wk,llh 1 weights
GMM - n,twopipdiv2 1 other

- sqrtdetR parameters

Figure 4: Horizontal approach SQL tables

3.2 Storing data points and mixture parame-
ters in tables

The data points and the Gaussian mixture parameters
must be stored in tables. Following the notation we de-
fined before we will add a few more conventions for naming
columns in SQL. Column name i will indicate the cluster
number, i.e. i ∈ {1 . . . k}, column name v will indicate the
variable number; that is, v ∈ {1 . . . p}. val will be the value
of the corresponding column. wi will indicate the ith cluster
weight. RID stands for row id and it is a unique identifier
for each data point. Please refer to Tables 4,6 and 8 to
understand these naming conventions.

All remaining parameters needed for computations are
stored in the table called GMM. This includes all the ma-
trix sizes p, k, n,the constant needed in the density function
computation twopipdiv2=(2π)p/2, the square root of deter-

minant of the covariance matrix sqrtdetR=
√

|R| and num-
ber of iterations. The table Y X stores the loglikelihood for
each point as well as a score, which is the index of the clus-
ter with highest membership probability for that point; in
our case score is used to classify/segment retail data.

3.3 Horizontal approach
The first way to solve the problem is called the horizontal

approach. Here we compute the Mahalanobis distances in k
terms of a SELECT statement. Each of the k terms is a sum
of squared distances divided by the corresponding covariance
as seen in the previous section. This is very efficient since
all k squared Mahalanobis distances (δ2) are computed in
one table scan but has a major drawback: since there are no
arrays in SQL the sum has to be expanded to a long string
to sum the p terms. For high dimensional data we found
that the parser of the SQL interpreter could not handle such
long statements. Even having user-defined functions would
not solve the problem because of expression size. For the
same reason many computations required by EM have to be
broken down into several simpler SQL statements.

The time/space complexity for computing the k Maha-
lanobis distances for each of the n points is O(kp). This
expression size can be a practical problem in almost any
relational DBMS. Just to give an example think about com-
puting parameters for 50 clusters for data having 100 di-
mensions (k = 50, p = 100). We need to compute squared
differences on p terms, each being in the best case about 10
characters, add them p times, and then put k of those expres-
sions in only one SQL statement. All in all, we end up with
an expression having approximately 10× 50× 100 ≈ 50, 000
characters. So far, we haven’t seen any DBMS handling an
expression this long.



INSERT INTO YD SELECT
RID,(Y.y1-C1.y1)**2/R.y1+...+(Y.yp-C1.yp)**2/R.yp,

(Y.y1-C2.y1)**2/R.y1+...+(Y.yp-C2.yp)**2/R.yp,
...
(Y.y1-Ck.y1)**2/R.y1+...+(Y.yp-Ck.yp)**2/R.yp

FROM Y,C1,C2...CK,R;

INSERT INTO YP SELECT
RID,w1/(twopipdiv2*sqrtdetR)*exp(-0.5*d1) AS p1,

w2/(twopipdiv2*sqrtdetR)*exp(-0.5*d2) AS p2,
...
wk/(twopipdiv2*sqrtdetR)*exp(-0.5*dk) AS pk,
p1+p2+...+pk AS sump FROM YD,GMM,W;

INSERT INTO YX SELECT
RID,p1/sump,p2/sump,...,pk/sump,ln(sump) FROM YP;

Figure 5: Horizontal approach SQL for E step

The tables required to implement this approach in the
most efficient way are given in Figure 4. It is important to
note that C is stored in k tables to avoid having k different
select statements to compute distances. This avoids launch-
ing k statements in parallel which would be slower, or doing
the k selects sequentially. The code is shown in Figure 5.

To update mixture paramaters C, R, W we proceed as fol-
lows. First of all, there is no need to create separate tables
C′, W ′, R′ as seen on the pseudo code for EM ; all tempo-
rary results are stored in the corresponding tables C, R,W .
To update C we need to execute k select statements ( up-
dating Cj) each of them computing the product yixij for
j = 1 . . . k and then making a SUM over all n rows to update
cluster means from cluster j: table Cj . These k SELECT
statements join tables Y and Y X by the primary key RID
multiplying yi by xij . Updating weights in W ′ is straight-
forward; first we have to sum the responsibilities and log-
likelihood stored in Y X and then dividing by n; this is done
just by one SELECT statement using the SQL aggregate
function SUM. Having computed C ′ and W ′ as described
in the pseudo code for EM we can update Cj = C′

j/W ′
j .

Now since C is updated we can proceed to compute covari-
ances R by launching k SELECT statements, each comput-
ing R′ = R′ + (yi − Cj)xij(yi − Cj)

t with j = 1 . . . k. The
last step involves updating R and W . We update covari-
ances and weights: R = R′/n and W = W ′/n; n is stored
in the table GMM .

3.4 Vertical approach
We call the second approach vertical. Here the n points

are copied into a table having pn rows. And then the Ma-
halanobis distances are computed using joins. The tables
used for this approach in the most efficient way are given in
Figure 6. In this case C is stored in one table.

Note that we have to perform separate inserts to compute
distances, probabilities and responsibilities because aggre-
gate functions cannot be combined with non-aggregate ex-
pressions in the same SQL select statement. YSUMP.sump=
∑k

i=1 pi and it is computed using the SUM(column) SQL
aggregate function. The code is shown in Figure 7. Note
that the first SELECT statement computes distances. Once
distances are computed we can obtain probabilities by evalu-
ating the multivariate normal distribution on each distance;
this is done in the 2nd SELECT statement shown. Finally,
the 3rd SELECT statement shown computes responsibiliti-

Table PK columns # Contents
Y RID,v value pn points
YD RID,i d kn distances
YP RID,i p kn probabilities
YX RID,i x kn responsib’s
C i,v value pk means
R v value p covariances
W i w k weights
GMM - n,twopipdiv2 1 remaining

sqrtdetR parameters

Figure 6: Vertical approach SQL tables

INSERT INTO YD SELECT
RID,C.i,sum( (Y.val-C.val)**2/R.val ) AS d

FROM Y,C,R WHERE Y.v = C.v AND C.v = R.v
GROUP BY RID,C.i;

INSERT INTO YP SELECT
RID,YD.i,w/(twopipdiv2*sqrtdetR)*exp(-0.5*d) AS p
FROM YD,W,GMM WHERE YD.i = W.i;

INSERT INTO YX SELECT
RID,C.I,p/YSUMP.sump

FROM YP,YSUMP WHERE YP.RID=YSUMP.RID;

Figure 7: Vertical approach SQL for E step

ies xij by dividing pij/sump for j = 1 . . . k. These respon-
sibilities are the basic ingredient to update mixture param-
eters C, R, W .

To update mixture paramaters C, R, W we proceed as fol-
lows. The first challenge is to compute the product yix

t
i.

Each of the p coordinates for yi are stored in one row in
table Y , and each of the k responsibilities are in a differ-
ent row in table Y X. Therefore, to compute this matrix
product yix

t
i we need to perform a JOIN between Y and

Y X only on RID multiplying value by x . This JOIN will
produce pk rows for each of the n points; the correspond-
ing temporary table Y Y X will have kpn rows, in general a
much bigger number than n. Then to compute C ′ we need
to use the SUM function over all rows of Y Y X grouping
by RID and inserting the aggregated pk rows into table C.
To update weights we have to add responsibilities in Y X.
To that end, we use SUM on x grouping by RID on table
Y X inserting results into W . With these two summations
we can easily compute Cj = C′

j/W ′
j (as specified in the

pseudo code for EM) by joining tables C and W on column
i, dividing value by w. Once means C are recomputed we
just need to recompute covariances R: we need to JOIN Y
and C on v performing a substraction of their corresponding
value columns, and squaring the difference, storing results
on temp table Y C. Once these squared differences are com-
puted we perform a JOIN with tables Y C and Y X on RID,
multiplying the squared difference by x and then SUM over
all rows. This will effectively recompute R. Finally, we just
need to divide both W and R by n (stored in table GMM).

3.5 Solution: a hybrid approach
Here we combine the benefits from both the horizontal

and the vertical approaches. The horizontal one is the most
efficient since it minimizes I/O, while the vertical is the most
flexible but has highest overhead in temporary tables created
for joins. For each of the n points this solution computes



Table PK columns # Contents
Z RID y1,y2...yp n points
Y RID,v value pn points
YD RID d1,d2...dk n distances
YP RID p1,p2...pk n probabilities

sump,suminvd n
YX RID x1,x2...xk, n responsibil’s

llh,score
C i y1,y2...yp k means
R - y1,y2...yp 1 global

covariances
RK i y1,y2...yp 1 covariances/

cluster
CR v C1,C2...Ck,R p Ct, Rt

W i w1,w2...wk 1 weights
llh 1

GMM - n,twopipdiv2 1 remaining
sqrtdetR 1 parameters

X RID,i x kn responsibil’s
vertically

XMAX RID maxx n max(x) for/
n points

Figure 8: Hybrid approach vertical tables

the k distances vertically using SQL aggregate functions
(SUM(column)) and computes probabilities, responsibilities
and mixture parameters horizontally projecting expressions
having p or k terms. The tables required for this approach
are shown in Figure 8. The SQL code for the E and M steps
is shown in Figures 9 and 10 respectively.

Before each insertion (in general INSERT INTO table SE-
LECT exp.) the tables C, R, CR,W, Y D, Y P, Y X are left
empty; that is, their respective rows are deleted. These
drop/deletion SQL statements are not shown to keep the
SQL code understandable and shorter. The C and R ma-
trices are transposed and copied into CR. This is currently
done by launching several UPDATE statements in parallel
but could be improved if there was a transposition statement
available, similar to the SQL extensions to do Knowledge
Discovery proposed in [5]. W stores the cluster weights as
well as the loglikelihood. The first SQL statement in the E
step computes |R|. The SQL code shown takes care of null

probabilities by using the approximation 1/di
suminvd

described
before. Null covariances are handled by inserting a 1 instead
of zero in the tables CR and R, but as we mentioned before
this has an impact in loglikelihood accuracy and thus needs
further research.

For this solution the computation of distances requires a
join creating a temporary table with pn rows and k columns.
The computation of probabilities and responsibilities requires
joins with only n rows at any intermediate step. C and R
are updated by inserting rows from k separate SELECT sta-
ments. This was necesary for two reasons: first expression
size could be a problem again if we updated all parameters in
one wide table and for high dimensional data we could eas-
ily exceed the maximum number of columns in our DBMS.
shwon

Analyzing the query costs incurred by the hybrid approach
we have the following. For each iteration the computation
of distances requires scanning a table having pn rows. The
computation of probabilities and responsibilites each require
one scan on n rows. Updating C and R require k table scans
on n rows each. Updating W requires only one scan on n

UPDATE GMM SET detR=R.y1*R.y2*...*R.yp,
sqrtdetR=detR**0.5;

INSERT INTO YD SELECT
RID,sum( (Y.val - CR.C1)**2/CR.R ),

sum( (Y.val - CR.C2)**2/CR.R ),...
sum( (Y.val - CR.Ck)**2/CR.R )

FROM Y,CR WHERE Y.v=C.v AND C.v=R.v GROUP BY RID;

INSERT INTO YP SELECT
RID,
w1/(twopipdiv2*sqrtdetR)*exp(-0.5*d1) AS p1,
w2/(twopipdiv2*sqrtdetR)*exp(-0.5*d2) AS p2,...
wk/(twopipdiv2*sqrtdetR)*exp(-0.5*dk) AS pk,
p1+p2+...+pk AS sump,
1/(d1+1.0E-100)+1/(d2+1.0E-100)+...+1/(dk+1.0E-100)

AS suminvd FROM YD,GMM,W;
INSERT INTO YX SELECT

RID,
CASE WHEN sump>0 THEN p1/sump ELSE (1/d1)/suminvd END,
CASE WHEN sump>0 THEN p2/sump ELSE (1/d2)/suminvd END,
...,
CASE WHEN sump>0 THEN pk/sump ELSE (1/dk)/suminvd END,
CASE WHEN sump>0 THEN ln(sump) END, 0 FROM YP;

Figure 9: Hybrid approach SQL for E step

rows. All other computation involve only scans on tables
having less than p or k rows. Overall one iteration of EM
requires 2k + 3 scans on tables having n rows, and one scan
on a table having pn rows. The theoretical minimum of ta-
ble scans on n rows required by EM is only 4: two for the
E step and two for the M step; the E step reads the input
points Y and writes the responsibilities X, and the M step
reads the input table Y as well as the responsibilities in the
table X. This points out to several optimizations that can
be made in the algorithm if scans can be synchronized and
more computations are done in a single SELECT statement.
The problem is that many optimizations happen automat-
ically inside the DBMS and are not available through SQL
commands.

Given current practical constraints found in the Teradata
DBMS we expect this implementation to be useful for clus-
tering problems having n ≤ 1.0E + 8, p ≤ 100, k ≤ 100 and
pk ≤ 1000. These numbers clearly represent big problem
sizes.

3.6 Important optimizations
Even though we used a parallel DBMS having a good

query optimizer, several optimizations were needed to make
our SQL code effective. The most important optimizations
are the following.

Updates are slower than inserts. The reason for this is that
updates involve 2 I/Os for each data block and inserts only
one. Whenever there are two or more tables in one state-
ment the access plan requires joins, even if some of the tables
have only one row. This is particularly troublesome to com-
pute distances because if Y is one table and C is stored in k
tables with only one row then joins are performed anyway.
To reduce the overhead of joins only one itermediate join
produces pn rows: the SELECT statement to compute dis-
tances. All the remaining joins always produce intermediate
tables having only n rows. Our DBMS uses a fast hash-
based join approach and that is why times scale linearly as
we shall see in the next section. As we have pointed out
before the Teradata DBMS returns rows in a normal query



INSERT INTO C SELECT
1,sum(Z.y1*x1)/sum(x1),sum(Z.y2*x1)/sum(x1),...
sum(Z.yp*x1)/sum(x1)

FROM Z,YX WHERE Z.RID=YX.RID;
...
INSERT INTO C SELECT

k,sum(Z.y1*xk)/sum(xk),sum(Z.y2*xk)/sum(xk),...
sum(Z.yp*xk)/sum(xk)

FROM Z,YX WHERE Z.RID=YX.RID;

INSERT INTO W SELECT
sum(x1),sum(x2),...sum(xk),sum(llh) FROM YX;

UPDATE W SET w1=w1/GMM.n,w2=w2/GMM.n,...,wk/GMM.n;

INSERT INTO RK SELECT
1,sum(x1*(Z.y1-C.y1)**2),...,
sum(x1*(Z.yp-C.yp)**2) FROM Z,C,YX;

...
INSERT INTO RK SELECT

k,sum(xk*(Z.y1-C.y1)**2),...,
sum(xk*(Z.yp-C.yp)**2) FROM Z,C,YX;

INSERT INTO R SELECT
sum(y1/GMM.n),sum(y2/GMM.n,...,
sum(yp/GMM.n) FROM RK;

Figure 10: Hybrid approach SQL for M step

in an unpredictable order unless the user specifies that rows
should be ordered (by primary key); this happens because
queries are executed in parallel in several AMPS (processors)
and results are assembled together in one processor. How-
ever, our solution does not require ordering results in any
SELECT statements; this is crucial to keep the time com-
plexity of EM unchanged. We accomplished this by joining
tables always using the column RID.

For a big table, that is, a table storing n rows, it is faster
to drop and create a table than deleting all the records. This
is not true if the table is small (C, R, W ) since the overhead
to drop/create a table is greater than just deleting a few
rows. As we mentioned the DBMS we used executes queries
in parallel. One way to speedup the process is to make
data block size smaller; in this way there is a finer grain for
parallelism and the optimizer can better balance load among
processors.

3.7 Practical considerations
EM offers many advantages besides having a strong sta-

tistical basis and being efficient. One of those advantages is
that EM is robust to noisy data and missing information. In
fact, EM was born to handle incomplete data as explained
in [6]. SQLEM can be extended to cluster categorical data
by converting each categorical value to a binary field. The
cluster centroids C will then give the probability or percent-
age of points in some cluster having a particular categorical
value. These findings can be further explained by looking at
the covariance matrix R. The drawback is that this exten-
sion increases dimensionality.

A covariance matrix having entries equal to zero just af-
fects the determinant |R|, R−1 and loglikelihood computa-
tion as explained before; zero entries are skipped to compute
|R| and loglikelihood is rescaled accordingly. Sampling can
be used to obtain a good initial approximation to initialize
the cluster centroids and the covariance matrix; note that
sampling is not good enough to cluster the entire data set
as standard error is proportional to the inverse of the square

root sample size [9] and then such clustering results obtained
from a sample are not reliable.

4. EXPERIMENTAL EVALUATION
We made our experiments on an NCR 4800 parallel com-

puter running Unix MP-RAS (Unix System V). This ma-
chine has 2 nodes connected by a high speed interconnect
network. Each node has 4 CPU’s running at 400Mhz. The
relational DBMS we used was NCR Teradata. The SQL
code generator was written in the Java language and the
connection to the DBMS was done using the JDBC library.
We concentrated on benchmarking our hybrid solution.

4.1 Experiments with retail data
We used Market Basket data from a retailer involving sales

for one month in several stores. We chose the number of
clusters to be k = 9 based on customer’s requirements. The
data had the following characteristics: no categorical data;
all numerical variables. Based on business requirements we
focused on p=6 variables including: hour of the transaction,
total sales per basket, total discount per basket, total cost
per basket, distinct product quantity per basket, distinct
categories of product per basket. The total number of bas-
kets to analyze was n=1,545,075. SQLEM took around 31
minutes on 5 iterations to converge on a good solution. The
EM algorithm uncovered the following as evidenced by the
means and covariances found in the data.

This particular retailer had about 71% of its clientele in
two clusters, that can be described as customers that would
come into the store for an average of 1 to 3 low price prod-
ucts and would not take advantage of any discount promo-
tions. The main discriminator between the two clusters was
that one shopped around noon and the other shopped in
the late afternoon, maybe after work. In other two clusters
about 12% of the customers showed core behavior. These
individuals had a tendency to have baskets that were higher
in sales and not quite as low in discount. But the over-
riding characteristic was that they shopped for an average
of 9 products from an average of 6 different sections in the
store. These two clusters seemed to have shopping time as a
main discriminator. Around 10% of the baskets were trans-
acted by customers that seemed interested in lunch, since
they shopped around noon time, yet they looked for possi-
bly more than just lunch given the fact that they on average
purchased 5 products from 4 different sections in the store.
Maybe lunch was the main reason for their visit to the store
but they realized that they needed something else while in
the store.

A small cluster comprising 3% of the baskets showed the
same characteristics as the 10% mentioned above except for
the fact that these customers seemed to take advantage of
promotions. The rest of the baskets show three distinct clus-
ters. One that has convenience shoppers that like to shop
later in the day. And two clusters that exhibited ”cherry
picking” behavior. High sales, high discounts due to promo-
tions and low number of products per baskets.

With minimal analysis time we could start making some
educated assumptions about customer behavior that with
further analysis could turn into valuable data to a business.
We were able to analyze a significant amount of data in a
very short amount of time. As Data Warehousing becomes
mainstream the availability of massive volumes of data for
analysis will become more common place. We see SQLEM
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Figure 11: Time per iteration with varying dimen-
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Figure 12: Time per iteration with varying no. of

clusters k,p = 20,n = 10k

as a way to enable mining of large data volumes in Data
Warehousing.

4.2 Experiments with synthetic data
We generated data by evaluating a mixture density of k

Gaussian distributions on p variables. We varied the number
of clusters k , the number of variables p and the number of
points n to test scalability. We added 20% of n points as
noise. The covariances were kept uniform across clusters.

We concentrated on benchmarking the time per iteration.
To cluster big data sets in general we use sampling with
about 10% of the data points to obtain several possible
”good” initial solutions. With a good initial approximation
EM usually converges in a few iterations (less than 10). In
any case at each iteration EM always finds a solution that is
guaranteed not to decrease loglikelihood from the previous
one. Otherwise the classical version of the EM algorithm
may not scale for a database having hundreds of millions of
records. However, as our times show it may be feasible to
cluster a data set with a few million records starting from a
random initialization of mixture parameters.

As can be seen from the graphs 11,12,13 SQLEM scales
linearly in the 3 dimensions we analyzed: p, k and n. It
should be noted that the graph for p is not quite linear in
data sets having lower dimensionality. A similar problem
happens with database size n. This is because the execu-
tion overhead of the SQL statements is higher on smaller
problem sizes. The times per iteration shown are at least as
good as the times achieved by SEM [3]. However, a direct
comparison is not possible since they compress the data and
make most of the work in a workstation memory, whereas
we rely heavily on using only efficient SQL code inside a re-
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Figure 13: Time per iteration for different database

sizes n,p = 10,k = 10

lational DBMS. Another important note is that our times
may vary in another relational DBMS if joins are not hash-
based. A nested-loop join approach would definetely make
our solution slower. Overall the execution time of SQLEM
can be bounded by O(p2n) if p and k are in the same order
of magnitude since we do not change the complexity of the
algorithm.

4.3 Related work
To the best of our knowledge the only other work that

analyzes the problem of scaling EM to large data sets is
[3]. Their clustering algorithm is called Scalable EM (SEM).
However, this work was not inspired by SEM. It was not
our intent to improve their solution since the performance
results the authors report are very good and their approach
is very different from ours. We just needed a clustering
algorithm which had a strong statistical basis and EM was
the choice. EM may not be the best clustering algorithm
currently available but it offers advantages not available in
other clustering algorithms published in the literature.

Here we give a brief summary of SEM. SEM can compute
clusters in one database scan by updating several mixture
models concurrently (usually around 10) and by doing data
compression in two phases. Their solution relies on hav-
ing special data structures to update the mixture parame-
ters in memory. The algorithm makes iterations in memory,
avoiding repeated table scans. It is important to note that
our solution does not preclude incorporating some of the
improvements proposed by SEM, but that requires further
research.

5. CONCLUSIONS
We presented an efficient implementation of the EM al-

gorithm in SQL to cluster large data sets inside a relational
DBMS. The SQL statements presented are easy to optimize
and to execute in parallel. Our implementation is fast and
scalable. We used plain ANSI SQL which provides portabil-
ity and applicability in most relational DBMS’s.

We presented three basic appraoches to solve the prob-
lem. A first horizontal approach was to project big arith-
metic expressions and create SELECT statements involving
k terms and returning n rows. This approach is very effi-
cient but the Mahalanobis distance computation turned out
to be a problem because of expression size: O(kp). At the
other extreme we developed a vertical approach in which the
data points and the mixture parameters are stored in long
tables having a compound key and only one data column.



The table storing Y had pn rows. This is the most flexi-
ble approach, but also the most inefficient because the join
to compute Mahalanobis distance produced a temporary ta-
ble having kpn rows. The remaining joins produced tables
having pn or kn rows slowing down EM even further. From
these two approaches we devised a hybrid one that computes
Mahalanobis distances vertically, but computes responsibil-
ities and mixture parameters horizontally. This turned out
to be a still flexible solution without seriously compromis-
ing performance. We explored general SQL query optimiza-
tions. Inserts are preferred over updates. Dropping/creating
a table is preffered over deleting all its data rows for tables
having n rows. A table having n rows and k columns is more
efficient than a table having kn rows for join processing. The
select operation to compute distances requires a join with pn
rows in a temporary table. The remaining joins involve only
n rows. Smaller block sizes give better granularity for par-
allel query execution.

Regarding performance. SQLEM scales linearly with di-
mensionality p, the number of clusters k, and more impor-
tantly with the number of data points n. The overall ex-
ecution time makes clustering feasible for tables contain-
ing several millions of data rows and high dimensionality
(pk ≤ 1000). We presented experiments with synthetic and
retail data to support our claims. Our clustering algorithm
compares reasonably well with other approaches proposed
in the literature as shown by our experiments.

In the future we would like to explore further improve-
ments to make SQLEM more efficient and more robust to
noisy data. This includes synchronizing operations to de-
crease table scans, avoiding computations that do not change
mixture parameters in consecutive iterations, improving par-
allel execution and caching for small tables. We also want
to apply SQLEM to a large collection of segmented images
to continue our previous work on association rules obtained
from an image collection [15].
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