
Horizontal Aggregations for Building Tabular Data Sets

Carlos Ordonez
Teradata, NCR

San Diego, CA, USA

ABSTRACT
In a data mining project, a significant portion of time is
devoted to building a data set suitable for analysis. In a re-
lational database environment, building such data set usu-
ally requires joining tables and aggregating columns with
SQL queries. Existing SQL aggregations are limited since
they return a single number per aggregated group, produc-
ing one row for each computed number. These aggrega-
tions help, but a significant effort is still required to build
data sets suitable for data mining purposes, where a tabu-
lar format is generally required. This work proposes very
simple, yet powerful, extensions to SQL aggregate func-
tions to produce aggregations in tabular form, returning a
set of numbers instead of one number per row. We call
this new class of functions horizontal aggregations. Hor-
izontal aggregations help building answer sets in tabular
form (e.g. point-dimension, observation-variable, instance-
feature), which is the standard form needed by most data
mining algorithms. Two common data preparation tasks are
explained, including transposition/aggregation and trans-
forming categorical attributes into binary dimensions. We
propose two strategies to evaluate horizontal aggregations
using standard SQL. The first strategy is based only on re-
lational operators and the second one uses the ”case” con-
struct. Experiments with large data sets study the proposed
query optimization strategies.

1. INTRODUCTION
In general a data mining project consists of four ma-

jor phases. The first phase involves extracting, cleaning
and transforming data for analysis. This phase, called data
preparation, is the main theme of this work. In the second
phase a data mining algorithm analyzes the prepared data
set. Most research work in data mining has concentrated on
proposing efficient algorithms without paying much atten-
tion to building the data set itself. The third phase validates
results, creates reports and tunes parameters. The first, sec-
ond and third phases are repeated until satisfactory results
are obtained. During the fourth phase statistical results are
deployed on new data sets. This assumes a good predictive
or descriptive model has already been built. In a relational
database environment with normalized tables, a significant
effort is required to prepare a summary data set in order to
use it as input for a data mining algorithm. Most algorithms

c© ACM, 2004 . This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery. DOI:10.1145/1008694.1008700

from data mining, statistics and machine learning require a
data set to be in tabular form. That is the case with clus-
tering [14, 15], regression [7] and factor analysis [19]. Asso-
ciation rules are an exception, where a data set typically has
a sparse representation as transactions [1]. However, there
exist algorithms than can directly cluster transactions [12,
16]. Each research discipline uses different terminology. In
data mining the common terms are point-dimension. Statis-
tics literature generally uses observation-variable. Machine
learning research uses instance-feature. The basic idea is the
same: having a 2-dimensional array given by a table with
rows and columns. This is precisely the terminology used in
relational databases, but we will make a distinction on the
actual tabular structure that is appropriate for most data
mining algorithms. The goal of this article is to introduce
new aggregate functions that can be used in queries to build
data sets in tabular form. We will show that building a data
set in tabular form is an interesting problem.

1.1 Motivation
As mentioned before, in a relational database environment

building a suitable data set for data mining purposes is a
time-consuming task. This task generally requires writing
long SQL statements or customizing SQL if it is automat-
ically generated by some tool. There are two main ingre-
dients in such SQL code: joins and aggregations. We con-
centrate on the second one. The most widely-known aggre-
gation is the sum of a column over groups of rows. Some
other aggregations return the average, maximum, minimum
or row count over groups of rows. There also exist non-
standard extensions to compute statistical functions like lin-
ear regression, quantiles and variance. There is even a fam-
ily of OLAP-oriented functions that use windows and row
partitioning. Unfortunately, all these aggregations present
limitations to build data sets for data mining purposes. The
main reason is that, in general, data that are stored in a
relational database (or a data warehouse to be more spe-
cific) come from On-Line Transaction Processing (OLTP)
systems where database schemas are highly normalized. But
data mining, statistical or machine learning algorithms gen-
erally require data in a summarized form that needs to be
aggregated from normalized tables. Normalization is a well
known technique used to avoid anomalies and reduce re-
dundancy when updating a database [5]. When a database
schema is normalized, database changes (insert or updates)
tend to be localized in a single table (or a few tables). This
helps making changes one row at a time faster and en-
forcing correctness constraints, but it introduces the later
need to gather (join) and summarize (aggregate) informa-



tion (columns) scattered in several tables when the user
queries the database. Based on current available functions
and clauses in SQL there is a significant effort to compute
aggregations when they are desired in a tabular (horizontal)
form, suitable to be used by a data mining algorithm. Such
effort is due to the amount and complexity of SQL code that
needs to be written and tested. To be more specific, data
mining algorithms generally require the input data set to be
in a tabular form having each point/observation/instance as
a row and each dimension/variable/feature as a column.

There are further practical reasons supporting the need to
get aggregation results in a tabular (horizontal) form. Stan-
dard aggregations are hard to interpret when there are many
result rows, especially when grouping attributes have high
cardinalities. To perform analysis of exported tables into
spreadsheets it may be more convenient to have aggrega-
tions on the same group in one row (e.g. to produce graphs
or to compare subsets of the result set). Many OLAP tools
generate code to transpose results (sometimes called pivot).
This task may be more efficient if the SQL language provides
features to aggregate and transpose combined together.

With such limitations in mind, we propose a new class
of aggregate functions that aggregate numeric expressions
and transpose results to produce a data set in tabular form.
Functions in this class are called horizontal aggregations.

1.2 Article Organization
The article is organized as follows. Section 2 introduces

definitions and examples. Section 3 introduces horizontal
aggregations. Section 4 discusses experiments focusing on
code generation and query optimization. Related work is
discussed in Section 5. Section 6 contains conclusions and
directions for future work.

2. DEFINITIONS
This section defines the table that will be used to explain

SQL queries throughout this work. Let F be a relation hav-
ing a simple primary key represented by a row identifier
(RID), d categorical attributes and one numeric attribute:
F (RID, D1, . . . , Dd, A). In SQL F is a table with one col-
umn used as primary key, d categorical columns and one
numeric column used to get aggregations. Table F will be
manipulated as a cube with d dimensions and one measure
[10]. That is, each categorical column is a dimension and
the numeric column is a measure. Dimension columns are
used to group rows to aggregate the measure column. We
assume F has a star schema to simplify exposition. Dimen-
sion lookup tables will be based on simple foreign/primary
keys. That is, one dimension column Dj will be a foreign
key linked to a lookup table that has Dj as primary key.
Table F represents a temporary table or a view based on
some complex SQL query joining several tables.

2.1 Motivating Examples
To illustrate definitions and provide examples of F , we

will use a table transactionLine that represents the trans-
action table from a chain of stores and a table employee
representing people in a company. Table transactionLine
has dimensions grouped in three taxonomies (product hier-
archy, location, time), used to group rows, and three mea-
sures represented by itemQty, costAmt and salesAmt, to
pass as arguments to aggregate functions. Table employee
has department, gender, salary and related contents.

We want to compute queries like ”summarize sales for each
store showing the sales of each day of the week”; ”compute
the total number of items sold in each department for each
store”. These queries can be answered with standard SQL,
but additional code needs to be written or generated to re-
turn results in tabular (horizontal) form. Consider the fol-
lowing two queries.

SELECT storeId,dayofweekNo,sum(salesAmt)
FROM transactionLine GROUP BY 1,2;

SELECT storeId,deptId,sum(itemqty)
FROM transactionLine GROUP BY 1,2;

If there are 100 stores, 20 store departments and stores are
open 7 days a week, the first query returns 700 rows and the
second query returns 2000 rows. It is easier to analyze 100
rows with 7 columns showing days as columns; or 100 rows
with 20 columns making departments columns, respectively.
For employee we would like to know ”how many employees of
each gender are there in department?”; or ”what is the total
salary by department and maritalStatus?”. These queries
provide the answer with standard SQL. Again, for analytical
purposes it is preferable to show counts for each gender or
salary totals for each marital status on the same row.

SELECT departmentId,gender, count(*)
FROM employee GROUP BY 1,2;

SELECT departmentId,maritalStatus,sum(salary)
FROM employee GROUP BY 1,2;

Now consider some potential data mining problems that
may be solved by a data mining/statistical package if result
sets come in tabular form. Stores can be clustered based
on sales for each day of the week. We can predict sales per
store department based on the sales in other departments
using decision trees or regression. We can find out potential
correlation of number of employees by gender within each
department. Most data mining algorithms (e.g. clustering,
decision trees, regression, correlation analysis) require result
tables from these queries to be transformed into a tabular
format at some point. There are proposals of data mining
algorithms that can work directly on data sets in transaction
form [12, 16], but they are complex and are efficient when
input points have many dimensions equal to zero.

3. HORIZONTAL AGGREGATIONS
We introduce a new class of aggregations that are similar

in spirit to SQL standard aggregations, but which return
results in horizontal form. We will refer to standard SQL
aggregations as vertical aggregations to contrast them with
the ones we propose.

3.1 Syntax and Usage Rules
We propose extending standard SQL aggregate functions

with a BY clause followed by a list of ”subgrouping” columns
to produce a set of numbers instead of one number. Let
Hagg() represent any standard aggregation (e.g. sum(),
count(), min(), max(), avg()). We introduce the generic
Hagg() aggregate function whose syntax in a query is as
follows.

SELECT D1, .., Dj , Hagg(A BY Dj+1, . . . , Dk)
FROM F
GROUP BY D1, . . . , Dj ;



We call Hagg() a horizontal aggregation. The function
Hagg() must have at least one argument represented by A,
followed by subgrouping columns to compute individual ag-
gregations. The result groups are determined by columns
D1, . . . , Dj in the GROUP BY clause if present. This func-
tion returns a set of numbers for each group. All the indi-
vidual aggregations for each group will appear on the same
row as a set of columns in a horizontal form. This allows
computing aggregations based on any subset of columns not
used in the GROUP BY clause. A horizontal aggregation
groups rows and aggregates column values (or expressions)
like a vertical aggregation, but returns a set of values (multi-
value) for each group.

We propose the following rules to use horizontal aggre-
gations in order to get valid results. (1) the GROUP BY
clause is optional. That is, the list D1, . . . , Dj may be
empty. The reason being that the user may want to get
global aggregations only. If the GROUP BY clause is not
present then there is only one result row. Equivalently, rows
can be grouped by a constant value (e.g. D1 = 0) to al-
ways include a GROUP BY clause in code generation. (2)
the BY clause, inside the function call, and therefore the
list Dj+1, . . . , Dk are required, Also, to avoid singleton sets,
{D1, . . . , Dj}∩{Dj+1, . . . , Dk} = ∅. (3) horizontal aggrega-
tions may be combined with vertical aggregations or other
horizontal aggregations on the same query provided both
refer to the same grouping based on {D1, . . . , Dj}. (4) the
argument to aggregate represented by A is required; A can
be a column name or an arithmetic expression. In the case
of count() A can be * or the ”DISTINCT” keyword followed
by a list of column names. (5) when Hagg() is used more
than once, in different terms, it can be used with different
grouping columns to compute individual aggregations. But
according to (2) columns used in each term must be disjoint
from {D1, . . . , Dj}.

3.2 Examples
In a data mining project most of the effort is spent in

preparing and cleaning a data set. A big part of this effort
involves deriving metrics and coding categorical attributes
from the data set in question and storing them in a tabular
(observation, record) form for analysis so that they can be
used by a data mining algorithm.

Assume we want to summarize sales information with one
store per row. In more detail, we want to know the number
of transactions by store for each day of the week, the total
sales for each department of the store and total sales. The
following query provides the answer.

SELECT
storeId,
sum(salesAmt BY dayofweekName),
count(distinct transactionid BY dayofweekNo),
sum(salesAmt BY deptIdName),
sum(salesAmt)

FROM transactionLine
,DimDayOfWeek,DimDepartment,DimMonth

WHERE transactionLine.dayOfWeekNo
=DimDayOfWeek.dayOfWeekNo
AND
transactionLine.deptId
=DimDepartment.deptId

GROUP BY storeId;

This query produces a result table like the one shown in
Table 1. Observe each horizontal aggregation effectively re-
turns a set of columns as result and there is call to a standard

vertical aggregation with no subgrouping columns. For the
first horizontal aggregation we show day names and for the
second one we show the number of day of the week. These
columns can be used for linear regression, clustering or fac-
tor analysis. We can analyze correlation of sales based on
daily sales. Total sales can be predicted based on volume
of items sold each day of the week. Stores can be clustered
based on similar sales for each day of the week or similar
sales in the same department.

Consider a more complex example where we want to know
for each store sub-department how sales compare for each
region-month showing total sales for each region/month com-
bination. Sub-departments can be clustered based on similar
sales amounts for each region/month combination. We as-
sume all stores in all regions have the same departments,
but local preferences lead to different buying patterns. This
query provides the required data set:

SELECT subdeptid,
sum(salesAmt BY regionNo,monthNo)

FROM transactionLine
GROUP BY subdeptId;

We turn our attention to another common data prepara-
tion task, coding categorical attributes as binary attributes.
The idea is to create a binary dimension for each distinct
value of a categorical attribute. This is accomplished by
simply calling max(1 BY..) grouping by the appropriate
columns. The following query produces a vector showing
a 1 for the departments where the customer made a pur-
chase, and 0 otherwise. The clause to switch nulls to 0 is
optional.

SELECT
transactionId,
max(1 BY deptId DEFAULT 0)

FROM transactionLine
GROUP BY transactionId;

The following query on employees creates a binary flag for
gender and maritalStatus combined together to try to an-
alyze potential relationships with salary. The output looks
like Table 2.

SELECT
employeeId,
sum(1 BY gender,maritalStatus DEFAULT 0),
sum(salary)

FROM employee
GROUP BY 1;

3.3 Result Table Definition
In the following sections we discuss how to automatically

generate efficient SQL code to evaluate horizontal aggrega-
tions. Modifying the internal data structures and mecha-
nisms of the query optimizer is outside the scope of this
article, but we give some pointers. We start by discussing
the structure of the result table and then query optimization
strategies to populate it. The proposed strategies produce
the same result table.

Let the result table be FH . The horizontal aggregation
function Hagg() returns not a single value, but a set of val-
ues for each group D1, . . . , Dj . Therefore, the result table
FH must have as primary key the set of grouping columns



store salesAmt countTransactionId,dayOfWeekNo salesAmt total
Id Mon Tue Wed Thu Fri Sat Sun 1 2 3 4 5 6 7 dairy meat drinks sales
1 500 200 120 140 90 230 160 20 2 15 50 50 60 30 700 260 480 1440
2 200 100 400 100 900 100 200 8 9 5 10 40 20 40 300 500 1200 2000
3 100 100 100 200 200 200 200 5 6 4 13 44 16 50 350 350 400 1100
4 200 300 200 300 200 300 200 24 21 24 23 29 26 20 700 700 300 1700

Table 1: A tabular data set, suitable for data mining, obtained from table transactionLine

Employee Gender&Marital Salary
Id M&Single M&Married F&Single F&married
1 1 0 0 0 30k
2 0 0 1 0 50k
3 0 0 0 1 40k
4 1 0 0 0 45k

Table 2: Binary codes for gender/maritalStatus from table employee

{D1, . . . , Dj} and as non-key columns all existing combina-
tions of values Dj+1, . . . , Dk. We get the distinct value com-
binations of Dj+1, . . . , Dk using the following statement. To
simplify writing let h = j + 1 (we will use h sometimes to
refer to Dj+1).

SELECT DISTINCT Dh, .., Dk FROM F ;

Assume this statement returns a table with N distinct
rows. Then each row is used to define one column to store
an aggregation for one specific combination of dimension
values. Table FH that has {D1, . . . , Dj} as primary key and
N columns corresponding to each subgroup. Therefore, FH

has j + N columns in total.

CREATE TABLE FH(
D1 int, . . . ,,Dj int

,”Dh = vh1 .. Dk = vk1” real
,”Dh = vh2 .. Dk = vk2” real
..
,”Dh = vhN .. Dk = vkN” real

) PRIMARY KEY(D1, . . . , Dj);

3.4 Query Optimization
We propose two basic strategies to evaluate horizontal ag-

gregations. The first strategy relies only on relational oper-
ations. That is, only doing select, project, join and aggre-
gation queries; we call it the SPJ strategy. The second form
relies on the SQL ”case” construct; we call it the CASE
strategy. Each table has an index on its primary key for
efficient join processing. We do not consider additional in-
dexing mechanisms to accelerate query evaluation.

SPJ strategy
The SPJ strategy is interesting from a theoretical point of
view because it is based on relational operators only. The
basic idea is to create one table with a vertical aggregation
for each result column, and then join all those tables to
produce FH . We aggregate from F into N projected tables
with N selection/projection/join/aggregation queries. Each
table FI corresponds to one subgrouping combination and
has {D1, . . . , Dj} as primary key and an aggregation on A as
the only non-key column. We introduce an additional table
F0, that will be outer joined with projected tables to get
a complete result set. We propose two basic sub-strategies

to compute FH . The first one directly aggregates from F .
The second one computes the equivalent vertical aggregation
in a temporary table FV grouping by D1, . . . , Dk. Then
horizontal aggregations can be indirectly computed from FV

since standard aggregations are distributive [10].
We now introduce the indirect aggregation based on the

intermediate table FV , that will be used for both the SPJ
and the CASE strategy. Let FV be a table containing the
vertical aggregation, based on D1, . . . , Dk. Let V agg() rep-
resent the desired equivalent aggregation for Hagg(). The
statement to compute FV is straightforward:

INSERT INTO FV

SELECT D1, D2, . . . , Dk, V agg(A)
FROM F
GROUP BY D1, D2, . . . , Dk;

Table F0 defines the number of result rows, and builds the
primary key. F0 is populated so that it contains every exist-
ing combination of D1, . . . , Dj . Table F0 has {D1, . . . , Dj}
as primary key and it does not have any non-key column.

INSERT INTO F0

SELECT DISTINCT D1, . . . , Dj FROM {F |FV };

In the following discussion I ∈ {1, . . . , N} and h = j + 1;
we use h to make writing clear, mainly to define boolean
expressions. We need to get all distinct combinations of
subgrouping columns Dh, . . . , Dk, to create the name of re-
sult columns, to compute the number of result columns (N)
and to generate the boolean expressions for where clauses.
Each where clause consists of a conjunction of k − h + 1
equalities based on Dh, . . . , Dk.

SELECT DISTINCT Dh, . . . , Dk FROM {F |FV };

Tables F1, . . . , FN contain individual aggregations for each
combination of Dh, . . . , Dk. The primary key of table FI is
{D1, . . . , Dj}.

INSERT INTO FI

SELECT D1, . . . , Dj , sum(A)
FROM {F |FV }
WHERE Dh = vhI and .. and Dk = vkI

GROUP BY D1, . . . , Dj ;

Then each table FI aggregates only those rows that cor-
respond to the Ith unique combination of Dh, . . . , Dk, given



by the where clause. A possible optimization is synchroniz-
ing scans to compute the N tables concurrently.

Finally, to get FH we just need to do N left outer joins
with the N +1 tables so that all individual aggregations are
properly assembled as a set of N numbers for each group.
Outer joins set result columns to null for missing combina-
tions for the given group. In general, nulls should be the
default value for groups with missing combinations. We be-
lieve it would be incorrect to set the result to zero or some
other number by default if there are no qualifying rows. Such
approach should be considered on a per-case basis.

INSERT INTO FH

SELECT
F0.D1, F0.D2, . . . , F0.Dj ,
F1.A, F2.A, . . . , FN .A

FROM F0

LEFT OUTER JOIN F1

ON F0.D1 = F1.D1 and. . . and F0.Dj = F1.Dj

LEFT OUTER JOIN F2

ON F1.D1 = F2.D1 and. . . and F1.Dj = F2.Dj

. . .
LEFT OUTER JOIN FN

ON FN−1.D1 = FN .D1 and. . . and FN−1.Dj = FN .Dj ;

This statement may look complex, but it is easy to see that
each left outer join is based on the same columns D1, . . . , Dj .
To avoid ambiguity in column references, D1, . . . , Dj are
qualified with F0. Result column I is qualified with ta-
ble FI . Since F0 has M rows each left outer join produces
a partial table with M rows and one additional column.
Then at the end, FH will have M rows and N aggregation
columns. The statement above is equivalent to an update-
based strategy. Table FH can be initialized inserting M rows
with key D1, . . . , Dj and nulls on the N result aggregation
columns. Then FH is iteratively updated from FI joining
on D1, . . . , Dj . This strategy basically incurs twice I/O do-
ing updates instead of insertion. We claim reordering the N

projected tables to join cannot accelerate processing because
each partial table always has M rows. Another claim is that
it is not possible to correctly compute horizontal aggrega-
tions without using outer joins. In other words, natural joins
would produce an incomplete result set.

CASE strategy
For this strategy we use the ”case” programming construct
available in SQL. The case statement returns a value selected
from a set of values based on boolean expressions. From a
relational database theory point of view this is equivalent
to doing a simple projection/aggregation query where each
non-key value is given by a function that returns a number
based on some conjunction of conditions. We propose two
basic sub-strategies to compute FH . In a similar manner
to SPJ, the first one directly aggregates from F and the
second one computes the vertical aggregation in a tempo-
rary table FV and then horizontal aggregations are indirectly
computed from FV .

We now present the direct aggregation strategy. Horizon-
tal aggregation queries can be evaluated by directly aggre-
gating from F and transposing rows at the same time to
produce FH . First, we need to get the unique combinations
of Dh, . . . , Dk that define the matching boolean expression
for result columns. Recall that h = j + 1 represents the
first column to define a horizontal aggregation value. The
SQL code to compute horizontal aggregations directly from

F is as follows. Observe V agg() is a standard SQL aggre-
gation that has a ”case” statement as argument. Horizontal
aggregations need to set the result to null when there are
no qualifying rows for the specific horizontal group to be
consistent with the SPJ strategy and also with the extended
relational model [6].

SELECT DISTINCT Dh, . . . , Dk FROM F ;

INSERT INTO FH SELECT D1, . . . , Dj

,Vagg(CASE WHEN Dh = vh1 and . . . and Dk = vk1

THEN A ELSE null END)
..
,Vagg(CASE WHEN Dh = vhN and . . . and Dk = vkN

THEN A ELSE null END)
FROM F
GROUP BY D1, D2, . . . , Dj ;

This statement computes aggregations in only one scan
on F . The main difficulty is that there must be a feedback
process to produce the ”case” boolean expressions. To make
this statement dynamic, the SQL language would need to
provide a primitive to transpose and aggregate.

Based on FV we just need to transpose rows so that we
get groups based on D1, . . . , Dj . Query evaluation needs
to combine the desired aggregation with ”case” statements
for each distinct combination of values of Dj+1, . . . , Dk. As
explained above, horizontal aggregations need to set the re-
sult to null when there are no qualifying rows for the spe-
cific horizontal group. The boolean expression for each case
statement has a conjunction of k − h + 1 equalities. The
following statements compute FH :

SELECT DISTINCT Dh, . . . , Dk FROM FV ;

INSERT INTO FH SELECT D1,..,Dj

,sum(CASE WHEN Dh = vh1 and .. and Dk = vk1

THEN A ELSE null END)
..
,sum(CASE WHEN Dh = vhN and .. and Dk = vkN

THEN A ELSE null END)
FROM FV

GROUP BY D1, D2, . . . , Dj ;

As can be seen, the code is similar to the code presented
before, the main difference being that we have a call to
sum() in each term, which preserves whatever values were
previously computed by the vertical aggregation. It has the
disadvantage of using two tables instead of one as required
by the direct strategy. For very large tables F computing
FV first, may be more efficient than the direct strategy.

3.5 Discussion
From both proposed strategies we summarize requirements

to compute horizontal aggregations. (1) Grouping rows by
D1, . . . , Dj in one or several queries. (2) Getting all distinct
combinations of Dh, . . . , Dk to know the number and names
of result columns, and match an input row with a result col-
umn. (3) Setting result columns to null when there are no
qualifying rows. (4) Computing vertical aggregations either
directly from F or indirectly from FV . These requirements
can be used as a guideline to modify the query optimizer or
to develop more efficient query evaluation algorithms.

The correct way to treat missing combinations for one
group is to set the result column to null. But in some cases
it may make sense to change nulls to zero, as was the case to



code categorical attributes into binary dimensions. Some as-
pects about both CASE sub-strategies are worth discussing.
The boolean expressions in each term produce disjoint sub-
sets. The queries above can be significantly accelerated us-
ing a smarter evaluation because each input row falls on
only one result column and the rest remain unaffected. Un-
fortunately, the SQL parser does not know this fact and
it unnecessarily evaluates N boolean expressions. This re-
quires O(N) time complexity for each row, making in total
N × (k − h + 1) comparisons. The parser/optimizer can
reduce the number to conjunctions to evaluate to only one
using a hash table that maps one conjunction to one result
column. Then the complexity for one row can go from O(N)
down to O(1).

If an input query has m terms having a mix of horizon-
tal aggregations and some of them share similar subgroup-
ing columns Dh, . . . , Dk the parser/optimizer can avoid re-
dundant comparisons by reordering operations. If a pair of
horizontal aggregations does not share the same set of sub-
grouping columns further optimization seems not possible,
but this is an aspect worth investigating.

Horizontal aggregations should not be used when the set of
columns {Dj+1, . . . , Dk} have many distinct values. For in-
stance, getting horizontal aggregations on transactionLine

using itemId. In theory such query would produce a very
wide and sparse table, but in practice it would cause a run-
time error because the maximum number of columns allowed
in the DBMS may be exceeded.

3.6 Practical Issues
There are two practical issues with horizontal aggrega-

tions: reaching the maximum number of columns and reach-
ing the maximum column name length if columns are au-
tomatically named. Horizontal aggregations may return a
table that goes beyond the maximum number of columns in
the DBMS when the set of columns {Dj+1, . . . , Dk} has a
large number of distinct combinations of values, when col-
umn names are long or when there are several horizontal
aggregations in the same query. This problem can be solved
by vertically partitioning FH so that each partition table
does not exceed the maximum allowed number of columns.
Evidently, each partition table must have D1, . . . , Dj as its
primary key. The second important issue is automatically
generating unique column names. If there are many sub-
grouping columns Dh, . . . , Dk or columns involve strings,
this may lead to very long column names. This can be
solved by generating column identifiers with integers, but
semantics of column content is lost. So we discourage such
approach. An alternative is the use of abbreviations. In
contrast, vertical aggregations do not exhibit these issues
because they return a single number per row and column
names involve an aggregation on one column or expression.

4. EXPERIMENTAL EVALUATION
In this section we present our experimental evaluation on

an NCR computer running the Teradata DBMS software
V2R5. The system had one node with one CPU running at
800MHz, 256MB of main memory and 1 TB of disk space.
The SQL code generator was implemented in the Java lan-
guage and connected to the server via JDBC. We used the
data sets described below. We studied the simpler type of
queries having one horizontal aggregation. Each experiment
was repeated five times. We report the average of time mea-

surements.

4.1 Data Sets
We evaluated optimization strategies for aggregation queries

with a real data set and a synthetic data set.
The real data set came from the UCI Machine Learning

Repository. This data set contained a collection of records
from the US Census. This data set had 68 columns repre-
senting a combination of numeric and categorical attributes
and had n = 200, 000 rows. This was a medium data set
with dimension of different cardinalities and skewed value
distributions.

The synthetic data set was generated as follows. We tried
to generate attributes whose cardinalities reflect a typical
transaction table from a data warehouse. Each dimension
was uniformly distributed so that every group and result
column involved a similar number of rows from F . We in-
dicate the dimension (Di) cardinality in parenthesis. Table
transactionLine had columns deptId(10), subdeptId(100),
itemId(1000), yearNo(4), monthNo(12), dayOfWeekNo(7),
regionId(4), stateId(10), cityId(20) and storeId(30). Ta-
ble transactionLine was generated with n = 1′000, 000 rows
and n = 2′000, 000 rows. This data set provided a rich set of
dimensions with different cardinalities and two sizes to test
scalability.

4.2 Query Optimization Strategies
Table 3 compares query optimization strategies for hori-

zontal aggregations showing different combinations of group-
ing dimensions. The two main factors affecting query eval-
uation time are data set size and grouping dimensions car-
dinalities. Two general conclusions from our experiments
are that the SPJ strategy is always slower and that there is
no single CASE strategy that is always the most efficient.
We can see that the SPJ strategies, for both n = 1M and
n = 2M and low N , are one order of magnitude slower than
the CASE strategies. On the other hand, when N is larger
(subgouping by subdeptId or by dayOfWeekNo,monthNo),
they are two orders of magnitude slower than their counter-
parts. For UScensus, the difference in time between CASE
strategies is not significant. Intuitively, the indirect strategy
should be the most efficient since it summarizes F and stores
partial aggregations on FV . Nevertheless, it can be seen
that for the real data set such strategy is always slower. For
transactionLine and n = 1M there is no clear winner be-
tween the direct CASE (aggregate from F ) and the indirect
(aggregate from FV ) CASE strategy. For transactionLine

and n = 2M the indirect CASE strategy is clearly the best,
but without a significant difference. Comparing SPJ-direct
(from F ) and SPJ-indirect (from FV ) we can see that in cases
when N is small, using FV produces a significant speedup.
But surprisingly, when N is large, it does not.

We compare times with UScensus at n = 1M and n =
2M to find out how time increases if data set size is doubled.
The direct CASE strategy presents clean scalability, where
times increase 50-100% for one subgrouping dimension if n

is doubled. If there are more grouping/subgrouping dimen-
sions, scalability is more impacted by the number of aggre-
gation columns (N). The indirect CASE strategy is much
less impacted by data set size since times for n = 1M are
almost equal to times for n = 2M . This indicates that com-
puting FV plays a less important role than the transposition
operation. Data set size is crucial for the SPJ strategy, but



F D1, . . . , Dj in italics SPJ SPJ CASE CASE
Dj+1, . . . , Dk in normal font from F from FV from F from FV

UScensus n=200k iSchool 31 31 8 10
UScensus n=200k iClass 33 34 10 12
UScensus n=200k iMarital 41 41 9 11
UScensus n=200k dAge iMarital 37 40 8 11
UScensus n=200k dAge,iClass iSchool,iSex 69 71 10 13

transactionLine n=1M regionId 48 33 10 12
transactionLine n=1M monthNo 127 102 15 13
transactionLine n=1M subdeptId 2077 1623 30 37
transactionLine n=1M monthNo dayOfWeekNo 68 56 14 13
transactionLine n=1M deptId dayOfWeekNo,monthNo 1627 1242 28 32
transactionLine n=1M deptId,storeId dayOfWeekNo,monthNo 1536 1140 27 37

transactionLine n=2M regionId 94 38 20 13
transactionLine n=2M monthNo 159 105 28 15
transactionLine n=2M subdeptId 2280 1965 39 36
transactionLine n=2M monthNo dayOfWeekNo 104 58 20 14
transactionLine n=2M deptId dayOfWeek,monthNo 1744 1458 35 34
transactionLine n=2M deptId,storeId dayOfWeekNo,monthNo 1783 1369 40 40

Table 3: Comparing query optimization strategies. Times in seconds

much less important for both CASE strategies. Comparing
the direct with the indirect CASE strategy, it seems n is
the main factor. For large n the indirect CASE strategy
gives best times and for medium/small n the direct CASE
strategy is better. Drawing a clear border where one CASE
strategy will outperform the other one is subject of further
research.

An analysis of performance looking at different dimension
cardinalities on table transactionLine follows. We can see,
from aggregations by regionId, monthNo, and subdeptId,
that increasing dimension cardinality increases time accord-
ingly. This makes evident the relationship between dimen-
sion cardinalities and N . Comparing the aggregation by
(monthNo, dayOfWeekNo) and (deptId, dayOfWeekNo, mon-
thNo), where monthNo and deptId have similar cardinalities
there is about an order of magnitude increase in time for
all strategies. Comparing the aggregation by (deptId, day-
OfWeekNo, monthNo) and (deptId,storeId, dayOfWeekNo,
monthNo), where we are increasing the number of result
rows and decreasing the number of rows that are aggregated
in each of the N result columns, we can see all strategies
performance changes little.

Our experiments indicate that the subgrouping columns
{Dj+1, . . . , Dk} and their cardinalities are very important
performance factors for any query optimization strategy.

5. RELATED WORK
Research on efficiently computing aggregations is exten-

sive. Aggregations are essential in data mining [7] and OLAP
[23] applications. The problem of integrating data mining
algorithms into a relational DBMS is related to our pro-
posal. SQL extensions to define aggregations that can help
data mining purposes are proposed in [3]. Some SQL prim-
itive operations for data mining were introduced in [4]; the
most similar one is an operation to pivot a table. There
are also pivot and unpivot operators, that transpose rows
into columns and columns into rows [9]. An extension to
compute histograms on low dimensional subspaces of high
dimensional data is proposed in [11]. SQL extensions to de-
fine aggregate functions for association rule mining are in-
troduced in [22]. Mining association rules with SQL inside
a relational DBMS is introduced in [20]. There is a special

approach on the same problem using set containment and
relational division to find associations [18]. Database prim-
itives to mine decision trees are proposed in [9, 21]. Imple-
menting a clustering algorithm in SQL is explored in [14].
There has been work following this direction to cluster gene
data [17], with basically the same idea. Some SQL exten-
sions to perform spreadsheet-like operations were introduced
in [24]. Those extensions have the purpose of avoiding joins
to express formulas, but are not optimized to perform par-
tial transposition for each group of result rows. Horizontal
aggregations are closely related to horizontal percentage ag-
gregations [13]. The differences between both approaches
are that percentage aggregations require aggregating at two
grouping levels, require dividing numbers and need to take
care of numerical issues. Horizontal aggregations are sim-
pler and have more general applicability. The problem of
optimizing queries having outer joins has been studied be-
fore. Optimizing joins by reordering operations and using
transformation rules is studied in [8]. This work does not
consider the case of optimizing a query that contains several
outer joins on primary keys only. Traditional query opti-
mizers use a tree-based execution plan, but there is work
that advocates the use of hyper-graphs to provide a more
comprehensive set of potential plans [2]. This approach is
relevant to our SPJ strategy. To the best of our knowledge,
the idea of extending SQL with horizontal aggregations for
data mining purposes and optimizing such queries in a rela-
tional DBMS had not been studied before.

6. CONCLUSIONS
We introduced a new class of aggregate functions, called

horizontal aggregations. Horizontal aggregations are useful
to build data sets in tabular form. A horizontal aggrega-
tion returns a set of numbers instead of a single number
for each group. We proposed a simple extension to SQL
standard aggregate functions to compute horizontal aggre-
gations that only requires specifying subgrouping columns.
We explained how to evaluate horizontal aggregations with
standard SQL using two basic strategies. The first one (SPJ)
relies on relational operators. The second one (CASE) relies
on the SQL case construct. The SPJ strategy is interesting
from a theoretical point of view because it is based on se-



lect, project, natural join and outer join queries. The CASE
strategy is important from a practical standpoint given its
efficiency. We believe it is not possible to evaluate horizon-
tal aggregations using standard SQL without either joins
or ”case” constructs. Our proposed horizontal aggregations
can be used as a method to automatically generate efficient
SQL code with three sets of parameters: grouping columns,
subgrouping columns and aggregated column. On the other
hand, if standard SQL aggregate functions are extended with
the ”BY” clause, this work suggests how to modify the SQL
parser and query optimizer. The impact on syntax is min-
imal. The basic difference between vertical and horizontal
aggregations, from the user point of view, is just the inclu-
sion of subgrouping columns.

We believe the evaluation of horizontal aggregations rep-
resents an important new research problem. There are sev-
eral aspects that warrant further research. The problem of
evaluating horizontal aggregations using only relational op-
erations presents many opportunities for optimization. Us-
ing additional indexes, besides the indexes on primary keys,
is an aspect worth considering. We believe our proposed
horizontal aggregations do not introduce any conflict with
vertical aggregations, but that requires more research and
testing. In particular, we need to study the possibility of
extending OLAP aggregations to provide horizontal capabil-
ities. Horizontal aggregations tend to produce tables with
fewer rows, but with more columns. Thus query optimiza-
tion strategies typically used for vertical aggregations do not
work well for horizontal aggregations. We want to charac-
terize our query optimization strategies more precisely in
theoretical terms with I/O cost models. Some properties on
the cube [10] may be generalized to multi-valued cells.

7. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large
databases. In ACM SIGMOD Conference, pages
207–216, 1993.

[2] G. Bhargava, P. Goel, and B.R. Iyer. Hypergraph
based reorderings of outer join queries with complex
predicates. In ACM SIGMOD Conference, pages
304–315, 1995.

[3] D. Chatziantoniou. The PanQ tool and EMF SQL for
complex data management. In ACM KDD Conference,
pages 420–424, 1999.

[4] J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and
P. Lohman. Non-stop SQL/MX primitives for
knowledge discovery. In ACM KDD Conference, pages
425–429, 1999.

[5] E.F. Codd. A relational model of data for large shared
data banks. ACM CACM, 13(6):377–387, 1970.

[6] E.F. Codd. Extending the database relational model
to capture more meaning. ACM TODS, 4(4):397–434,
1979.

[7] U. Fayyad and G. Piateski-Shapiro. From Data
Mining to Knowledge Discovery. MIT Press, 1995.

[8] C. Galindo-Legaria and A. Rosenthal. Outer join
simplification and reordering for query optimization.
ACM TODS, 22(1):43–73, 1997.

[9] G. Graefe, U. Fayyad, and S. Chaudhuri. On the
efficient gathering of sufficient statistics for
classification from large SQL databases. In Proc. ACM

KDD Conference, pages 204–208, 1998.

[10] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data cube: A relational aggregation operator
generalizing group-by, cross-tab and sub-total. In
ICDE Conference, pages 152–159, 1996.

[11] A. Hinneburg, D. Habich, and W. Lehner.
Combi-operator-database support for data mining
applications. In Proc. VLDB Conference, pages
429–439, 2003.

[12] C. Ordonez. Clustering binary data streams with
K-means. In Proc. ACM SIGMOD Data Mining and
Knowledge Discovery Workshop, pages 10–17, 2003.

[13] C. Ordonez. Vertical and horizontal percentage
aggregations. In Proc. ACM SIGMOD Conference,
pages 866–871, 2004.

[14] C. Ordonez and P. Cereghini. SQLEM: Fast clustering
in SQL using the EM algorithm. In Proc. ACM
SIGMOD Conference, pages 559–570, 2000.

[15] C. Ordonez and E. Omiecinski. FREM: Fast and
robust EM clustering for large data sets. In ACM
CIKM Conference, pages 590–599, 2002.

[16] C. Ordonez and E. Omiecinski. Efficient disk-based
K-means clustering for relational databases. IEEE
Transactions on Knowledge and Data Engineering
(TKDE), 16(8):909–921, 2004.

[17] D. Papadopoulos, C. Domeniconi, D. Gunopulos, and
S. Ma. Clustering gene expression data in SQL using
locally adaptive metrics. In ACM DMKD Workshop,
pages 35–41, 2003.

[18] R. Rantzau. Processing frequent itemset discovery
queries by division and set containment join operators.
In ACM DMKD Workshop, pages 20–27, 2003.

[19] S. Roweis and Z. Ghahramani. A unifying review of
linear Gaussian models. Neural Computation,
11:305–345, 1999.

[20] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating
association rule mining with relational database
systems: alternatives and implications. In Proc. ACM
SIGMOD Conference, pages 343–354, 1998.

[21] K. Sattler and O. Dunemann. SQL database
primitives for decision tree classifiers. In Proc. ACM
CIKM Conference, pages 379–386, 2001.

[22] H. Wang, C. Zaniolo, and C.R. Luo. ATLaS: A small
but complete SQL extension for data mining and data
streams. In Proc. VLDB Conference, pages 1113–1116,
2003.

[23] J. Widom. Research poblems in data warehousing. In
ACM CIKM Conference, pages 25–30, 1995.

[24] A. Witkowski, S. Bellamkonda, T. Bozkaya,
G. Dorman, N. Folkert, A. Gupta, L. Sheng, and
S. Subramanian. Spreadsheets in RDBMS for OLAP.
In Proc. ACM SIGMOD Conference, pages 52–63,
2003.


