FREM: Fast and Robust EM Clustering for Large Data Sets

Carlos Ordonez
Teradata, NCR
Rancho Bernardo, CA, USA

ABSTRACT

Clustering is a fundamental data mining technique. This
article presents an improved EM algorithm to cluster large
data sets having high dimensionality, noise and zero vari-
ance problems. The algorithm incorporates improvements
to increase the quality of solutions and speed. In general
the algorithm can find a good clustering solution in 3 scans
over the data set. Alternatively, it can be run until it con-
verges. The algorithm has a few parameters that are easy
to set and have defaults for most cases. The proposed algo-
rithm is compared against the standard EM algorithm and
the On-Line EM algorithm.

1. INTRODUCTION

Clustering is one of the most important data mining [12]
techniques used nowadays. This problem has been exten-
sively studied by the statistics [9, 29, 32], database [1, 5, 11,
16, 23, 36] and machine learning [10, 18, 30, 34] communi-
ties. Clustering algorithms partition a data set into several
groups such that points in the same group are close to each
other and points across groups are far from each other [10].
Most algorithms work with numeric data [3, 5, 14, 34, 36],
but there is some recent work on clustering categorical data
[13, 15, 17]. There has been extensive database research on
clustering large data sets; some important approaches in-
clude [1, 3, 5, 7, 16, 21, 36]. The problem is challenging.
High dimensionality [1, 2, 16, 27], data sparsity [1, 2, 14]
and noise [3, 6, 7, 16] make clustering a harder problem.
Finding optimal grid partitions for high dimensional data is
introduced in [16]. Finding clusters on projections of high
dimensional data has been the approach explored in [1, 2,
3]. Sampling and choosing representative points is proposed
in [14].

1.1 The EM Algorithm

We present a fast and robust clustering algorithm for high
dimensional and large data sets based on the well-known
Expectation-Maximization (EM) algorithm [6, 8, 25, 30, 34,
35]. The EM algorithm is a general statistical method of
maximum likelihood estimation [8, 34] and in particular it
can be used to perform clustering.

The EM algorithm has many desirable features [34, 18]:
a strong statistical basis, theoretical guarantees about op-
timality, easily explainable results, robustness to noise and

@ ACM, 2002 . This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in CIKM Conference 2002.
http://doi.acm.org/10.1145/584792.584889

Edward Omiecinski
Georgia Institute of Technology
Atlanta, GA, USA

to highly skewed data. Nevertheless, the classical EM algo-
rithm [6, 34] also has several disadvantages. In general it
is hard to initialize and the quality of the final solution de-
pends on the quality of the initial solution. It may converge
to a poor locally optimal solution. This means the solution
may be acceptable but far from the optimal one. It needs an
unknown number of iterations to converge to a good solu-
tion. It is hard to set a threshold on the maximum number
of iterations that works in general. Therefore, it it is difficult
to have guaranteed performance. For the reasons described
above it usually requires many passes over the data. Two
passes over the data set are required per iteration. Compu-
tations get unstable when variances approach zero. This
problem commonly arises when clustering data sets with
categorical attributes or when there is missing information.
Probabilities vanish when points are outliers making com-
putations undefined or unstable. It may produce inaccurate
results with high dimensional data. This is related to the
problem of computing distances in high dimensional space
[1, 4]. There has been work on accelerating and improving
EM, like incremental EM [22], On-line EM [31, 34], EM for
high dimensional basket data [27] and Scalable EM [6], but
no solution solves all problems listed above. A survey of
other related approaches from the Machine Learning com-
munity can be found in [20].

1.2 Contributions and article outline

This article presents an improved clustering algorithm
that attempts to solve the problems described before. We
introduce improvements to increase quality of solutions and
speed. Initialization is based on a small perturbation of the
global mean. This improves both speed and quality of so-
lution. Multidimensional sufficient statistics and learning
steps are used to accelerate convergence. This effectively
reduces the number of iterations. Cluster splitting is in-
troduced to find higher quality solutions. Regularization
techniques for variance matrices are introduced to deal with
zero variances. Distance is used instead of probability to
manage outliers. The proposed algorithm is called FREM,
which stands for Fast and Robust EM.

The contents of this article are as follows. Section 2 intro-
duces definitions and a basic understanding of EM. Section 3
presents the FREM algorithm. Section 4 presents an exper-
imental evaluation with real and synthetic data sets. FREM
is compared against standard EM [8, 30] and On-Line EM
[6, 34]. A review of related work is given in Section 5. The
article concludes with Section 6, summarizing main research
contributions and outlining future work.

Size | Contents
d dimensionality
k number of clusters
n | number of points

Table 1: Sizes

Matrix | size contents
C d x k | means
R d x k | variances
W k x 1 | weights

Table 2: Matrices

2. PRELIMINARIES
2.1 Definitions

We use EM to estimate the parameters of a mixture of k
normal distributions. The multivariate normal (Gaussian)
density function for vector y on d-dimensional space for clus-
ter 4, j € {1,...,k} is:

P05, Ry) = —mme 20700 020)

(2m)7| Ry

where C; is called the mean vector and R; is called the
covariance matrix; Cj is a d-dimensional vector and R; is a
d x d diagonal matrix (zeroes off the diagonal). The proba-
bility of the mixture is computed as

P(y;C, R, W) =Y W;P(y; Cy, Ry). 2

j=1

EM uses Mahalanobis distance [10] instead of Euclidean
distance. The basic difference between them is that the co-
variance matrix R; is used to scale each dimension for dis-
tance computation. This is particularly useful for skewed
data and dimensions having different scales. The Maha-
lanobis distance of point y; to cluster j is:

8(yi, Cj, Ry) = 0ij = (yi — C3)'Ry (yi — Cy). (3)

The input to EM is a data set Y having n d-dimensional
points: Y = {y1,y2,...,Yn}, and k, the desired number
of clusters. The output are the matrices C, R, W (contain-
ing the k means, k variances and k weights respectively),
a measure of model quality L(©) (explained below) and a
soft partition of Y into k subsets. C' and R are d X k ma-
trices, whereas W is a k x 1 matrix. We use 7, 7 and [as
subscripts to access matrices entries. Matrix sizes, matrix
names and subscripts to index them are summarized in ta-
bles 1, 2 and 3 respectively. To refer to one column of C'
or R we use the j subscript (i.e. Cj, R;). So Cj; refers to

Index | range | used for
7 1...n | points
ki 1...k | clusters
l 1...d | dimensions

Table 3: Subscripts

Input: Y = {y1,92,...,yn} and k.
Output: © = {C,R,W} and L(©)

/* Initialization */
a <« (k)™ T+ 1, A« 0.01, w « 0.2/k
FOR j =1 TO k DO

C; «— p+ ar diaglo], R; — X, W; «— 1/k

ENDFOR

/* Tterate until convergence */

WHILE |L(0)" — L(©)' ™| > ¢ and I < maziter DO

Estep()

ENDWHILE

Estep()
C'"—0,R «—0,W «0

L(®) <0
F&Fg i=1TO n DO
sump; =0
FOR j = 1 TO k DO
0is = (i = C)' Ry (i -)
Pij — Gmyarz gz €2Pl—30is]
sump; «— sump; + pij
ENDFOR
Z; — pi/sump;
L(©) « L(©) + log(sump;)/n
C' —C' +yxt, W —W +ay
ENDFOR

Mstep
FOR j =1 TO k DO
C; — Ci/W;
FOR i = 1 TO n DO t
R — R + (yi — Ci)zii(y; — C
ENDFOR (y i)z (y)
ENDFOR

R=R/n,W «—W'/n

Figure 1: The EM clustering algorithm

the jth cluster centroid and R; is its corresponding squared
radius. Each R; is a diagonal covariance matrix. To refer to
the probability of y; of belonging to cluster j we use the no-
tation P(y;|j) = P(yi; Ci, Rj). In general in the statistical
literature all parameters are used as a single set called ©,
ie. © ={C,R,W}. © is also known as the mixture model.
The quality of the solution is measured by a quantity called
average log-likelihood, that is computed as

L(©) = " log(P(y::©). (@

Pseudo-code for EM is shown on Figure 1. This is a brief
overview. EM starts from an approximation to ©. Intializa-
tion will be described in more detail later. It has two major
steps: the E step and the M step. EM iteratively executes
the E step and the M step as long as the change in L(O) is
greater than an accuracy threshold e or as long as a max-
imum number of iterations has not been reached. Setting
a maximum number of iterations is important to guaran-
tee performance. The E step computes P(y;;Cj, R;) and
P(y:;0). The M step updates © based on the probabilities
computed in the E step. EM is theoretically guaranteed to
monotonically increase L(0) in each iteration and to con-
verge to a locally optimal solution [8, 34].

3. IMPROVING THE EM ALGORITHM

This section describes in detail our novel clustering algo-
rithm for large data sets. First, improvements are intro-
duced. Second, a detailed version of the algorithm is pre-
sented. Third, time complexity is briefly analyzed. More
details about FREM can be found in [24].

3.1 Improvements

We propose several improvements that we present in two
groups: improvements for speed and improvements to in-
crease the quality of solutions. These groups are orthogonal
in the sense that they can be used independently if needed.
Speed improvements include sufficient statistics and learn-
ing steps. The improvements for quality are tunable ini-
tialization, cluster splitting and probability computation for
outliers.

Improvements for speed.

Sufficient statistics [5, 22, 36], are summaries of groups of
points (in this case clusters), represented by Y1, ..., Ys. They
were originally introduced for a one dimensional clustering
problem in [22]. Here we present their multidimensional ver-
sion assuming dimensions are independent and taking into
account that they induce a partition on Y. Sufficient statis-
tics are stored in matrices M, Q and N (M and Q are d X k
and N is k x 1). M stores sum of points, @ has sum of
squared points, and N counts the number of points per clus-
ter :

M= > (5)

Sufficient statistics reduce I/O time by avoiding repeated
scans over the data and by allowing parameter estimation
periodically as transactions are being read. EM for mixture
of Gaussians cannot work when variances are zero because
several computations become undefined (e.g. |R;|,d;;). This
basically means that all points belonging to one or more clus-
ters have the same value on some dimension. We solved this
problem by adding to each dimension a constant A > 0 mul-
tiplied by the global variance when variances are updated.
This constant is chosen small enough to avoid altering the
real variance values. This will be done when the M step
updates R from sufficient statistics for FREM. Then the
update formulas for based on sufficient statistics used by
FREM are:

J N] J
1 1
R; = EQJ' - N—;Mj(Mj)t + A%, (9)
o N o)
21:1 Ny

Learning steps (periodic M steps) are used to accelerate
convergence. Remember that cluster membership is deter-
mined in the E step and C, R, W are updated in the M step.
By using sufficient statistics the algorithm can run the M
step at different times while scanning Y. At one extreme we
could have an on-line version [34, 5] that runs the M step
after every point. That would be a bad choice. It would be
very sensitive to the order of points and more importantly,
it would not reach the global optimal solution [5, 34] (al-
though it could get close). At the other extreme, we could
have a version that runs the M step after all n points are
read. This would reduce it to a standard version of EM
and no performance improvement would be achieved. How-
ever, it must be noted that this latter version would not be
sensitive to the order of points, would compute the correct
value for L(©) and would have the potential of reaching the
global optimal solution while the on-line version would not.
Therefore, it is desirable to choose a point somewhere in
the middle, but closer to the last scenario. That is, running
the M step as few times as possible. This number of times
will be related to k and d, but not to n. When a good ap-
proximation to the solution has been reached then we can
run normal EM iterations to converge. On-line EM [6, 31,
34] represents the fastest version that can be derived from
EM, but without guarantees about optimality or stability of
the solution. On-line EM executes the M step after every
E step for each point. So it only makes one scan over the
data set. However, it is very sensitive to the order of points,
rarely finds a close to optimal solution and does not provide
an accurate L(©) computation. This will be shown in the
experimental section.

The M step is periodically executed L times on the first
two iterations and only once in subsequent iterations.

if n > (dk)?, and

otherwise. L = dk is used for large data sets where FREM
can exploit redundancy to converge faster. On the other
hand, L = k is used for small data sets where FREM may be
more sensitive to the order of points. The reason behind this
setting for L is that the M step should be run at least k times
per scan to give the algorithm the ability to read k portions
of Y, split k£ times if necessary and make it less sensitive
to the order of points. On the other hand L = dk times
accelerate convergence when n is large. L resembles number
of iterations. The E step must be run for every point, i.e. n
times per scan. FREM makes at least three iterations. The
first iteration gets a decent solution, the second one tunes it
and further iterations make FREM converge.

Improvements to increase quality of solution.

Initialization is based on the global statistics and dimen-
sionality of Y. The global mean u and the global covariance
matrix ¥ can be computed in one scan over the data via
sufficient statistics. Initialization is then done as follows.

1

Wj - Ey

Rj =%,
C; = p+£aor,

where o represents standard deviations per dimension, «
controls how far seeds are from the global mean and 7 is a
random number in [0,1]; o = V3, = 1/(dk). It must
be noted that as d grows C; seeds get closer to p, the global
centroid of Y. It is easy to prove that u is the closest point
to all points in Y. So what we are actually doing is getting
centroid seeds that are small perturbations of p.

Besides speed of convergence EM is often criticized for
finding a sub-optimal solution [6, 30], a common problem
with clustering algorithms [9, 10]. Most of the times sub-
optimality involves several clusters grouped together as one
while other clusters have almost no points. So we propose
splitting clusters to reach higher quality results. We intro-
duce a minimum weight threshold w to control splitting. Let
a be the index of the weight of a cluster s.t. W, < w. Let b
be the index of the weight of the cluster with highest weight.
Then Cp — /vect|R;] and Cy + y/vect|R;] are the new cen-
troids (the right terms are precisely one standard deviation).
This process gets repeated until there are no more clusters
below w. The typical value w will be 0.2/k; that is, clusters
whose weight is lower than 20% the average cluster weight
are re-seeded. Cluster splitting will be done in the M step
after C, R, W are updated on the first iteration.

Outliers are points that cannot be fitted adequately by
the model. These points are far from any cluster and then
P(y:;0) = 0; that is y; has probability zero of belonging
to any cluster. Basically, we use the closest cluster to up-
date sufficient statistics. It is important to note that the
algorithm does not multiply the probability approximation
by cluster weights. Also, almost null probabilities make EM
numerically unstable; in this case due to numerical precision.
So the algorithm has a lower threshold ¢ for probabilities.
If P(y:;©) > ¢ then

otherwise,

1

= Tk 1
S

3.2 The FREM algorithm

Now all improvements are put together in one place. The
FREM algorithm pseudo-code is shown in Figure 2. The
input is a set of points Y = {y1,y2 ...yn} each having d di-
mensions and k, the desired number of clusters. The output
will be the matrices © = {C, R, W} and L(©) as defined in
section 2. z;; represents the weighted probability that point
y; belongs to cluster j (soft partition). FREM’s iterations
can be summarized as follows: 1: Accelerate convergence
and increase quality of solution splitting clusters, 2: Accel-
erate convergence, and 3,4,.., and further iterations: Remove
sensitivity to the order of points, compute an accurate value
of L(©) and converge.

The first two iterations have the goal of reaching a very
close approximation to a good clustering solution. The first
iteration splits those clusters that have too many points and
re-seeds those that are almost empty. The first two itera-
tions are somewhat sensitive to the order of points and their
L(©) computation may not be accurate. Therefore, further
iterations are needed. The 3rd, 4th and subsequent itera-
tions represent a normal execution of EM based on sufficient
statistics. They are not sensitive to the order of points be-
cause the M step is executed after all n points are read.
Their L(©) computation is accurate (Equation 4). There-
fore, FREM monotonically increases L(©) and converges.

The FREM algorithm has complexity O(kdn) per itera-
tion. The E step is executed n times per iteration computing
cluster membership probabilities (Eq. 1), probability of the
mixture (Eq. 2) and updating sufficient statistics (Eq. 5, 6,
7). The algorithm reads n points. For each point k prob-
abilities are computed and each of these requires d compu-
tations, one per dimension. So each point requires O(dk)
work and being n points the total complexity is O(dkn).
Note that sufficient statistics are updated on only one col-
umn per point so this operation has complexity O(p) per E
step. The mixture parameters C, R, W are updated taking
O(dk) each in the M step (Eq. 8, 9, 10). The M step is ex-
ecuted L times on the first two iterations and only once on
the 3rd and further iterations. FREM operations are sum-
marized in table 4. The table shows their complexity and
how frequently they are executed.

Tij

4. EXPERIMENTAL EVALUATION

To evaluate quality of results and performance we tested
our algorithm with real and synthetic data sets. FREM is
compared against a standard version of EM and against On-
line EM. All algorithms are initialized in the same manner
as explained in Section 3. FREM and EM are stopped un-
til they converge with the same tolerance. Since u,X are
computed only once per data set that time is not included
in the total time. The algorithm was implemented in C++.
Data sets were stored as plain text files. All experiments
were run on a Sun computer running at 800 MHz, having
several Gb of disk space and 128Mb on main memory. The
implementation used text files as input. Some improvement
could be expected if binary files were used since no pars-
ing would have to be done. Another observation is that

Frequency

Operation Complexity
Compute u, % O(dn)
Iteration O(dkn)
E step O(dk)
6 computation O(dk)
p(yi|©) computation | O(k)
Compute x; O(k)
Update M, Q O(d)
Update N O(k)
Compute L(©) o(1)
M step O(dk)
Cluster splitting O(dk)
Update C, R, W O(dk)
Compute each |R;| O(d)

once per data set

three times or more per run

n times per iteration

once per E step

once per E step

once per E step

once per E step

once per E step

once per E step

L times per iteration

L times; on each M step on first iteration
once per M step

k times per M step and at initialization

Table 4: A summary of FREM operations

Input: Y = {y1,92,...,yn} and k.
Output: ©® = {C,R,W} and L(©)

/* Initialization */
a (dk)™ T+ 1, A« 0.01, w « 0.2/k
IF n < (dk)? THEN L « k ELSE L « dk ENDIF
FOR j = 1"TO k DO

Cj «— p+ardiaglo], R; «— X, W; «— 1/k
ENDFOR

/* Tterate until convergence */
WHILE |L(0)" — L(©)'™| > ¢ or I <3 DO
L(®) 0
Mj — Cj7 Qj = CjCJt-7 Nj —1
FOR i=1TO n DO
Estep()
IF(¢ mod (n/L) =0 and I <2) THEN
Mstep()
IF I=1 THEN splitClusters() ENDIF
ENDIF
ENDFOR

ENDWHILE

Estep()
FOR j=1TO k DO
0ij < 0(yi, Cj, Ry),
pij — ((2m)?|R;]) ™"/ *exp(=6ij/2)
Tij < Pij 7 Pig’
ENDFOR
Let m be s.t.pim > pij, Vi €1...k

L(©) < L(©) + log(>_pis)/n
Mstep()
FOR j=1TO k DO
Cj — M;/N;

Rj « Q;/N; - M;Mj /N7 4+ A%
W; — NJ/ZJ:I Ny

EI\LRDJ%O:RH?:1RLj

Figure 2: The FREM clustering algorithm

the FREM, EM and On-line EM implementations use dy-
namically sized matrices, and these require heavy pointer
manipulation. Using fixed sized matrices without pointers
would also improve times since memory allocation is eas-
ier and accessing by subscripts is faster. In short, these
performance experiments were performed under pessimistic
conditions without making optimizations that would affect
usability.

Default Parameter Settings.

FREM has a few parameters but they have defaults to make
usage easier. EM and FREM used € = 107° to stop. This
setting assured both algorithms converge to a stable solu-
tion. Also, in order to cluster the real data sets the regu-
larization constant A was required because of zero variances;
A = 1.0e —2 to introduce a negligible change in the real vari-
ance values. The minimum probability for outliers was fixed
¢ = 1.0e — 200. The standard deviation factor for seeding
was set a = 1/(dk); this is a number that tends to work
well for fairly high dimensional data. The minimum cluster
weight is w = 0.2/k; this proved useful in all cases. Clus-
ters whose weight fall below this threshold will be re-seeded
in learning steps on the first iteration. In general only £ is
changed. In the following experiments it will clarified which
values get a different value from their default.

4.1 Experiments with Real Data Sets

In this section we evaluate quality of results with real data
sets from different domains. Astronomy is a data set con-
taining information about stars from an observatory. The
dimensions of stars include position as (x,y) coordinates,
magnitude and brightness; for this data set n = 368, 891
and d = 4. This data set presented highly skewed data,
significant cluster overlap and big differences in dimension
scale. The basket data set contains a sample of aggregated
information of transactions from a large data warehouse of
a European retailer. The dimensions we use are total sales
amount, total cost, number of items bought, number of dis-
tinct articles and number of distinct departments. For this
data set n = 100,000 and d = 5. This data set presented
zero variance problems in a few clusters. The medical data
set contains information for a set of n = 655 being treated for
heart disease. The numeric dimensions include 4 artery dis-
ease (blockage) percentages and 9 numbers describing per-

Data set FREM FREM OnLine EM | FREM FREM OnLine EM
3 scans converge EM 3 scans converge EM
L(©) Time(secs)
Astronomy k =5 -22.25 -22.06 -23.41 -22.06 91 452 48 1598
Astronomy k=10 | -22.01 -21.99 -23.33 -22.93 191 610 66 3779
Basket k=5 -9.95 -9.73 -10.56 -10.06 30 67 14 888
Basket £ =10 -8.36 -8.27 -9.60 -8.42 45 254 20 3942
Medical k =5 -24.23 -24.08 -29.41 -24.15 1 2 1 6
Medical k£ =10 -21.42 -20.85 -29.79 -20.57 1 2 1 13

Table 5: Quality of results and performance with real data

fusion measurements corresponding to 9 specific regions of
the heart; in this data set n = 655 and d = 13. This data
set presented serious problems with zero variances in most
clusters, significant cluster overlap and a significant portion
of outliers. The three algorithms were run 10 times with
k =5 and k = 10. We show measurements for the run that
produced best results in each case.

Results for the best run out of 10 are summarized in table
5. Times are given in seconds and are rounded. Since the
globally optimal solution cannot be known we can only use
L(©) to compare quality of results. The left part has quality
measurements (L(©)) and the right part has time measure-
ments in seconds. For L(O) the closer to zero the better.
For FREM we include measurements at the end of the 3rd
scan (FREM-3scans) and after it has converged (FREM-
converge). EM is always measured after it converges. For
the basket and astronomy data sets FREM-converge pro-
duced better results than EM; for the astronomy data set
they found the same solution with k = 5. EM produced
better results with £ = 10 for the medical set but not for
k = 5; a closer inspection on these results on the medical
data set revealed the clusters had significant overlap and
several variances in R; were almost zero. Another problem
is this data set is very small and therefore FREM cannot
take advantage of redundancy. In short, FREM-converge
found better solutions than EM in all but one case and
FREM-3scans was always close to FREM-converge. In the
cases where EM found a better solution FREM-3scans was
very close. FREM-3scans was always very close to FREM-
converge, showing it is reasonable to stop the algorithm af-
ter the 3rd iteration before it has converged. On-line EM
always found the worst quality solution. Regarding perfor-
mance FREM-3scans was always one order of magnitude
faster than EM. FREM-converge was slightly slower, but
always exhibiting better performance than EM. In general
the number of iterations required by FREM was about one
third of those required by EM. These results show that it
may be reasonable to stop FREM after the 3rd iteration.
On-line EM was clearly the fastest; a 2nd scan was needed
to compute an accurate value for L(©), but that time is not
included in the table.

4.2 Experiments with Synthetic Data Sets

This section presents experiments with synthetic data.
Each experiment was run 10 times unless otherwise indi-
cated. The times and quality of results are averaged and
such average is reported. We used a synthetic data genera-
tor that created mixtures of normal distributions.

A synthetic data generator

Creating data sets that mimic real data sets is difficult. One
of the main complaints about synthetic data generators is
that they create clean data, well behaved, easy to mine and
with low dimensionality. But real data sets have missing in-
formation, hard to identify distributions, varied scales, rich
data types, high dimensionality and noise. With this in
mind the following variables were identified as interesting
parameters to create synthetic data.

First, n, d and k should clearly be parameters to measure
performance at the very least. So the generator needs to
specify how many points are needed (n) and how many di-
mensions each point has (d). There must a number of Gaus-
sian distributions that will be the total number of clusters k.
Recall that any data set can be approximated by a mixture
of Gaussians [32]. It is the parameters of the Gaussians that
will make data more realistic.

The reference normal distribution it N(0, 1) meaning p =
0 and ¢ = 1. Each dimension will be independently nor-
mally distributed varying p and o. The value for g will be
taken as a random value uniformly distributed in the range
[0,1]. This value will be multiplied by a different scale fac-
tor (8 in each dimension or alternatively by the same one
making the entire space look like a hypercube. This will be
controlled by a parameter called UC which stand for uni-
form C. Then ¢ > 0. Its value will be scaled according
to how much overlap is needed among clusters. This over-
lap varies depending on both dimensionality and how many
clusters there are in the data. A general setting that makes
the problem challenging but at the same time solvable is
setting 8 = o2 regardless of the number of clusters. Setting
0% > [3 dramatically increases overlap among clusters. Clus-
ters may have non uniform densities (# points per volume
unit). Informally, it can be decided if clusters will have the
same spatial size or not. If the spatial size is the same that
means clusters have about the same scatter. If clusters do
not have the same spatial size then some clusters may look
tighter than others. In other words, the density per volume
unit may be different. This will controlled by a parameter
called UR which stands for uniform R. Then there must be
additional points that do not really form a cluster. These
points should obscure cluster boundaries. If the points had
a non-uniform distribution then by definition would form
certain subsets of points that could be effectively identified
as clusters. So a certain percentage of points are added.
These points are uniformly distributed all over the full di-
mensional space. This noise percentage is called 7, taking
a value between 0 and 100%. Then the weights will satisfy
Zle W; = 1 —mn. At one extreme if n = 0 then all the

Parameter | possible values | meaning

d [1,2,...,200] dimensionality

k [1,2,...,200] number of embedded clusters

n n>k size of data set

n [0, 100) noise %, 1 — 7 is reserved for data

B B>0 scale to shrink or enlarge p

o c>0 standard deviation from pu, independent from g3
uw Yes/No Uniform weights desired? (W)?, Default=Yes
uc Yes/No Uniform scale for C'?, Default=Yes

UR Yes/No Uniform spatial sizes for R? Default=Yes

Table 6: Parameters for synthetic data generation

clusters take up the entire space and if n = 100% then there
are no clusters at all. It can be expected that n > 50% will
blur cluster boundaries significantly. The user can specify if
clusters will have uniform weights or not; if not the weights
are randomly chosen and normalized. Note that clusters can
have non-uniform weights and non-uniform spatial sizes (or
densities). All these parameters are summarized in table 6.

Quality of results

Noise, dimensionality and a high number of clusters have
been shown to be troublesome aspects for clustering algo-
rithms. In the following set of experiments we analyze the
algorithm behavior when we vary them. The set of experi-
ments is not complete as we do not show what happens when
we vary combinations of these parameters, but we tried to
choose values that are common in a typical data mining envi-
ronment. These experiments were essential to test algorithm
correctness.

Accuracy is the main quality concern for clustering. Since
we are clustering synthetic data we already know the "true”
clusters. In our case one cluster is considered accurate if
there is no more than € error in its centroid and weight.
This is computed as follows. Let c;,w; be the correct mean
and weight respectively (as given by the data generator) of
cluster j having estimated C;, W; values by the algorithm,
and let € be the estimation error. Then cluster j is consid-
ered accurate if

and

lwj —

Wy

This is a high requirement since noise and data skew can
easily distort estimations. For the experiments below we
set e = 0.1. That is, we will consider a cluster to be cor-
rect if it differs by no more than 10% of its “true” mean
and weight. The process to check clusters for accuracy is
as follows. Clusters are generated in a random order and
clustering results may also appear in any order given initial-
ization on random seeds. So there are many permutations
in which clusters may correspond to each other (k!). To sim-
plify checking we build a list of pairs (estimated,generated)
clusters. Estimated clusters are sorted in descending order
by weight. Then each estimated cluster is matched with the
closest synthetic cluster and both are eliminated from fur-

ther consideration. For each pair we compute its accuracy
error. If it is below € it will be considered accurate. Any
unmatched estimated cluster is considered inaccurate.

Figures 3 and 4 compare FREM vs. EM and On-line EM.
Algorithms are initialized in the same manner and are run
with & + 1 (k is the actual number of embedded clusters
and the extra cluster accounts for noise). The three graphs
in Figure 3 show the average percentage of correctly found
clusters increasing noise level, dimensionality and number of
clusters. In all cases FREM clearly performs best. Noise af-
fects both, but it is noteworthy EM performs almost equally
better at the highest level of noise. Observe that FREM and
On-line EM are minimally affected by dimensionality. Fig-
ure 4 compares algorithms in the best run out of 10 runs.
In this case results for EM are better than the average EM
case above, but FREM finds better solutions anyway. On-
line EM finds lower quality models than FREM and EM for
increasing noise and number of clusters It is interesting to
observe that On-line EM is as good as FREM for higher di-
mensionality. The difference in quality becomes more signif-
icant as the number of clusters and dimensionality increase.
The difference at higher levels of noise is not as big. Due to
lack of space we do not show L(©), but it is always higher
in the mixture models computed by FREM, consistent with
the shown graphs.

Performance

Performance varying size, dimensionality and desired num-
ber of clusters is shown in Figure 5. In general On-line EM
(with one scan) takes between one third and one half the
time FREM (with three scans) takes to cluster a synthetic
data set; those times are not shown. The synthetic data sets
defaults were n = 10k, d = 10 and k = 10. All times exhibit
linear behavior and FREM outperforms EM by one order
of magnitude. Since these data sets are synthetic and clus-
ters are well separated it is easier for FREM to find a good
solution and it converges in just 3 iterations. However, in
order for EM to have equivalent performance it would need
to converge to an acceptable solution in only 3 iterations.
In general this is unlikely.

Limitations.

Our algorithm is not the final answer to clustering. Its
main limitations are the following. Cluster splitting im-
proves quality of solutions but it depends on an adequate
w. The setting for « slightly affects the quality of the solu-
tion; we found a wide range that went from k to 10dk and
we decided to set it at dk by default. A changes the cluster-

110

= avel
o o &

SVS TS

$6 obaceurate clasters
S

&

rage

o

30 40 50
of clusters

average percentage of accurate clusters (average run)

110

tacs ©
[=T = - =Y

= maxinume of acgurate clus
s 'SNENE S

o

20

o

30 40 50
of clusters

110 T T
FREM —+—
100 | 100 F £
OnLingEM -----
g0t gt
° o
£ £+ R
S S
Y B — 1
g g
£o ot e A
o o A
o * o
8 8]
o o
g g |
,,,,,, .
10 10 bl
o s s s ! , b
0 10 20 30 40 50 0 10 20 30 40 5 60 70 80 90 100
noise % level dimensionality
Figure 3: Quality of results:
110 110
100 #= 100 -
go for 1
% %
& B+) i
ol S - ol]
© ©
80 - 80 -
ot “x, ot 1
B B 1
% %
g * . S]
10 10 bl
o s s s s ; b
0 10 20 30 40 50 0 10 20 30 40 5 60 70 80 90 100
noise % level dimensionality
Figure 4: Quality of results: maximum percentage of accurate clusters (best run)
100 20 T
FREM —+—
EM -5~
80
15 g
3
6
£
E
i=
402
E
5|
20 - 1
o ‘ ‘ s 0
0 100 200 300 400 500 0

n x 1000 (data set size)

d (dimensionality)

10

20

30 40 50

k (# clusters)

Figure 5: Performance varying size, dimensionality and number of clusters

ing results by a marginal fraction since it introduces a small
variation in actual variance values; specially for overlapping
clusters. But the gain is huge since zero variances are not a
hinderance. Computing probabilities in high dimensionality
is troublesome and given our outlier handling approach in
many cases we assign points to the closest cluster like K-
means. For very large data sets two iterations or even one
could be enough to find an acceptable solution. This would
involve doing more careful cluster splitting and increasing
the number of learning steps. However, time would go down
to one half (or one third), not a significant improvement
given faster CPU speeds every year. Also, an additional
pass would be mandatory to compute an accurate value for
L(©). Due to lack of space we do not include experiments
justifying these claims.

S. RELATED WORK

There exist many scalable clustering algorithms. Some
well-known examples include OPTI-GRID [16], CLIQUE [3],
CURE [14], PROCLUS [1], DBSCAN [23]. There is also
work on accelerating K-means [5, 28]. We did not com-
pare FREM with any of these clustering algorithms because
FREM and EM compute a statistical model and optimize
log-likelihood (equation 4), whereas these algorithms com-
pute clusters based on distance or density. That is, they
have different optimization goals.

The idea to improve EM to work with large data sets is
not new. The most important previous work comes from
the Machine Learning community. Neal and Hinton intro-
duced the idea of using sufficient statistics in [22]. In this
work the authors analyze several variants of EM viewing the
log-likelihood optimization as an optimization of a Physics
energy function. One of the variants they present is incre-
mental and the key idea is to use sufficient statistics. They
describe a simple mixture problem with d = 1 and £ = 2 and
show some experimental evidence of the superiority of the
incremental approach. Their study is not complete as it does
not address the problem of clustering large data sets with
high dimensionality. The problem of minimizing disk access
is not analyzed. Problems related to numerical stability,
proper initialization, and outlier handling are not addressed
in their work either.

The second important work that analyzes how to make
EM work with large data sets was introduced in [5, 6]. A
scalable K-means is presented in [5] and this algorithm is
used as a framework to build a scalable EM algorithm in [6].
In [6] they present a scalable EM algorithm (SEM) that it-
erates in memory and also summarizes points through their
sufficient statistics. This summarization is done by mak-
ing compression in two phases. To avoid locally optimal
solutions they re-seed empty clusters and they estimate sev-
eral models concurrently sharing information across models.
They require the user to specify what fraction the working
buffer should be from the entire database. The value for
this parameter is typically 1%. The authors cannot explain
why this value gives best results. This work is different from
ours in several aspects. Our initialization is based on global
statistics whereas theirs is based on sampling. They use
K-means to cluster points in main memory whereas we use
EM itself. Our re-seeding strategy is different. They do not
address the problem of handling outliers or zero variances.
FREM does not estimate several models concurrently as that
is expensive. FREM requires 3 or more passes over the data

whereas theirs requires only one. However, EM is a CPU
bound algorithm and SEM makes it even more CPU inten-
sive rendering a slow algorithm as explained in [11]. Their
L(©) computation is not accurate because it is based on an
approximation with sufficient statistics; an accurate compu-
tation would require a 2nd scan. Finally, they do not show
SEM converges. They assume SEM converges based on K-
means convergence on compressed point sets. In [11] it is
shown that their scalable clustering algorithm is not faster
than K-means and in some cases it is even slower. Also,
they show that the quality of solutions is about the same.
In short, their version is not consistently better than K-
means. For the reasons described above we believe a direct
comparison with standard EM and On-line EM was more
appropriate.

The idea of helping EM clustering deal with zero vari-
ances has been studied before in [33]. The authors use
Bayesian regularization techniques to deal with zero covari-
ances. Their approach is similar to ours, but it is different in
two aspects: we use regularization together combined with
sufficient statistics and we scale the regularization constant
by the global covariance matrix X so that distance compu-
tation is not affected for dimensions with different scales.

6. CONCLUSIONS

This article proposed an efficient and robust variant of
the EM clustering algorithm. This novel algorithm is called
FREM. FREM incorporates several improvements to find
higher quality solutions and converge faster than EM. The
improvements include mean and dimensionality based ini-
tialization, learning steps based on sufficient statistics, regu-
larization techniques, cluster splitting and alternative prob-
ability computation for outliers. Most parameters have de-
faults. In general k, the desired number of clusters, is the
only parameter to change. Experimental evaluation shows
the effectiveness and speed of the algorithm with both syn-
thetic and real data sets. FREM can produce a good solu-
tion in just 3 iterations or it can be run until it converges
like EM. In either case FREM’s performance is better than
EM’s and the quality of solutions is at least as good as those
found by EM. Running FREM with three iterations is about
three times slower than On-line EM, but always finds higher
quality solutions.

Future work includes the following. We want to use FREM
as a foundation to perform Data Mining based on statistical
models [24]. We want to relate clustering and association
rules [26]. Clustering data with categorical attributes [15],
finding outliers [19], identifying clusters that exist only in
subspaces but not on the entire space [3], or finding clusters
in projections of high dimensional data [1] are also interest-
ing problems for further research.

Acknowledgments

We thank Emory University for providing the medical data
set and the California Institute of Technology for providing
the astronomy data set. Special thanks to the anonymous
referees for their helpful comments.

7. REFERENCES

[1] C. Aggarwal and P. Yu. Finding generalized projected
clusters in high dimensional spaces. In ACM SIGMOD
Conference, pages 70-81, 2000.

2]

8]

[4]

[5]

[6]

[7]

8]

C. Aggarwal and P. Yu. Outlier detection for high
dimensional data. In ACM SIGMOD Conference,
pages 40-51, 2001.

R. Agrawal, J. Gehrke, D. Gunopolos, and

P. Raghavan. Automatic subspace clustering of high
dimensional data for data mining applications. In
ACM SIGMOD Conference, pages 94-105, 1998.

K. Beyer, J. Goldstein, and R. Ramakrishnan. When
is nearest neighbor meaningful? In ICDT Conference,
pages 217-235, 1999.

P. Bradley, U. Fayyad, and C. Reina. Scaling
clustering algorithms to large databases. In Proc.
ACM KDD Conference, pages 9-15, 1998.

P. Bradley, U. Fayyad, and C. Reina. Scaling EM
clustering to large databases. Technical report,
Microsoft Research, 1999.

M. Breunig, H.P. Kriegel, P. Kroger, and J. Sander.
Data bubbles: Quality preserving performance
boosting for hierarchical clustering. In ACM SIGMOD
Conference, pages 102-113, 2001.

A.P. Dempster, N.M. Laird, and D. Rubin. Maximum
likelihood estimation from incomplete data via the
EM algorithm. Journal of The Royal Statistical
Society, 39(1):1-38, 1977.

R. Dubes and A.K. Jain. Clustering Methodologies in
Ezxploratory Data Analysis. Academic Press, New
York, 1980.

R. Duda and P. Hart. Pattern Classification and Scene
Analysis. J. Wiley and Sons, New York, 1973.

F. Fanstrom, J. Lewis, and C. Elkan. Scalability for
clustering algorithms revisited. SIGKDD FExplorations,
2(1):51-57, June 2000.

U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The
KDD process for extracting useful knowledge from
volumes of data. Communications of the ACM,
39(11):27-34, November 1996.

V. Ganti, J. Gehrke, and R. Ramakrishnan.
Cactus-clustering categorical data using summaries. In
ACM KDD Conference, pages 73-83, 1999.

S. Guha, R. Rastogi, and K. Shim. Cure: An efficient
clustering algorithm for large databases. In ACM
SIGMOD Conference, pages 73-84, 1998.

S. Guha, R. Rastogi, and K. Shim. ROCK: A robust
clustering algorithm for categorical attributes. In
ICDE Conference, pages 512-521, 1999.

A. Hinneburg and D. Keim. Optimal grid-clustering:
Towards breaking the curse of dimensionality. In
VLDB Conference, pages 506-517, 1999.

Z. Huang. Extensions to the k-means algorithm for
clustering large data sets with categorical values. Data
Mining and Knowledge Discovery, 2(3):283-304, 1998.
M. Jordan and R. Jacobs. Hierarchical mixtures of
experts and the EM algorithm. Neural Computation,
6(2):181-214, 1994.

E. Knorr and R. Ng. Finding intensional knowledge of
distance-based outliers. In VLDB Conference, pages
211-222, 1999.

G.J. MacLachlan and T. Krishnan. The EM Algorithm
and FExtensions. Wiley, New York, 1997.

A. Nanopoulos, Y. Theodoridis, and Y. Manolopoulos.
C2p: Clustering based on closest pairs. In VLDB

(31]

(32]

33]

(35]

(36]

Conference, pages 331-340, 2001.

R. Neal and G. Hinton. A view of the EM algorithm
that justifies incremental, sparse and other variants.
Technical report, Dept. of Statistics, University of
Toronto, 1993.

R. Ng and J. Han. Efficient and effective clustering
method for spatial data mining. In VLDB Conference,
pages 144-155, 1994.

C. Ordonez. Mining Complex Databases Using the EM
Algorithm, PhD Thesis. Georgia Institute of
Technology, Atlanta, 2000.

C. Ordonez and P. Cereghini. SQLEM: Fast clustering
in SQL using the EM algorithm. In Proc. ACM
SIGMOD Conference, pages 559-570, 2000.

C. Ordonez, E. Omiecinski, Levien de Braal, Cesar
Santana, and N. Ezquerra. Mining constrained
association rules to predict heart disease. In IFEE
ICDM Conference, pages 433—440, 2001.

C. Ordonez, E. Omiecinski, Norberto Ezquerra,

J. Taboada, and D. Cooke. A fast algorithm to cluster
high dimensional basket data. In IEEE ICDM
Conference, pages 633-636, 2001.

D. Pelleg and A. Moore. Accelerating exact K-means
algorithms with geometric reasoning. In ACM KDD
Conference, pages 277-281, 1999.

R.A. Redner and H.F. Walker. Mixture densities,
maximum likelihood, and the EM algorithm. SIAM
Review, 26:195-239, 1984.

S. Roweis and Z. Ghahramani. A unifying review of
linear Gaussian models. Neural Computation,
11:305-345, 1999.

M. Sato and S. Ishii. On-line EM algorithm for the
normalized Gaussian network. Neural Computation,
12(2):407-432, 2000.

D. Scott. Multivariate Density Estimation. J. Wiley
and Sons, New York, 1992.

N. Ueda, R. Nakano, Z. Ghahramani, and G. Hinton.
SMEM algorithm for mixture models. In Neural
Information Processing Systems, 1998.

L. Xu and M. Jordan. On convergence properties of
the EM algorithm for Gaussian mixtures. Neural
Computation, 8(1):129-151, 1996.

A.L. Yuille, P. Stolorz, and J. Utans. Statistical
physics, mixtures of distributions and the EM
algorithm. Neural Computation, 6(1):334-340, 1994.
T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
An efficient data clustering method for very large
databases. In Proc. ACM SIGMOD Conference, pages
103-114, 1996.

