
1

A Fast Algorithm to Cluster High Dimensional
Basket Data

Carlos Ordonez, Edward Omiecinski, Norberto Ezquerra
Georgia Institute of Technology

Abstract—Clustering is a data mining problem that has re-
ceived significant attention by the database community. Data set
size, dimensionality and sparsity have been identified as aspects
that make clustering more difficult. This work introduces a fast
algorithm to cluster large binary data sets where data points
have high dimensionality and most of their coordinates are zero.
This is the case with basket data transactions containing items,
that can be represented as sparse binary vectors with very
high dimensionality. An experimental section shows performance,
advantages and limitations of the proposed approach.

I. INTRODUCTION

Clustering algorithms identify those regions that are more
densely populated than others in multidimensional data [8],
[13]. In general clustering algorithms partition the data set
into several groups such that points in the same group are
close to each other and points across groups are far from each
other. It has been shown that high dimensionality [10], data
sparsity [1] and noise [2] make clustering a harder problem.

In this work we focus on the problem of efficiently clus-
tering binary data sets that are sparse and have very high
dimensionality. This is precisely the case with basket data
transactions, where transactions contain combinations of a few
items out of thousands of items. Our approach can be used
as an alternative data mining technique to association rule
discovery [3].

A. Overview

We introduce a fast clustering algorithm for sparse high
dimensional binary data (basket data) based on the well-
known Expectation-Maximization (EM) clustering algorithm
[7], [17], [6], [13]. The EM algorithm is a general statistical
method of maximum likelihood estimation [7], [14], [17]. In
particular it can be used to perform clustering. In our case we
will use it to fit a mixture of Normal distributions to a sparse
binary data set.

Our algorithm is designed to efficiently handle large prob-
lem sizes as typically encountered in modern database systems
and it is guaranteed to produce high quality solutions as it will
be shown by our experiments.

Copyright 2001 IEEE. Published in International Conference on Data
Mining (ICDM), p. 633-636, 2001. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works, must be obtained from the IEEE.
http://doi.ieeecomputersociety.org/10.1109/ICDM.2001.989586

The proposed clustering algorithm builds a statistical model
so that the user can understand transactions at a high level.
Items are mapped to binary dimensions and transactions are
thus mapped to binary data points. The basic idea is to
group similar transactions. Clusters of transactions can have
different interpretations. Each cluster can tell us what the
typical transaction looks like; this is precisely the mean or
average of transactions per cluster. Each cluster describes
which items commonly appear together in each transaction.
Since cluster centroids are averages of binary numbers the
mean of a certain dimension can be interpreted as a probability
or a percentage. If transactions are not well clustered in certain
dimensions this can be explained by the deviation they have
from the mean. The user will be able to compare several cluster
models by looking at a quantity measuring their quality.

B. Contributions and paper outline

This is a summary of our contributions. We introduce a
novel algorithm to cluster very high dimensional and sparse
binary data sets. The proposed solution does not require
complex data structures to store patterns or model parameters,
but only matrices that in general can fit in memory. From a
quality point of view the algorithm computes highly accurate
clusters. From a performance point of view the algorithm
is fast, having linear time complexity in data set size, in
transaction size and in the desired number of clusters.

The rest of this paper is organized as follows. Section II
provides definitions and statistical background. Section III
contains the algorithm to cluster high dimensional and sparse
binary data sets. Section IV contains a brief experimental eval-
uation. Section V discusses related work. The paper concludes
with section VI.

II. DEFINITIONS AND STATISTICAL BACKGROUND

This section provides formal definitions that will be used
throughout this work. First, basic statistical background on
EM and the mixture problem are described. Second, additional
definitions relating transactions and multidimensional binary
vectors are introduced.

The multivariate normal density function for a d-
dimensional vector x = [x1, x2, . . . , xd]

t is:

p(x) =
1

(2π)d/2|Σ|1/2
exp[−1

2
(x − µ)tΣ−1(x − µ)],

2

Matrix size contents
C d× k means
R d× k covariances
W k × 1 weights

TABLE I
OUTPUT MATRICES

where µ is called the mean vector and Σ is called the
covariance matrix; µ is a d-dimensional vector and Σ is a d×d
matrix. Our algorithm uses diagonal covariance matrices.

The input to EM are n d-dimensional points and k, the
desired number of clusters. These n points are modeled as a
mixture of normal distributions as defined above. This mixture
has 3 parameters, namely, the means, the covariances and the
weights. Data set size, i.e. number of points, is n. The desired
number of clusters is k. Dimensionality is d. The parameters
computed by the EM algorithm are stored in the matrices
described in table I. In the statistical literature all parameters
are used as a single set called Θ, i.e. Θ = {C, R, W}. To refer
to one column of C or R we use the j subscript (i.e. Cj , Rj).

Since it is our intention to cluster basket data we will
combine our previous definitions with additional definitions
commonly used for association rules [3], [4]. Let D =
{T1, T2, . . . , Tn} be a set of n transactions containing items,
and let I be a set of d items, I = {i1, i2 . . . id}, where
each item will be identified by its index, that is, an integer
in {1, 2, . . . , d}. Let D1, D2, . . . , Dk be k subsets of D (i.e.
Dj ⊆ D, j = 1 . . . k). s.t. Dj ∩ Dj′ = ∅, j 6= j′ (i.e. they
are a partition of D induced by clusters). Each subset Dj

represents one cluster. We use Ti to avoid confusion with
ti that will be used as a binary vector: Ti will be a set of
integers and ti will be a binary vector. Items will be mapped
to binary dimensions. For each item i1, i2, . . . , id there will
be a corresponding dimension bl. Each transaction Ti will
be given as a set of integers (items), Ti = {i1, i2, . . . , iK},
where il ∈ {1, . . . , d} and i (without subscript) denotes the
number of transaction; i ∈ {1, 2, . . . , n}. Then the notation ti

is used, meaning a binary vector, where each entry corresponds
to one dimension (item). Then (ti)l = 1 for l = i1, i2, . . . , iK
and (ti)l = 0 otherwise. Each transaction becomes a sparse
binary vector having d entries, but only K of them different
from zero. So D in this case can be considered a huge
and sparse d × n matrix. Each item il will be an integer,
il ∈ {1, 2, . . . , d} to index matrices to refer to one dimension.
Mathematically transactions will be points in [0, 1]d space, but
for the algorithm they will be sets of integers.

III. A CLUSTERING ALGORITHM FOR BINARY DATA SETS
WITH VERY HIGH DIMENSIONALITY

A. Improvements

We propose several improvements and changes on EM to
deal with very high dimensionality, sparsity, null covariances,
large data set size and slow convergence. Such improvements
include suitable initialization for high dimensional data, suf-
ficient statistics, covariance matrix regularization techniques,
sparse distance computation and learning steps.

Matrix size contents
N k × 1 |Dj |

M d× k Mj =
∑Nj

i=1
ti, ∀ti ∈ Dj

TABLE II
SUFFICIENT STATISTICS

Input: T1, T2, . . . , Tn and k.
Output Θ = {C,R, W} and L(Θ)
α← (dk)−1, L← 50
FOR j = 1 TO k DO /* Initialize */

Cj ← µ± αr diag[σ], Rj ← I, Wj ← 1/k

∆j = δ(0̄, Cj , Rj) = Ct
jR−1

j Cj

Mj ← Cj , Nj ← 1
ENDFOR
FOR scan = 1 TO 2 DO

L(Θ) = 0
FOR i = 1 TO n DO

ti ← vect[Ti]
FOR j = 1 TO k DO /* E step */

δij ← δ(ti , Cj , Rj),
pij ← ((2π)d |Rj |)

−1/2exp(−δij/2)
ENDFOR
Let m be s.t.pim ≥ pij∀j ∈ 1 . . . k
Mm ←Mm + ti, Nm ← Nm + 1
L(Θ)← L(Θ) + ln(pij)
IF(i mod (n/L) = 0) THEN /* M step */

FOR j = 1 TO k DO
Cj ←Mj/Nj

Rj ←Mj/Nj −MjMt
j /N2

j + I

Wj ← Nj/
∑k

J=1
NJ

∆j ← Ct
jR−1

j Cj

ENDFOR
ENDIF

ENDFOR /* Reset sufficient statistics */
IF scan=1 THEN Mj ← Cj , Nj ← 1 ENDIF

ENDFOR

Fig. 1. Clustering algorithm for sparse high dimensional binary data

Initialization is based on the global statistics of the data set:
the global mean and the global covariance. They are computed
in a one-time pass over the data set and are available thereafter.
Seed centroids are initialized based on the global mean and
standard deviation of the data. Sufficient statistics [12], [11]
(table II) are used to summarize information about clusters;
this reduces I/O time by avoiding repeated passes over the data
and by allowing to make parameter estimation periodically as
transactions are being read. The E step is executed for every
transaction and the M step is executed a fixed number of times
making convergence to the solution fast. The algorithm uses
sparse distance computation and sparse matrix additions to
make the E step faster. It uses regularization techniques [15]
to deal with zero covariances, common with sparse data and
specially with basket data. The algorithm requires two scans
over the data per run. The main input parameter is only the
desired number of clusters.

B. Algorithm to cluster sparse binary data sets with very high
dimensionality

The pseudo-code of our clustering algorithm is in figure 1.
This is a high-level description. The input is a set of trans-
actions D = {T1, T2, . . . , Tn} and k, the desired number of

3

-300

-250

-200

-150

-100

-50

0

0 5 10 15 20 25 30 35 40 45 50

L
(T

h
e

ta
)

Learning step

1st scan
2nd scan

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

L
(T

h
e

ta
)

k

T10I5D100k
T10I4D100k

Fig. 2. Quality of results

clusters. The output is Θ = {C, R, W}, describing the mixture
model, L(Θ) measuring model quality and a partitioning of
D into k subsets. The constant α is used to seed C based
on d and k. The global statistics µ and Σ are computed in a
one-time scan and are available thereafter. Standard deviations
are computed as σll =

√
Σll. The E step is executed for every

transaction (n times). δij is efficiently computed using ∆j .
The M step is periodically executed every n/L transactions
(L times). L is typically a number between 10 and 100. The
update formulas for C, R, W are based on sufficient statistics
[12] M, N , shown in table II, and regularization techniques
[15]. M, N are the multidimensional version of the univariate
sufficient statistics shown in [12] when points are binary;
due to lack of space we do not explain how to derive their
formulas. Sufficient statistics are reset at the end of the first
scan. The goal of the first scan is to get accurate cluster
centroids Cj and accurate covariances Rj . The goal of the
second scan is to tune Θ and recompute L(Θ). Dimensions
(items) are ranked within each cluster by their value in Cj to
make output easier to understand.

IV. EXPERIMENTAL EVALUATION

This section includes experimental evaluation of our algo-
rithm. All experiments were performed on a Sun Machine
running at 600 MHz with 256 Mb of memory. This machine
had several Gb of available disk space. Our algorithms were
implemented in the C++ language and compiled with the GNU
C++ compiler.

Our algorithm was evaluated with large transaction test files
created by the well-known IBM synthetic data generator [4].
Test files are named after the parameters with which they
were created. The standard way [4] is to use T (average
transaction size), I (pattern length) and D (for us n) to label
files since those are the most common parameters to change.
The algorithm parameters were set as follows. L = 50 and
α = 1/(dk).

In this paragraph we explain quality of results. The left
graph in figure 2 shows how our algorithm converges on the 1st
scan. The 2nd scan just tunes the solution without decreasing
L(Θ). The right graph in figure 2 shows how model accuracy
increases as k increases; the behavior is clearly asymptotic.

In this paragraph we describe performance with large data
sets. Note that d = 1000 is a very high dimensionality. The
left graph in figure 3 shows running as time as we vary n for
several typical transaction files; the algorithm scales linearly.
The right graph in figure 3 shows the impact of average

0

5

10

15

20

25

30

0 100 200 300 400 500

T
im

e
 in

 m
in

u
te

s

n x 1000

d=1000 k=10
d=1000 k=50

d=1000 k=100

0

2

4

6

8

0 10 20 30 40 50 60 70 80 90 100

T
im

e
 in

 m
in

u
te

s

average transaction size

k=10 d=1000 n=100k

Fig. 3. Performance

transaction size (T) on performance; the algorithm is linear.
Times varying k are also linear; this graph is not shown.

V. RELATED WORK

There has been so much work on both clustering and
association rule mining that it is impossible to compare our
approach with everybody else’s. To the best of our knowledge
there is no previous work on clustering high dimensional and
sparse large binary data sets using EM. We do not know work
where there are experiments with 1,000 or more dimensions
[9], [10], [1], [2], [6]. Also, we believe that the idea of building
a statistical model based on clustering for basket data has
not been explored before. The only work that has analyzed
how to cluster basket data transactions is [16]; their approach
goes in the opposite direction since they mine associations
and from them clusters are generated. We are not the first to
propose a scalable and faster version of EM for data mining
applications. One important work that also studied how to
construct a faster and Scalable EM algorithm (SEM) is [6].
This work extended previous work on scaling K-means [5].
The authors present an algorithm, also based on sufficient
statistics [12], that makes compression in two phases for
dense and quasi-dense regions. The authors use it to build
several models concurrently. SEM is significantly different
from ours. It is designed for low dimensional continuous
numerical data without zero covariance problems, and then
it is not suitable for very high dimensional sparse binary
data. It does not incorporate sparse distance computation,
regularization techniques. Initialization is done by sampling
and it keeps sufficient statistics on many subsets of the data,
many more than k. Also, it uses an iterative K-means algorithm
[14] to cluster data points in memory and then it does not
make a fixed number of computations. One advantage over
ours it that it only requires one scan over the data, but it makes
heavier CPU use and it requires careful buffer size tuning.

VI. CONCLUSIONS

This paper presented a new clustering algorithm. The pro-
posed algorithm is designed to work with large binary data sets
having very high dimensionality. The algorithm only requires
two scans over the data to cluster transactions and construct
a statistical model. Each cluster is a summary of a group of
similar transactions and thus represents one significant pattern
discovered in the data. Experimental evaluation showed trans-
actions can be clustered with high accuracy. Model quality
mainly depends on k, the desired number of clusters. The

4

algorithm makes its best effort to get a high quality model
given data characteristics. Performance is linear and it is
mainly affected by n, k and transaction size, and minimally
by dimensionality since data sets are sparse. The algorithm
is restricted to problem sizes whose model can fit in main
memory.

A summary of future work follows. Evidently some of our
results can be applied to cluster high dimensional numerical
data, but data skew, noise and cluster overlap make the
problem different and to some extent more difficult. We plan to
adapt and modify our algorithm to cluster continuous numeric
data and compare it with the simplification of Scalable K-
means [5] discussed in [9]. We would like to analyze the
possibility of mining association rules from the model without
scanning transactions.

Acknowledgments

This work was supported by grant LM 06726 from the
National Library of Medicine.

REFERENCES

[1] C. Aggarwal and P. Yu. Finding generalized projected clusters in high
dimensional spaces. In ACM SIGMOD Conference, pages 70–81, 2000.

[2] R. Agrawal, J. Gehrke, D. Gunopolos, and P. Raghavan. Automatic sub-
space clustering of high dimensional data for data mining applications.
In ACM SIGMOD Conference, pages 94–105, 1998.

[3] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules
between sets of items in large databases. In ACM SIGMOD Conference,
pages 207–216, 1993.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules
in large databases. In VLDB Conference, pages 487–499, 1994.

[5] P. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to
large databases. In Proc. ACM KDD Conference, pages 9–15, 1998.

[6] P. Bradley, U. Fayyad, and C. Reina. Scaling EM clustering to large
databases. Technical report, Microsoft Research, 1999.

[7] A.P. Dempster, N.M. Laird, and D. Rubin. Maximum likelihood
estimation from incomplete data via the EM algorithm. Journal of The
Royal Statistical Society, 39(1):1–38, 1977.

[8] R. Duda and P. Hart. Pattern Classification and Scene Analysis. J. Wiley
and Sons, New York, 1973.

[9] F. Fanstrom, J. Lewis, and C. Elkan. Scalability for clustering algorithms
revisited. SIGKDD Explorations, 2(1):51–57, June 2000.

[10] A. Hinneburg and D. Keim. Optimal grid-clustering: Towards breaking
the curse of dimensionality. In VLDB Conference, pages 506–517, 1999.

[11] A. Mood, F. Graybill, and D. Boes. Introduction to the Theory of
Statistics. McGraw Hill, NY, 1974.

[12] R. Neal and G. Hinton. A view of the EM algorithm that justifies
incremental, sparse and other variants. Technical report, Dept. of
Statistics, University of Toronto, 1993.

[13] C. Ordonez and P. Cereghini. SQLEM: Fast clustering in SQL using
the EM algorithm. In Proc. ACM SIGMOD Conference, pages 559–570,
2000.

[14] S. Roweis and Z. Ghahramani. A unifying review of linear Gaussian
models. Neural Computation, 11:305–345, 1999.

[15] N. Ueda, R. Nakano, Z. Ghahramani, and G. Hinton. SMEM algorithm
for mixture models. In Neural Information Processing Systems, 1998.

[16] K. Wang, C. Xu, and B. Liu. Clustering transactions using large items.
In ACM CIKM Conference, pages 483–490, 1999.

[17] L. Xu and M. Jordan. On convergence properties of the EM algorithm
for Gaussian mixtures. Neural Computation, 8(1):129–151, 1996.

