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Abstract—This work describes our experiences on discovering
association rules in medical data to predict heart disease. We
focus on two aspects in this work: mapping medical data to a
transaction format suitable for mining association rules and iden-
tifying useful constraints. Based on these aspects we introduce
an improved algorithm to discover constrained association rules.
We present an experimental section explaining several interesting
discovered rules.

I. INTRODUCTION

Data Mining is an active research area. One of the most
popular approaches to do data mining is discovering associa-
tion rules [1], [2]. Association rules are generally used with
basket, census or financial data. On the other hand, medical
data is generally analyzed with classifier trees, clustering, or
regression, but rarely with association rules. A survey on these
techniques is found in [10].

In this work we analyze the idea of discovering constrained
association rules in medical records that include numeric, cate-
gorical, time and image data. This work is based on a long time
joint research effort by Georgia Tech and Emory University
to discover knowledge in medical data to predict coronary
heart disease [7], [6], [5], [13], [14]. In [6] association rules
are proposed and preliminary results are justified from the
medical point of view. In [5] neural networks are used to
predict reversibility images based on stress and myocardial
thickening images. In [14] we explore the idea of constraining
association rules in binary data and report preliminary findings
from a data mining perspective.

One of the most important features of association rules is
that they are combinatorial in nature. This is particularly useful
to discover patterns that appear in subsets of all the attributes.
However, most patterns discovered by algorithms that do
not constrain associations are not useful because they may
contain redundant information, may be irrelevant or describe
trivial knowledge. The goal is then to find those rules that
are medically significant or interesting, but which also have
minimum support and confidence.
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In our research project the discovered rules have two main
purposes: validating rules used by an expert system to aid
in diagnosing coronary heart disease (PERFEX [9], [7]) and
discovering new rules that relate patient data to heart disease
and thus can enrich the expert system knowledge base. At the
moment all rules used by our expert system were discovered
and validated by a group of domain experts, as described in
detail in [9]. Since PERFEX is essentially a production rule
system (i.e., composed of IF-THEN rules) used in conjunction
with temporal and uncertainty reasoning models, the discovery
of knowledge resulting from association rule mining would
represent a potentially powerful and innovative way to validate
and acquire knowledge to enhance the knowledge base. Impor-
tantly, the methods proposed herein are capable of inferring
medical knowledge from a vast array of data that includes
image and alphanumeric data that represent highly relevant,
patient-specific clinical data (such as electrocardiographic in-
formation, patient history, symptoms and the results of clinical
tests). Hence the methods described in this paper may provide
a more efficient knowledge acquisition technique than classical
approaches.

Throughout the paper we try to provide a general framework
for understanding the approach underlying our research. We
believe many of the problems we are facing (small data size,
richness of content, high dimensionality, missing information,
etc) are likely to appear in other domains. As such, this work
tries to isolate those problems that we consider will be of
greatest interest to the data mining community.

A. Contributions and paper outline

Our main contributions are the following. First, a justifica-
tion is given for the use of association rules in the medical
domain. We explain why mining medical data for association
rules is an interesting and hard problem and we present the
problem in an abstract manner so that this work can be applied
to other domains. We introduce a simple mapping algorithm
that transforms medical records into a binary format suitable
to mine constrained association rules. We identify important
constraints to make association rules useful for the medical
domain and propose an algorithm to discover constrained
association rules with very low support and relatively high
confidence. Finally, we identify open problems that require
further research.
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This is an outline of the rest of the paper. Section II states
the definition of association rules and describes our medical
data. We use a small example to motivate the use of association
rules in the medical field and explain the kind of rules that
are sought. Section III addresses the problem of mapping
medical data to binary attributes to be treated as items,
emphasizes the main difficulties encountered using association
rules, and introduces useful constraints for a customized A-
priori type algorithm. Experimental results with medical data
sets are described in Section IV. Finally, section V contains the
conclusions of this article and directions for future research.

II. DEFINITIONS, DATA MAPPING AND INTERESTING RULES

A. Association rules

The standard definition of association rules [1] is the follow-
ing. Let D = {T1, T2, . . . , Tn} be a set of n transactions and
let I be a set of items, I = {i1, i2 . . . im}. Each transaction is a
set of items, i.e. Ti ⊆ I. An association rule is an implication
of the form X ⇒ Y , where X, Y ⊂ I, and X ∩ Y = ∅.
X is called the antecedent and Y is called the consequent of
the rule. In general, a set of items, such as the antecedent or
the consequent of a rule, is called an itemset. Each itemset
has an associated measure of statistical significance called
support. For an itemset X ⊂ I, support(X) is the fraction of
transactions Ti ∈ D such that X ⊆ Ti. The support of a rule
is defined as support(X ⇒ Y ) = support(X ∪ Y ). The rule
has a measure of strength called confidence defined as the ratio
confidence(X ⇒ Y ) = support(X ∪ Y )/support(X). The
standard problem of mining association rules is to generate all
rules that have support and confidence greater or equal than
some prespecified minimum support and minimum confidence
thresholds [2].

B. Brief literature review

Literature on association rules has become extensive since
their introduction in the seminal paper [1]. Our work shares
some similarities with [4], [11], [17]. In [17] the authors
propose a few algorithms that can incorporate constraints to
include or exclude certain items in the association generation
phase; they focus only in two types of constraints: items
constrained by a certain hierarchy [15] or associations which
include certain items. This approach is limited for our purposes
since we do not use hierarchies and excluding/including items
is not enough to mine medically meaningful rules. The work
which addresses the constraining problem in the most general
way is [11]. Their approach based on succinctness and 2-
var constraints is different as it is more query oriented and
does not deal with rule semantics, mapping, rule size or noisy
data. Bayardo et. al. [3] show that support and confidence are
fundamental interestingness metrics.

C. General description of our medical data

The medical data set we are mining describes the profiles of
patients being treated for coronary heart disease. All medical
information is put in one file having several records. Each
record corresponds to the most relevant information of one

patient. This profile contains personal information such as
age, race, smoking habits and other relevant information.
Measurements on the patient such as weight, heart rate,
blood pressure and information regarding the preexistence or
existence of certain diseases are also stored. The diagnostics
made by a clinician or technician are included as well.
Time attributes mainly involve medical history dates. Then
we have a complex set of measurements that estimate the
degree of disease in certain regions of the heart, how healthy
certain regions remain, and quality numbers that summarize
the patient’s heart effort under stress and relaxed conditions.
Finally, imaging (perfusion) information from several regions
of the myocardium (heart muscle) is stored as boolean data.

Table I shows the 25 medical fields that will be used
throughout this paper. For each attribute we give its usual
abbreviation in the medical domain, its data type (DT), what
type of medical information (MI) it contains and a complete
description. Attributes are classified into three types accord-
ing to the medical information they contain. ’P’ attributes
correspond to perfusion measurements on specific regions
of the heart, ’R’ attributes correspond to risk factors and
’D’ attributes correspond to heart disease measurements. The
goal is to relate perfusion measurements and risk factors to
disease measurements. The image data represents the local
degree of blood distribution (perfusion) in the heart muscle
(myocardium). There are some fields that are commonly
selected in data mining experiments. These fields include 4
fields that store the percentage of heart disease caused by a
specific artery of the heart (LM, LAD, LCX, and RCA) and 9
fields that store a perfusion measurement which is a value in
the range [−1, 1]. Closer to 1 indicates a more severe perfusion
defect. Closer to -1 indicates absence of a perfusion defect.
Each of the artery fields has a value between 0 and 100, and
each heart region has a value between -1 and 1.

D. Alternative approaches

Here we explain why other data mining techniques are
inadequate to solve our problem. Decision trees [10] produce
rules to classify records from a data set minimizing classifica-
tion error. This approach assumes there is a target variable
indicating the class to which each record belongs. In our
case it would have to be a categorical variable indicating if
the patient is healthy or sick. However, patients cannot be
classified in such a simple way because they have a degree
of sickness. It could be argued that there could be several
classes indicating the degree of sickness, but this would have
to be done for each artery making many runs and significant
analysis effort mandatory. Besides this does not cover the
case that the patient has combinations of diseased arteries.
There is even another worse drawback about decision trees:
they automatically split numerical variables. The medical
community has standard cutoffs used to understand numerical
variables and these cutoffs are widely accepted (high blood
pressure, high cholesterol, male overweight, etc). Therefore,
the split points chosen by the decision tree may be of little
use if they are different from the standard ones; experimental
results interpretation becomes more difficult.
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No Name DT MI Description
1 Age N R Age of patient
2 LM N D Left Main artery
3 LAD N D Latero Anterior Desc.
4 LCX N D Left CircumfleX
5 RCA N D Right Coronary Art.
6 AL N P Antero-Lateral
7 AS N P Antero-Septal
8 SA N P Septo-Anterior
9 SI N P Septo-Inferior

10 IS N P Infero-Septal
11 IL N P Infero-Lateral
12 LI N P Latero-Inferior
13 LA N P Latero-Anterior
14 AP N P Apical
15 Sex C R Gender
16 HTA C R Hyper-tension
17 Diab C R Diabetes
18 HYPLD C R Hyperlipidemia
19 FHCAD C R Fam. hist. of disease
20 Smoke C R Smoking habits
21 Claudi C R Claudication
22 PAngio C R Previous angina
23 PStroke C R Prior stroke
24 PCarSur C R Prior carotid surgery
25 Chol N R Cholesterol level

TABLE I
ATTRIBUTES

Clustering [8], [10], [12] is another potential technique. In
our case it was useful to have a global understanding of the
data set. However, it was not adequate to produce rules relating
a subset of all the variables. A constrained version of clustering
focusing on projections of the data could be useful but that is
an aspect that deserves further research.

III. MINING CONSTRAINED ASSOCIATION RULES

In this section we introduce our most important contribu-
tions. First, we analyze the problem of mapping information
from categorical and numerical attribute values to items.
Second, we identify useful constraints on attributes and items
to get interesting association rules.

A. Mapping attributes

The medical data records have to be transformed into a
transaction format suitable to discover association rules. As
noted above, there are categorical, numerical, time and image
attributes. To make the problem simpler all attributes are
uniformly treated as categorical or numerical. In numerical
attributes there is a natural order among values as opposed to
categorical attributes where there does not exist such order.

Let A1, A2, . . . Ap be all the attributes, let R =
{r1, r2, . . . rn} be a relation with n tuples whose values
are taken from dom(A1) × dom(A2) × . . . × dom(Ap),
where dom(Ai) is either a categorical or numerical domain.
The data set size is n and its dimensionality is p. Let
D = {T1, T2, . . . , Tn} be a set of n transactions containing
subsets of m items, resulting from the mapping process. Items
are identified by consecutive integers starting in one, i.e.
1, 2, . . . , m.

The following mapping algorithm discretizes medical data
records transforming numerical and categorical values into
binary data. The mapping process is divided in two phases.
In the first phase a mapping table M is constructed based
on user’s requirements. In the second phase attribute values
in each tuple rj are mapped to items based on M . Each
tuple rj becomes a transaction Tj , suitable for association rule
mining. For a categorical attribute Ai each categorical value
is mapped to one item. If negation is desired for categorical
attribute Ai then each negated value is mapped to an item.
The domain expert specifies k cutoff points for each numerical
attribute Ai producing k + 1 intervals. Then each interval is
mapped to one item. If negation is desired then k+1 additional
items are created corresponding to each negated interval. In
general negation significantly increases the potential number
of associations. Therefore, it must be used on a per attribute
basis after careful consideration. Once the M mapping table
has been constructed the second phase is straightforward.

B. Constraining association rules

This is a summary of the main difficulties faced when trying
to discover interesting association rules in medical data. For
each problem we propose a solution that is generally in the
form of a constraint. Problems are described in an abstract
manner.

Association size. Associations and rules that involve many
items are hard to interpret and can potentially generate a
very high number of rules. And further, they slow down the
interactive process by the user. Therefore, there should be a
default threshold for association size. Most approaches are
exhaustive in the sense that they find all rules above the user-
specified thresholds but in our domain that produces a huge
amount of rules. The biggest size of discovered associations is
a practical bottleneck for algorithm performance. In our case
even k > 5 produces too many rules rendering the results
useless. Another reason to limit size is that if there are two
rules X1 ⇒ Y and X2 ⇒ Y s.t. X1 ⊂ X2 the first rule is
more interesting because it is simpler and it is more likely to
have higher support. Or if Y1 ⊂ Y2 and X ⇒ Y1 and X ⇒ Y2

then the 2nd rule is likely to have higher confidence but lower
support.

Items restricted to appear only in the antecedent, only in the
consequent or in either place. Remember that by rule defini-
tion an item appears only once in a rule and therefore it appears
either in the antecedent or in the consequent of the rule. Note
that given the interesting rule X ⇒ Y no matter where an
item appears the association X∪Y must be a frequent itemset
because this association is precisely the rule support, but where
the item appears prunes out many uninteresting rules that have
useless combinations of items. In other words, support is still
needed to prune uninteresting associations but confidence is
not enough to prune out uninteresting rules because there may
be many rules having high confidence containing forbidden
items in the antecedent or in the consequent. Therefore items
need to be constrained to appear in a specific part of the rule.

Associations having uninteresting combinations of items.
This is the case where certain combinations are known to
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be trivial or have such a high support that do not really say
anything new about the data set. Consider items ij and ij′ . If
the association X1 = {ij , ij′} is not interesting then any other
association X2 s.t. X1 ⊂ X2 will not be interesting. Therefore,
many of the items (if not all) can be grouped by the domain
expert to discard uninteresting associations. If no grouping is
done then item ij is always relevant no matter which other
items ij′ appear together with it. We assume small groups
can be identified either automatically by running a straight
association rules algorithm or by previous knowledge.

Low support. It has been shown that support is the per-
formance bottleneck for association rules [11]. It is desirable
to run the algorithm once with a very low support avoiding
repeated runs with decreasing supports. We are interested in
rules involving at least two transactions; this is a very low
minimum support level.

High support. Even though the algorithm may prune out
many rules by the above criteria, since we are working with
high dimensional data there may still be lots of rules involving
a few items having a high support. This problem is duly
identified in [16] for quantitative association rules, and it
basically appears because of the high number of combinations
of partitioned intervals. So this idea is helpful: the algorithm
should have a maximum support threshold.

Important constraints: Based on the difficulties outlined
above we introduce the following improvements. Extend items
with two fields indicating constraints. Let I = {i1, i2, . . . im}
be the set of items to be mined obtained by the mapping
process from the attributes A1, . . . , Ap.

Let C = {c1, c2, . . . cp} be a set antecedent and consequent
constraints for each attribute Aj . Note that constraints are
specified on attributes and not on items. Each constraint cj

can have one out of 3 values: 1 if item Aj can only appear
in the antecedent of a rule, 2 if it can only appear in the
consequent and 0 if it can appear in either. We define the
function antecedent/consequent ac : R → C as ac(Aj) = cj

to make reference to one such constraint.
Let G = {g1, g2, . . . gp} be a set of group constraints for

each attribute Aj ; gi is a positive integer if Aj is constrained to
belong to some group or 0 if Aj is not group constrained at all.
We define the function group : R → G as group(Aj) = gj .
Since each attribute belongs to one group then the group
numbers induce a partition on the attributes. This will induce a
partition on the attributes. Attributes belonging to some group
and attributes not constrained to belong to any group. Note
that if the group is > 0 then there must be two or more
attributes with the same group value, otherwise, the attribute
would appear as not constrained.

Let X = {i1, i2, . . . , ik} be a k-itemset. X is said to be
antecedent-interesting if ∀ij ∈ X ac(ij) 6= 2. X is said to
be consequent-interesting if ∀ij ∈ X ac(attribute(ij)) 6= 1.
X is said to be group-interesting if ∀ij∀ij′ ∈ X ij 6= i′j ⇒
group(attribute(ij)) 6= group(attribute(ij′)). We will use
group(i) and ac(i) for item i to simplify notation.

Lemma 1 Itemset interestingness has the downward closure
property in both ac(i) and group(i) constraints.
Proof: this is straightforward to prove since these properties
are defined on sets. 2

Lemma 2 The ac(i) constraint cannot be used to prune
away associations because of the rule generation phase.
Proof: Assume we have a rule X ⇒ Y . X and Y must respect
the ac constraint for each of their items, but X ∪ Y will not.
ac(i) is an antimonotic constraint, but it cannot be used to
discard X ∪ Y because the support for the rule is computed
on X ∪ Y . 2

Lemma 3 Let X be a frequent k-dimensional itemset.
Assume κ < k then there are 2k −

(

k

κ

)

2κ pruned associations.
Proof: We just need to substract the number of itemsets of
size κ, which is the right term, from the powerset on k items.
2

Lemma 4 Let X ⇒ Y be a valid rule where all items are
ac(i) constrained. Then there are O(2|X|+|Y |) discarded rules.
Proof: Consider the powersets of X and Y . Every union of X
and one or more elements of Y is invalid. Every union of Y
and one or more elements of X is invalid. Counting all these
cases gives the stated bound. 2

Lemma 1 is used to prune out associations based on the
group(i) constraint. Lemma 2 states that the algorithm cannot
take advantage of ac(i) constraints in Phase 1. Lemma 3
states that the number of pruned associations is big when the
maximal frequent itemset is large. In our case this produces
significant speedup to make computation more interactive.
Lemma 4 gives an idea about the number of discarded rules.

C. Algorithm to mine constrained association rules

We propose the following algorithm based on the well-
known A-priori algorithm [2]. All the basic notation and
definitions are taken from section 2. Let κ be the maximum
number of items appearing in one rule. Let X1, X2 . . .XM

be all frequent itemsets obtained in phase 1. We require a
minimum support allowing us to mine associations referring
to only two transactions. This number will be fixed. Pruning
will be based mostly on constraints. Minimum confidence will
vary from run to run.

1) Mapping algorithm
• Construct mapping table M
• For each tuple r1, r2, . . . , rn do the following. Map

attribute values of A1, A2, . . . , Ap to items 1, 2, . . . , m
based on M producing transactions T1, T2, . . . , Tn (sec-
tion III-A).

2) Constrained association rule algorithm
• Phase 1:

Generate all 1-itemsets as candidates and make one pass
over t1, t2, . . . , tn to compute their supports.
for k = 2 to κ do
Extend frequent (k − 1)-itemsets by one item
belonging to any frequent (k − 1)-itemset.
Let X = {i1, i2, . . . , ik} be a k-itemset. If
group(attribute(ij)) 6= group(attribute(ij′))
and group(attribute(ij)) ∗ group(attribute(ij′)) > 0
for j 6= j′ ∧ 1 ≤ j, j′ ≤ k then X is a candidate. Check
support for all candidate k-itemsets making one pass
over the transactions. If there is no frequent itemset stop
(sooner) this phase.

• Phase 2:
for j = 1 to M do for k = 1 to M do
Let X = Xj , Y = Xk ,
if X ∩ Y = ∅ and minsupport ≤ support(X ∪ Y ) ≤
maxsupport and (ac(attribute(i)) 6= 2 ∀i ∈ X) and



5

(ac(attribute(i)) 6= 1 ∀i ∈ Y ) and (minconfidence ≤
support(X ∪ Y )/support(X)) then X ⇒ Y is a valid
rule.

IV. EXPERIMENTAL EVALUATION

In this section we present important association rules dis-
covered by our algorithm. Our experiments were run on a Sun
computer. Our algorithm implementation was done in the C
language.

A. Medical data set used

All our experiments were based on a real data set obtained
from a hospital. The data set consisted of 655 patients having
113 attributes. We selected the 25 most important medical
attributes for mining listed in table I. So p = 25 and n = 655.
These attributes include perfusion measurements for 9 regions
of the heart and heart vessel disease for 4 vessels and attributes
relating high risk factors for heart disease. The perfusion
measurements quantify the deviation each heart region has
from the corresponding region of a normal heart. The normal
values for the 9 regions are taken as the means from which
deviations are computed. Each of the LM, LAD, LCX, and
RCA numerical attributes refer to vessel measurements.

B. Setting program parameters

To automatically map attributes to items we did the follow-
ing. The LAD, RCA, LCX and LM numbers represent the
percentage of vessel narrowing and they are split into ranges
as follows. LAD, LCX and RCA were partitioned by cutoff
points 50% and 70%. The 70% value indicates significant
coronary disease. The 50% value indicates borderline disease.
Less than 50% means the patient is considered healthy. The
most common cutoff value used by the cardiology community
is 50%. LM was partitioned by cutoff points at 30% and
50%. Both the LAD and the LCX arteries branch from the
LM artery and then a defect in it is more likely to cause a
larger diseased heart region. That is why its cutoff values are
set lower. The 9 heart regions (AL, IL, IS, AS, SI, SA, LI,
LA, AP) were partitioned into 2 ranges at a cutoff point of
0.2. CHOL was partitioned with cutoff points 200 (warning)
and 250 (high). These values correspond to known medical
settings. Since the clinicians were interested in getting rules
involving healthy and sick patients these 4 attributes were
chosen for negation. Missing values were assigned one item
but were ignored for rule generation.

In general we are interested in rules that involve at least
two patients. Obviously rules that refer to only one patient are
not reliable and some of those may have 100% confidence.
Then the minimum support was always fixed at 2/n ≈ 0.2%.
Note that this is in fact the lowest support discarding rules
for one transaction. The minimum confidence was set at 70%.
The maximum support was set at 30%.

In the past we attempted using association rules without
constraints [14], but results were useless. The number of
rules went over 1 million, and most of them involved the
same medical variables. So, a post-processing approach did
not work. That is, mining association rules with minimum

support and confidence and then filtering out unwanted rules
was not practical. This made constraints a required ingredient
both from a performance point of view and from a practical
standpoint. Note that we require a very low support allowing
us to mine associations referring to only two transactions.

Now we explain what constraints were set for association
rule finding. This set of constraints is by no means definitive
or optimal, but it represents what our experience has shown
to be most useful. Please refer to table I to understand the
attribute meanings. The constraints for the association rule
mining program were set as follows. The 4 main coronary
arteries LM, LAD, LCX, and RCA were constrained to appear
in the consequent of the rule, that is, ac(i) = 2. All the other
attributes were constrained to appear in the antecedent, i.e.
ac(i) = 1. In other, words R (Risk factors) and P (Perfusion
Measurements) should appear in the antecedent, whereas D
(disease) medical fields should appear in the consequent of a
rule.

The 9 regions of the heart (AL, IS, SA, AP, AS, SI, LI, IL,
LA) were constrained to be in the same group. Sex, HTA,
HYPLPD, FHCAD, Smoke and Chol were constrained to
be in the same group. Claudi, PANGIO, PSTROKE, PCAR-
SUR were constrained to be in the same group. Age, Sex,
LAD, LCX, RCA were not group constrained. Remember that
combinations of items in the same group are not considered
interesting.

C. Medical significance of association rules

The goal of the experiment was to relate perfusion mea-
surements and risk factors to vessel disease (also known as
stenosis) to validate and improve actual diagnosis rules used
by an expert system [9]. Some rules were expected, confirming
valid medical knowledge, and some rules were surprising,
having the potential to enrich the expert system knowledge
base. This is an analysis of our most interesting results.

There are two main measurements to quantify the quality of
medical findings: sensitivity and specificity. Sensitivity refers
to the probability of correctly identifying patients with disease.
Specificity is the probability of correctly identifying healthy
individuals. These measures rely on a gold standard, that is, a
measurement that tells with very high accuracy if the person is
sick or not. Getting such ideal measurement may involve doing
invasive medical procedures on the patient. In the context of
this paper the gold standard was catheterization. In a few
cases a clinician reading was taken, but in general it was not
available.

The data mining algorithm produced a total of 2987 rules,
almost all having a medical significance of some sort. All
of them could be used in answering medical questions. Most,
however, were addressing issues that were not being examined
at this time. Reducing the number of rules found to the point
where the results can be easily interpreted by a clinician was
done in two steps.

The first step reduced the total number of rules to 850. This
was achieved by removing rules that are, in whole or in part,
counter-intuitive to medical knowledge. These rules can be
useful in confirming, disproving, and further quantifying what
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is already considered established fact. Although interesting in
their own right, these investigations fall outside the scope
of our present research. Doing this requires filtering out
combinations for specific values of the variables combined
in the rules. Although our extensions to the association rules
algorithm allow filtering out combinations of fields, this does
not extend to combinations of specific values.

The second step reduced the number left for further ex-
amination down to 73. To achieve this, rules were further
subdivided into categories. Examples of these categories are
’relating Age to CAD’, ’relating smoking habits to CAD’, and
’predicting CAD from image data’. In each category, only the
rules with the highest support and/or confidence were selected
to represent the results in that category.

The 73 rules were analyzed by a domain expert (clinician).
In the following paragraphs we will discuss the most interest-
ing rules. The discovered rules were classified into 2 groups:
First, those that express that if there no risk factor then there
is no heart disease. Second, those that express that if there
exists a risk factor then there is heart disease. It is important
to observe that the rules below involve several attributes in the
antecedent or in the consequent, negation and attributes being
in different ranges.

Rules predicting no heart disease: In this case new medical
fields not previously included in the expert system are mined
for association rules. All these rules have the potential to
improve the expert system. In this example we can see there is
less incidence of coronary disease in the patients who do not
smoke, and in those who have lower cholesterol. The second
rule has very high support, compared to the other rules. It
states that non smokers have a lower chance of having a
diseased RCA artery; note that there is the chance that some
of these patients are in the 50-70% range, i.e. being borderline
cases. The fourth rule is particularly interesting as it involves
two arteries in the consequent. Basically if a person is young
(regardless of sex) and does not smoke the risk for heart
disease is low. There are more complex rules relating two heart
arteries. The last two rules say that an adult female patient with
no diabetes is very likely to be healthy, that is, having no heart
disease.

1. [Sex = F ]⇒ ([0.0 <= LCX < 50.0]) s = 0.229, c = 0.728

2. [Smoke = n]⇒ [not(70.0 <= RCA < 100.1)] s = 0.290, c = 0.714

3. [0.0 <= CHOL < 200.0] ⇒ [not(70.0 <= LAD < 100.1)]) s =

0.078, c = 0.708

4. [0.0 <= Age < 40.0][Smoke = n] ⇒ [0.0 <= LCX <

50.0][0.0 <= RCA < 50.0] s = 0.008, c = 0.714

5. [0.0 <= Age < 40.0][Diab = n] ⇒ [0.0 <= LAD < 50.0] s =

0.027, c = 0.818

6. [0.0 <= Age < 40.0][Diab = n] ⇒ [0.0 <= LAD < 50.0] s =

0.027, c = 0.818

7. [40.0 <= Age < 60.0]and[Sex = F ][Diab = n]⇒ [0.0 <= LCX <

50.0] s = 0.084, c = 0.917

8. [40.0 <= Age < 60.0]and[Sex = F ][Diab = n]⇒ [0.0 <= RCA <

50.0] s = 0.073, c = 0.800

Rules predicting heart disease: These rules relate risk
factors to heart disease. Heart disease can be detected by

tomography or coronary catheterization. Tomography corre-
sponds to myocardial perfusion studies. Catheterization in-
volves inserting a tube into the coronary artery and injecting
a substance to measure which regions are not well irrigated.
These rules characterize the patient with coronary disease.
There are three basic elements for analysis: perfusion defect,
coronary stenosis and risk factors.

Most of the rules below refer to older patients with localized
perfusion defects in specific heart regions. Rule 1 says that
if the patient has a perfusion defect and had a previous
carotid surgery then he has a high probability of having heart
disease. The number of patients for this rule is low, but when
conditions hold the disease probability will be high. These
rules relate more information such as age, smoking habits,
cholesterol levels. Rules 4,5,6 are outstanding as they confirm
medical knowledge for very high risk of heart disease with
high accuracy. Basically if a person is old, has high cholesterol
levels and has a perfusion defect then it is almost sure that
person has a serious heart condition. All these aspects have
an impact on the risk for heart disease. Rules 5 and 6 state
that high cholesterol levels and age are determinant factors to
have a diseased RCA artery; these rules have 100% confidence.
Rule 11 has relatively high support and very high confidence;
it relates a specific defect in a heart region (SA) with a chance
of having a diseased LAD artery. We conclude observing that
according to medical knowledge the LAD artery has a higher
chance of being diseased than the other arteries [6]. As can
be seen the rules that involve the LAD artery confirm this fact
since they have higher support and almost 100% confidence.

1. [0.2 <= AP < 1.1][PCARSUR = y] ⇒ [not(0.0 <= LAD <

50.0)][not(0.0 <= RCA < 50.0)]) s = 0.012, c = 0.800

2. [60.0 <= Age < 100.0][0.2 <= AP < 1.1][Smoke = y] ⇒

[not(0.0 <= LAD < 50.0)]) s = 0.107, c = 0.833

3. [0.2 <= LA < 1.1][Sex = M ]and[250.0 <= CHOL < 500.1] ⇒

[not(0.0 <= LCX < 50.0)])s = 0.014, c = 0.750

4. [60.0 <= Age < 100.0][0.2 <= IL < 1.1][250.0 <= CHOL <

500.1]⇒ [not(0.0 <= RCA < 50.0)]) s = 0.017, c = 0.917

5. [60.0 <= Age < 100.0][0.2 <= IS < 1.0][250.0 <= CHOL <

500.1]⇒ [not(0.0 <= RCA < 50.0)]) s = 0.015, c = 1.000

6. [60.0 <= Age < 100.0][0.2 <= IS < 1.0][250.0 <= CHOL <

500.1]⇒ [not(0.0 <= RCA < 50.0)]) s = 0.015, c = 1.000

7. [60.0 <= Age < 100.0][0.2 <= SA < 1.0][FHCAD = y] ⇒

[not(0.0 <= LAD < 50.0)])s = 0.015, c = 1.000

8. [0.2 <= SA < 1.0]and[PANGIO = y] ⇒ [not(0.0 <= LAD <

50.0)])s = 0.023, c = 0.938

9. [60.0 <= Age < 100.0][0.2 <= AP < 1.1][Sex = F ] ⇒

[not(0.0 <= LAD < 50.0)])s = 0.049, c = 0.941

10. [60.0 <= Age < 100.0][0.2 <= SA < 1.0][Claudi = y] ⇒

[not(0.0 <= LAD < 50.0)])s = 0.029, c = 0.950

11. [60.0 <= Age < 100.0][0.2 <= SA < 1.0][HY PLPD = y] ⇒

[not(0.0 <= LAD < 50.0)])s = 0.070, c = 0.939

V. CONCLUSIONS

This article presented our experiences mining association
rules from medical data to predict heart disease. We explained
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the motivation and validity of using association rules on
medical data. Association rules are useful for our purpose
given their combinatorial nature. We described all information
contained in medical records. We introduced a simple map-
ping algorithm to transform medical records to a transaction
format. We then presented an improved algorithm to mine
constrained association rules. Medical data records contain
numerical, categorical, time and image attributes. The mapping
algorithm uniformly treats attributes as numerical or categor-
ical. Numerical attributes are split into intervals. Negation is
used on a per attribute basis to avoid an explosion in the
number of associations. A mapping table is constructed and
based on this table attribute values are mapped to items. The
algorithm to mine association rules uses several important
constraints to reduce the number of rules and speed up the
mining process. It uses a constraint to exclude combinations
of attributes eliminating trivial or useless associations. Certain
attributes are constrained to appear only in the antecedent,
only in the consequent or in both to get medically meaningful
rules. Rules are constrained to include a maximum number
of items to make them simpler and more general. Maximum
support is a constraint used to eliminate trivial rules. These
constraints allowed us to mine medical records at a minimum
support involving only two transactions. The experimental
section discussed several important association rules predicting
absence or presence of heart disease.

This is a summary of issues for future research. We would
like to examine problems with missing information more
closely. We want to identify other useful constraints besides
grouping and antecedent/consequent. We want to compare the
discovered association rules with classification rules obtained
by a decision tree algorithm. We plan to process the data with
a clustering algorithm [12] to explain why certain rules have
low confidence and to find high confidence rules in subsets
of medical records. Finally, we want to assess the impact on
performance of each constraint.
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