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ABSTRACT
Clustering data streams is an interesting Data Mining prob-
lem. This article presents three variants of the K-means
algorithm to cluster binary data streams. The variants in-
clude On-line K-means, Scalable K-means, and Incremental
K-means, a proposed variant introduced that finds higher
quality solutions in less time. Higher quality of solutions
are obtained with a mean-based initialization and incremen-
tal learning. The speedup is achieved through a simplified
set of sufficient statistics and operations with sparse matri-
ces. A summary table of clusters is maintained on-line. The
K-means variants are compared with respect to quality of
results and speed. The proposed algorithms can be used to
monitor transactions.

1. INTRODUCTION
Clustering algorithms partition a data set into several dis-

joint groups such that points in the same group are similar
to each other according to some similarity metric [9]. Most
clustering algorithms work with numeric data [3, 6, 14, 26],
but there has been work on clustering categorical data as
well [12, 15, 18, 23]. The problem definition of clustering
categorical data is not as clear as the problem of cluster-
ing numeric data [9]. There has been extensive database
research on clustering large and high dimensional data sets;
some important approaches include [6, 3, 17, 26, 2, 7, 20].
Clustering data streams has recently become a popular re-
search direction [13]. The problem is difficult. High dimen-
sionality [17, 1, 2, 23], data sparsity [2, 14] and noise [3, 6,
7, 17] make clustering a more challenging problem.

This work focuses on clustering binary data sets. Binary
data sets are interesting and useful for a variety reasons.
They are the simplest form of data available in a computer
and they can be used to represent categorical data. From a
clustering point of view they offer several advantages. There
is no concept of noise like that of quantitative data, they can
be used to represent categorical data and they can be effi-
ciently stored, indexed and retrieved. Since all dimensions
have the same scale there is no need to transform the data
set. There is extensive research on efficient algorithms that
can manage large data sets [26, 14] and high dimensional-
ity [2, 17]. Despite such efforts K-means remains one of the
most popular clustering algorithms used in practice. The
main reasons are that it is simple to implement, it is fairly

c© ACM, 2003 . This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery. DOI:10.1145/882082.882087

efficient, results are easy to interpret and it can work un-
der a variety of conditions. Nevertheless, it is not the final
answer to clustering [6, 9]. Some of its disadvantages in-
clude dependence on initialization, sensitivity to outliers and
skewed distributions and converging to poor locally optimal
solutions. This article introduces several improvements to
K-means to cluster binary data streams. The K-means vari-
ants studied in this article include the standard version of
K-means [19, 9], On-line K-means [25], Scalable K-means
[6], and Incremental K-means, a variant we propose.

1.1 Contributions and article outline
This article presents several K-means improvements to

cluster binary data streams. Improvements include simple
sufficient statistics for binary data, efficient distance com-
putation for sparse binary vectors, sparse matrix operations
and a summary table of clustering results showing frequent
binary values and outliers. We study how to incorporate
these changes into several variants of the K-means algo-
rithms. Particular attention is paid to the Incremental K-
means algorithm proposed in this article. An extensive ex-
perimental section compares all variants.

The article is organized as follows. Section 2 introduces
definitions, the K-means algorithm and examples. Section
3 introduces the proposed improvements to cluster binary
data streams and explains how to incorporate them into all
K-means variants. Section 4 presents extensive experimen-
tal evaluation with real and synthetic data sets. Section 5
briefly discusses related work. Section 6 contains the con-
clusions and directions for future work.

2. PRELIMINARIES

2.1 Definitions
The input for the K-means clustering algorithm is a data

set D having n d-dimensional points and k, the desired num-
ber of clusters. The output are three matrices, C, R, W ,
containing the means, the squared distances and weights re-
spectively for each cluster, a partition of D into k subsets
and a measure of cluster quality. Matrices C and R are d×k
and W is a k × 1 matrix.

To manipulate matrices we use the following convention
for subscripts. For transactions we use i; i ∈ {1, 2, . . . , n} (i
alone is a subscript, whereas ij refers to item j). For cluster
number we use j; j ∈ {1, 2, . . . , k} and to refer to one dimen-
sion we use l: l ∈ {1, 2, . . . , d}. Let D1, D2, . . . , Dk be the k
subsets of D induced by clusters s.t. Dj∩Dj′ = ∅ for j 6= j′.
To refer to a column of C or R we use the j subscript (i.e.



Cj , Rj). So Cj and Rj refer to the jth cluster centroid and
jth variance matrix respectively and Wj is the jth cluster
weight. The diag[] notation will be used as a generic oper-
ator to obtain a diagonal matrix from a vector or consider
only the diagonal of a matrix or to convert the diagonal of
a matrix into a vector. This work assumes that a symmet-
ric similarity measure [9], like Euclidean distance, on binary
points is acceptable. That is, a 0/0 match is as important
as a 1/1 match on some dimension. This is in contrast to
asymmetric measures, like the Jaccard coefficient, that give
no importance to 0/0 matches [15, 18]. Points that do not
adjust well to the clustering model are called outliers. K-
means uses Euclidean distance; the distance from ti to Cj

is

δ(ti, Cj) = (ti − Cj)
t(ti − Cj). (1)

Let S = [0, 1]d be a d-dimensional Hamming cube. Let
D = {t1, t2, . . . , tn} be a database of n points in S. That
is, ti is a binary vector (treated as a transaction). Matrix
D is a d× n sparse binary matrix. Let Ti = {l|Dli = 1, l ∈
{1, 2, . . . , d}, i ∈ {1, 2, . . . , n}}. That is, Ti is the set of non-
zero coordinates of ti; Ti can be understood as a transaction
or an itemset to be defined below. Then the input data
set D becomes a stream of integers indicating dimensions
equal to 1 separated by an end of transaction marker. Since
transactions are sparse vectors |Ti| << d. This fact will be
used to develop an efficient distance computation. We will
use T to denote average transaction size:

T =
n

∑

i=1

|Ti|/n.

2.2 The K-means clustering algorithm
K-means [19] is one of the most popular clustering algo-

rithms [6, 10, 24]. It is simple and fairly fast [9, 6]. K-means
is initialized from some random or approximate solution.
Each iteration assigns each point to its nearest cluster and
then points belonging to the same cluster are averaged to get
new cluster centroids. Each iteration successively improves
cluster centroids until they become stable.

Formally, the problem of clustering is defined as finding a
partition of D into k subsets such that

n
∑

i=1

δ(ti, Cj) (2)

is minimized, where Cj is the nearest cluster centroid of ti.
The quality of a clustering model is measured by the the sum
of squared distances from each point to the cluster where it
was assigned [26, 21, 6]. This quantity is proportional to
the average quantization error, also known as distortion [19,
24]. The quality of a solution is measured as:

q(C) =
1

n

n
∑

i=1

δ(ti, Cj), (3)

which can be computed from R as

q(R, W ) =
k

∑

j=1

Wj

d
∑

l=1

Rlj . (4)

2.3 Example
We now present an example with d = 16, k = 4 to mo-

tivate the need for a summary table. Assume items come
as transactions containing integers in {1, . . . , 16}. The clus-
tering results for a store in terms of matrices are shown
in Figure 1. If we consider a real database environment
in which there are hundreds of product categories or thou-
sands of products it is difficult to understand the output
matrices C, W . We propose a summary of clusters as shown
in Table 1. This summary is easier to understand than the
matrix with floating point numbers. Another advantage is
that we can see outliers. This table suggests associations [4,
16] among items in the same row.

3. CLUSTERING BINARY DATA STREAMS

3.1 Sparse matrix operations and simple
sufficient statistics

The first concern when using a clustering algorithm with
large data sets is speed. To accelerate K-means we use sparse
distance computation and simpler sufficient statistics. We
explain distance computation first. Sparse distance compu-
tation is made by precomputing the distances between the
null transaction (zeroes on all dimensions) and all centroids
Cj . Then only differences for non-null dimensions of each
transaction are computed to determine cluster membership
as transactions are being read. When D is a sparse matrix
and d is high the distance formula is expensive to compute.
In typical transaction databases a few dimensions may have
non-zero values. So we precompute a distance from every
Cj to the null vector 0̄. To that purpose, we define the k-
dimensional vector ∆: ∆j = δ(0̄, Cj). Based on ∆ distances
can be computed as:

δ(ti, Cj) = ∆j +
d

∑

l=1,(ti)l 6=0

((ti)l − Clj)
2 − C2

lj . (5)

This computation improves performance significantly, but
it does not affect result accuracy. A similar idea is applied
to update clusters. This is discussed in more detail later.

K-means can use sufficient statistics [6, 26], which are
summaries of D1, D2, . . . , Dk represented by the three ma-
trices M, Q,N that contain sum of points, sum of squared
points and number of points per cluster respectively. K-
means is fast and the idea of using sufficient statistics is
well known to make it faster [6, 10], but we can take a fur-
ther step. Sufficient statistics can be simplified for clustering
binary data. The following result states that the sufficient
statistics for the problem of clustering binary vectors are
simpler than the sufficient statistics required for clustering
numeric data.

Lemma 1 Let D be a set of n transactions of binary data.
and D1, D2, . . . , Dk be a partition of D. Then the sufficient
statistics required for computing C, R, W are only N and M .

Proof:

To compute W , k counters are needed for the k subsets of of
D that are stored in the k×1 matrix N and then Wj = Nj/n.
To compute C we use Mj =

∑n

i=1 ti, ∀ti ∈ Dj and then Cj =
Mj/Nj . To compute Q the following formula must be com-
puted: Qj =

∑n

i=1 diag[tit
t
i] =

∑

i=1n ti = Mj , ∀ti ∈ Dj .
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Figure 1: Basket clusters

j Wj Cj (frequent dimensions) Outliers (odd transactions)
1 40% 90-100%: bread milk 80-90%: jelly {jelly wine notebook }
2 5% 80-90%: beer crackers ham {crackers sauce }
3 20% 80-90%: produce water 70-80%: milk soda {water coffee }
4 35% 90-100%: meat 80-90%: bread 70-80%: oil {bread magazine }

Table 1: Transaction clusters summary table

Note that diag[tit
t
i] = ti because x = x2 if x is binary and

ti is a vector of binary numbers. Elements off the diagonal
are ignored for diagonal matrices. Then Q = M . Therefore,
only N and M are needed.2

A consequence of the previous lemma is that R can be
computed from C without scanning D or storing Q. Even
further, Lemma 1 makes it possible to reduce storage to one
half. However, it is not possible to reduce storage further
because when K-means determines cluster membership it
needs to keep a copy of Cj to compute distances and a sepa-
rate matrix with Mj to add the point to cluster j. Therefore
both C and M are needed for an Incremental or Scalable ver-
sion, but not for an On-line version. The On-line K-means
algorithm to be introduced later could keep a single matrix
for centroids and sum of points. For the remainder of this
article M is a d × k matrix and Mj =

∑

∀ti∈Dj
ti and N

is k × 1 matrix and Nj = |Dj |. The update formulas for
C, R, W are

Cj =
1

Nj

Mj , (6)

Rj = diag[Cj ]− CjC
t
j , (7)

and

Wj =
Nj

∑k

j′=1 Nj′

. (8)

A summary table G, as the one shown in Section 2.3, is
necessary to understand very high dimensional binary data.
Instead of trying to interpret a d×k matrix containing float-
ing point numbers the user can focus in those matrix entries

that are more interesting. This table should be cheap to
maintain so that it introduces a negligible overhead. The
user specifies a list of cutoff points and a number of top
outliers per cluster. These cutoff points uniformly parti-
tion clusters means Cj . Dimension subscripts (items) are
inserted into a rank every time C is updated. The table
is constructed using a list of cutoff points c1, c2, . . . , s.t.
1 ≥ cij > 0, and a number of desired outliers per cluster
Oj ≥ 0 for cluster j. For each cutoff ci there is a (possibly
empty) list of dimensions L s.t. l ∈ L and ci > Clj ≥ ci+1.
Cutoff points are taken at equal interval lengths in decreas-
ing order starting in 1 and are used for all k clusters for
efficiency purposes. Having different cutoff points for each
cluster or having them separated at different intervals would
introduce a significant overhead to maintain G. Top out-
liers are inserted into a list in descending order according by
distance to their nearest centroid; the outlier with smaller
distance is deleted from the list. Outliers are inserted when
cluster membership is determined. The cost to maintain this
table is low. These are important considerations to update
the summary table on-line. (1) It is expected that only a few
dimensions will appear in some rank since the data sets are
sparse. (2) Only high percentage ranks, closer to 1, are con-
sidered interesting. (3) All the cutoff points are separated
at equal intervals. In this manner the rank for some dimen-
sion of Cj is determined in time O(1) using Clj as an index
value. Irregular intervals would make a linear search manda-
tory. (4) The dimensions are sorted in lexicographical order
by dimension index l inside each rank. The insertion is done
in time almost O(1) because only a few dimensions appear in
the list and the data set D is assumed to be a sparse matrix.
When G becomes populated as transactions are scanned it
is likely some dimension of Cj is already inserted and this
can be determined in time O(log(|L|) doing a binary search.



This would not be the case if all the cutoffs points spanned
the [0, 1] interval because the d dimensions would have to be
ranked. (5) Outlier insertion is done in time almost O(1).
This is the case because most input points are not outliers
and it is assumed the desired number of outliers in the list
is small.

3.2 K-means variants for binary data streams
This section presents the variants of K-means for binary

data streams based on the improvements introduced above.
Empty clusters are re-seeded with the the furthest neighbors
of non-empty clusters as proposed in [6]. The re-seeding
points are extracted from the outlier list stored in the sum-
mary table. We believe incorporating all improvements in
all algorithms is more valuable than improving only one and
then claiming that one is the best. This allows a fair com-
parison.

The input is D = {T1, T2, . . . , Tn}, the binary data points
given as transactions, as defined in Section 2.1, and k, the
desired number of clusters. It is important to observe that
points are assumed to come as lists of integers as defined in
Section 2. The order of dimensions inside each transaction
is not important. The order of transactions is not impor-
tant as long as transactions do not come sorted by cluster.
The output is the clustering model given by the matrices
C, R, W , a partition of D into D1, D2, . . . , Dk, a summary
table G and a measure of cluster quality q(R,W ).

Let the nearest neighbor function be defined as

NN(ti) = J,

such that

δ(ti, CJ ) ≤ δ(ti, Cj).

Let ⊕ be sparse addition of vectors. Mathematically this
addition is a normal vector addition, but for implementation
purposes only non-zero entries are added. Mj ⊕ ti has com-
plexity O(T ). In a similar manner we define a sparse division
of matrices �, and a sparse matrix subtraction 	 that only
update matrix entries that change after reading a new point
and assigning it to its nearest cluster. Empty clusters are
re-seeded as follows. If WJ = 0 then CJ ← to (outlier trans-
action), where to is a transaction s.t. δ(to, CJ) ≥ δ(ti, Cj)
for j 6= J and ti ∈ Dj . This outlier to is taken from the top
outlier list in G.

The On-line K-means variant we use in this work is based
on the On-line EM algorithm [22]. The basic difference is
that distances are used to compute cluster memberships in-
stead of weighted probabilities with Gaussian distributions.
Initialization is based on a sample of k different points to
seed C. The weights Wj are initialized to 1/k to avoid early
re-seeding. A similar streamed version for continuous data
is outlined in [21].

We implemented our improvements on the simplified Scal-
able K-means version proposed in [10]. In this work authors
give convincing evidence that a simpler version of the orig-
inal Scalable K-means [6] produces higher quality results in
less time. The only critical parameter is the buffer size. Pri-
mary and secondary compression parameters as proposed
in [6] are not needed. This version performs primary com-
pression discarding all buffer points each time. Initialization
is based on a sample of k different points to seed C. The
weights Wj are initialized to 1/k to avoid early re-seeding.

Input: {T1, T2, . . . , Tn} and k
Output: C, R,W and q(R, W )

FOR j = 1 TO k DO
Cj ← µ± σr/d
Nj ← 0
Mj ← 0̄
Wj ← 1/k

END
L =

√
n

FOR i = 1 TO n DO
j = NN(ti)
Mj ⊕ ti

Nj ← Nj + 1
IF (i mod (n/L)) = 0 THEN

Cj ←Mj/Nj

Rj ← Cj − Ct
jCj

Wj = Nj/i
FOR j = 1 TO k DO

IF Wj = 0 THEN
Cj ← to

END
END

END
END

Figure 2: The Incremental K-means algorithm

Incremental K-means
This is our proposed variant of K-means. This version is a
compromise between On-line K-means and the Standard K-
means doing one iteration. A fundamental difference with
both Standard K-means and Scalable K-means is that Incre-
mental K-means does not iterate until convergence. Another
important difference is that initialization, explained below,
is done using global statistics of D instead of using a sample
of k transactions. Doing only one iteration could be a limi-
tation with continuous (numeric) data, but it is reasonable
with binary data. A difference with On-line K-means is that
it does not update C and Wj every transaction, but every
n/L transactions (L times), and each time it touches the
entirety of C and W . The setting for L is important to get
a good solution. If L = 1 then Incremental K-means reduces
to Standard K-means stopped early after one iteration. On
the other hand, if L = n then Incremental K-means reduces
to On-line K-means. The setting we propose is L =

√
n.

This is a good setting for variety of reasons: (1) It is inde-
pendent from d and k. (2) A larger data set size n accelerates
convergence since as n → ∞, L → ∞. (3) The number of
points used to recompute centroids is the same as the to-
tal number of times they are updated. Cluster centroids
are initialized with small changes to the global mean of the
data set. This mean-based initialization has the advantage
of not requiring a pass over the data set to get different seeds
for different runs because the global mean can be incremen-
tally maintained. In the pseudo-code r represents a random
number in [0, 1], µ is the global mean and σ = diag[

√

Rj ]
represents a vector of global standard deviations. As d→∞
cluster centroids Cj → µ. This is based on the fact that the
value of

∑n

i=1 δ(ti, x) is minimized when x = µ.

3.3 Suitability for binary data streams
Clustering data streams has become a popular research

direction [13]. All the variants introduced above read each
data point from disk just once. However, Scalable K-means



iterates in memory which can slow it down for an incoming
flow of transactions. Moreover, since it iterates until conver-
gence it is necessary to have a threshold on the number of
iterations to provide time guarantees. On-line K-means and
Incremental K-means can keep up with the incoming flow of
transactions since they do not iterate.

The proposed K-means variants have O(Tkn) complexity;
where T is the average transaction size; recall that T << d.
Re-seeding using outliers is done in time O(k). For sparse
binary data updating G takes time almost O(1). In the case
of Scalable K-means there is an additional complexity fac-
tor given by the the number of iterations until convergence.
Matrices M, C require O(dk) space and N, W require O(k).
Since R is derived from C that space is saved. For all ap-
proaches there is an additional requirement O(b) to hold b
transactions in a buffer. In the case of Scalable K-means
this size is explicitly used as a parameter to the clustering
process. In any case the buffer space requirements are neg-
ligible compared to the clustering model space. In short,
space requirements are O(dk) and time complexity is O(kn)
for sparse binary vectors..

4. EXPERIMENTAL EVALUATION
This section contains extensive experimental evaluation

with real and synthetic data sets. All algorithms were bench-
marked on quality of results and performance. The main
criterion for quality was q(R, W ). Most running times were
measured in seconds. All experiments were done on a PC
running at 600MHz with 64MB of main memory and a 20
GB hard disk. All algorithms were implemented in the C++
language. The Scalable K-means variant we used was modi-
fied from the code available from the authors of [10]. For the
sake of completeness we also incorporated our performance
improvements into the Standard K-means to compare qual-
ity of solutions and performance.

In general the main parameter is only k. Standard K-
means and Scalable K-means had a tolerance threshold for
q(R, W ) set to ε = 1.0e−5. Scalable K-means buffer size was
set at 1% as recommended by the authors [6]. On-line and
Incremental K-means had no parameters to set other than
k. All algorithms updated the clustering summary table G
on-line showing the cost to maintain it is low.

We do not show comparisons with the same implementa-
tions of Scalable K-means proposed in [6] and [10] because
their times on sparse binary data sets are an order of mag-
nitude higher; we believe this would not be interesting and
time comparisons would be meaningless.

4.1 Experiments with Real Data Sets
Table 2 shows the best results out of 10 runs for several

real data sets. The table shows the quantization error (av-
erage sum of squared distances) and elapsed time. Lower
numbers are better. When we refer to d it is the number
of binary dimensions, not to be confused with the original
dimensionality of some data sets that may be smaller. We
ran all algorithms a few times to find a good value for k.
Such k produced clusters that had C values close to 1 in a
few dimensions and mostly values close to 0 for the rest.

The patient data set had n = 655 and d = 19. This data
set contained information for patient being treated for heart
disease. We extracted categorical columns and each value
was mapped to a binary dimension. Patients were already
binned by their age in 10-year increments by medical doc-

tors. These were clusters with some dimension Clj ≥ 90%
One cluster had 18% of patients who were male, white and
aged between 50-59. Another cluster had 15% of patients
who were male, white and aged between 70-79; the interest-
ing aspect is that the cluster with males aged 60-69 only had
6% of patients. Another cluster had about 10% of black male
patients who were between 30-79 but 36% (most) of them
were between 40-49. Another cluster had 14% of patients
who were white females aged 70-79. Two outliers were two
male patients younger than 40. Since n is very small times
were a fraction of 1 second.

The store data set had a sample of n = 234, 000 trans-
actions from a chain of supermarkets with d = 12 binary
attributes. Each transaction had categorical attributes from
its store. The quantitative attributes were ignored. In this
case binary dimensions were the values for each categorical
variable describing a predefined classification of stores ac-
cording to their profit performance (low, medium and high),
the store layout (convenience, market, supermarket) and
store size (small, medium, large, and very large). K-means
was run with k = 10. In this case small convenience stores
had the worst performance found in 5% of the data set.
High performance was concentrated mostly in market town
stores of small, medium and large size in 15% of transactions.
One cluster revealed that most (66%) medium convenience
stores but one third had high performance. A heavy cluster
with 22% transaction with medium performance happened
mostly in convenience and market town layouts, but of vary-
ing sizes. There were no interesting outliers in this case; they
only included transactions with missing information.

The bktdept data set came from another chain of grocery
stores. This data set sizes were n = 1M and d = 161. The
dimensions were the store departments indicating whether
the customer bought in that department or not. This data
set was challenging given its high dimensionality with most
transactions having 5 departments or less and also because
clusters had significant overlap. A small k did not produce
good results. We had to go up to k = 40 to find accept-
able solutions. The algorithms were able to identify some
significant clusters. One cluster with 1% of baskets involved
bread and pet products; a strange combination. Another
1% of baskets involved mostly biscuits and candy. 8% of
baskets had cream as the main product with no other signif-
icant product bought together with it. Another interesting
finding is that 5% mainly bought newspaper, but always
with a variety of other products with milk being the most
frequent one. Another 10% bought mostly cigarettes, but
one fifth of them also bought milk. A couple of interest-
ing outliers with odd combinations included a basket with
more than 50 departments visited (too many compared to
most baskets) including toys, cooking aids, pet products and
food departments, and another basket with cigarettes, nuts
and medicine among others. It was surprising that Scalable
K-means was slower than Standard K-means.

The harddisk data set contained data from a hard disk
manufacturer. Each record corresponded to one disk passing
or failing a series of tests coded in a categorical variable.
The sizes for this data set were n = 556, 390 and d = 13.
Most of the tests involved measurements where a zero would
imply fail and a value greater than zero passing (with a
degree of confidence). We mapped each measurement to
one binary dimension setting a positive number to 1. This
data set was hard to cluster because almost 100% of disks



Data set k std online scal incr
KM KM KM KM

patient 8 0.0217 0.0247 0.0199 0.0181
n = 655, d = 19 0 0 0 0
store 10 0.0355 0.0448 0.0361 0.0389
n = 234k, d = 12 32 13 19 12
bktdept 40 0.0149 0.0168 0.0151 0.0151
n = 1M, d = 161 823 251 842 284
harddisk 5 0.0119 0.0279 0.0016 0.0016
n = 55k, d = 13 62 36 54 31
phone 13 0.0116 0.0174 0.0090 0.0095
n = 743k, d = 22 472 57 91 64

Table 2: Quality of results with real data sets

passed the tests. All algorithms found clusters in which
failing disks were spread across all clusters. However, the
best solution indicated that most failing disks (about 1.3%)
failed a specific test. In this case outliers were passing disks
that passed difficult two difficult tests and failed the common
ones. Another outlier was a failing disk that failed the same
tests as the outlier passing disk.

The phone data set contained demographic data about
customers from a telephone company. We selected a few
categorical dimensions that were already binary. This data
set was very easy to cluster because customers concentrated
on three well defined groups with the rest in small clusters.
No clusters seemed to indicate anything particularly inter-
esting. We omit further discussion.

4.2 Experiments with Transaction Data Sets
In this section we present experiments with transaction

data sets created with the IBM data generator [4, 5]. The
defaults we used were as follows. The number of transac-
tions was n = 100k. The average transaction size T was
8,10 and 20. Pattern length (I) was one half of transaction
length. Dimensionality d was 100, 1000 and 10,000. The
rest of parameters were kept at their defaults (average rule
confidence=0.25, correlation=0.75). These data sets repre-
sent very sparse matrices and very high dimensional data.
We did not expect to find any significant clusters, but we
wanted to try to the algorithms on them to see how they
behaved. For most clusters solutions summarized in Table
3 centroids were below 0.5. According to our criterion they
were bad. Clustering transaction files was difficult. Increas-
ing k improved results by a small margin as can be seen.
This fact indicated that clusters had significant overlap with
the default data generation parameter settings. We further
investigated how to make the generator produce clusters and
it turned out that correlation and confidence were the most
relevant parameters. In that case the quantization error
showed a significant decrease for all algorithms. For these
synthetic data sets all algorithms found solutions of similar
quality. In general Scalable K-means found slightly better
solutions. Then Standard and Incremental K-means came
in second place. On-line K-means always found the worst
solution.

Figure 3 shows performance graphs varying n, d and T
with defaults n = 100k, d = 1000, T = 10. The program
was run with k = 10. The left graph compares the four K-
means variants. The center graph shows performance for
Incremental K-means at two dimensionalities. The right
graph shows Incremental K-means performance varying the

average transactions size T . In this case the story is quite
different compared to the easier synthetic binary data sets.
Performance for Standard K-means and Scalable K-means
degrades more rapidly than their counterparts with increas-
ing n. All K-means variants are minimally affected by di-
mensionality when the average transaction size is kept fixed
showing the advantage of performing sparse distance com-
putation. All variants exhibit linear behavior.

4.3 Discussion
In general Incremental K-means and Scalable K-means

found the best solutions. In a few cases Scalable K-means
found slightly higher quality solutions than Incremental K-
means, but in most cases Incremental K-means was as good
or better than Scalable K-means. For two real data sets Scal-
able K-means found slightly better solutions than Incremen-
tal K-means. Performance-wise On-line K-means and Incre-
mental K-means were the fastest. It was surprising that in
a few cases Incremental K-means was faster than On-line
K-means. It turned out that continuously computing aver-
ages for every transaction does cause overhead. Standard
K-means was always the slowest. On its favor we can say
that it found the best solution in a couple of cases with the
real data sets. This suggests some clustering problems are
hard enough to require several scans over the data set to find
a good solution. In general there was not sensitivity to ini-
tialization, like when clustering numeric data, but more so-
phisticated initialization techniques may be employed. Such
improvements can be added to this proposal.

5. RELATED WORK
Research on scaling K-means to cluster large data sets

includes [6] and [10], where Scalable K-means is proposed
and improved. An alternative way to re-seed clusters for
K-means is proposed in [11]. We would like to compare
that approach to the one used in this article. The problem
of clustering data streams is proposed in [13]. There has
been some work in that direction. Randomized clustering
algorithms to find high-quality solutions on streaming data
are proposed in [21].

There is work on clustering categorical data sets from a
Data Mining perspective. The K-modes algorithm is pro-
posed in [18]; this algorithm is a variant of K-means, but
using only frequency counting on 1/1 matches. Another al-
gorithm is ROCK that groups points according to their com-
mon neighbors (links) in a hierarchical manner [15]. CAC-
TUS is a graph-based algorithm that clusters categorical
values using point summaries. These approaches are differ-



Data set d k std online scal incr
KM KM KM KM

T8I4D100k 1000 10 0.00758 0.00760 0.00746 0.00746
T8I4D100k 1000 20 0.00719 0.00727 0.00710 0.00720
T10I5D100k 100 10 0.07404 0.07545 0.07444 0.07456
T10I5D100k 100 20 0.07042 0.07220 0.07100 0.07151
T20I10D100k 10000 10 0.00194 0.00195 0.00192 0.00192
T20I10D100k 10000 20 0.00186 0.00191 0.00184 0.00184

Table 3: Quality of results with transaction data sets
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Figure 3: Performance varying n, k and T with high d

ent from ours since they are not distance-based and have
different optimization objectives. Also, ROCK is a hierar-
chical algorithm. One interesting aspect discussed in [15] is
the error propagation when using a distance-based algorithm
to cluster binary data in a hierarchical manner. But fortu-
nately K-means is not hierarchical. An advantage of the
K-means variants introduced above over purely categorical
clustering algorithms, like K-modes, CACTUS and ROCK,
is that they can be extended to cluster points with both
numeric (continuous) and categorical dimensions (with cat-
egorical values mapped to binary). This problem is known
as clustering mixed data types [9, 8]. There is some criticism
on using distance similarity metrics for binary data [9], but
our point is that a careful summarization and interpretation
of results can make the approach useful. A fundamental
difference with associations [4] is that associations describe
frequent patterns found in the data matched only on 1/1
occurrences. Another difference is that associations do not
summarize the transactions that support the discovered pat-
tern.

6. CONCLUSIONS
This article proposed several improvements for K-means

to cluster binary data streams. Sufficient statistics are sim-
pler for binary data. Distance computation is optimized
for sparse binary vectors. A summary table with best clus-
ter dimensions and outliers is maintained on-line. The pro-
posed improvements are fairly easy to incorporate. All vari-
ants were compared with real and synthetic data sets. The
proposed Incremental K-means variant is faster than the al-
ready quite fast Scalable K-means and finds solution of com-
parable quality. In general these two algorithms find higher
quality than On-line K-means.

Future work includes the following. Mining associations
from clusters is an interesting problem. We plan to approx-
imate association support from clusters avoiding scanning

transactions. We want to introduce further processing using
set-oriented metrics like the Jaccard coefficient or associa-
tion support. Some of our improvements apply to continuous
data but that is a harder problem for a variety of reasons.
We believe a further acceleration of Incremental K-means is
not possible unless approximation, randomization or sam-
pling are used.
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