Programming the K-means Clustering Algorithm in SQL

Carlos Ordonez
Teradata, NCR
San Diego, CA, USA

ABSTRACT

Using SQL has not been considered an efficient and feasible
way to implement data mining algorithms. Although this is
true for many data mining, machine learning and statistical
algorithms, this work shows it is feasible to get an efficient
SQL implementation of the well-known K-means clustering
algorithm that can work on top of a relational DBMS. The
article emphasizes both correctness and performance. From
a correctness point of view the article explains how to com-
pute Euclidean distance, nearest-cluster queries and updat-
ing clustering results in SQL. From a performance point of
view it is explained how to cluster large data sets defining
and indexing tables to store and retrieve intermediate and
final results, optimizing and avoiding joins, optimizing and
simplifying clustering aggregations, and taking advantage of
sufficient statistics. Experiments evaluate scalability with
synthetic data sets varying size and dimensionality. The
proposed K-means implementation can cluster large data
sets and exhibits linear scalability.

Categories and Subject Descriptors

H.2.8 [Database Management|: Database Applications-
Data Mining

General Terms
Algorithms, Languages

Keywords
Clustering, SQL, relational DBMS, integration

1. INTRODUCTION

There exist many efficient clustering algorithms in the
data mining literature. Most of them follow the approach
proposed in [14], minimizing disk access and doing most of
the work in main memory. Unfortunately, many of those al-
gorithms are hard to implement inside a real DBMS where
the programmer needs to worry about storage management,
concurrent access, memory leaks, fault tolerance, security
and so on. On the other hand, SQL has been growing over
the years to become a fairly comprehensive and complex
query language where the aspects mentioned above are au-
tomatically handled for the most part or they can be tuned

@ ACM, 2004 . This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in KDD Conference 2004,
http://doi.acm.org/10.1145/1014052.1016921

by the database application programmer. Moreover, nowa-
days SQL is the standard way to interact with a relational
DBMS. So can SQL, as it exists today, be used to get an effi-
cient implementation of a clustering algorithm? This article
shows the answer is yes for the popular K-means algorithm.
It is worth mentioning programming data mining algorithms
in SQL has not received too much attention in the database
literature. This is because SQL, being a database language,
is constrained to work with tables and columns, and then
it does not provide the flexibility and speed of a high level
programming language like C++ or Java. Summarizing, this
article presents an efficient SQL implementation of the K-
means algorithm that can work on top of a relational DBMS
to cluster large data sets.

The article is organized as follows. Section 2 introduces
definitions and an overview of the K-means algorithm. Sec-
tion 3 introduces several alternatives and optimizations to
implement the K-means algorithm in SQL. Section 4 con-
tains experiments to evaluate performance with synthetic
data sets. Section 5 discusses related work. Section 6 pro-
vides general conclusions and directions for future work.

2. DEFINITIONS

The basic input for K-means [2, 6] is a data set Y contain-
ing n points in d dimensions, Y = {y1,y2,...,yn}, and k,
the desired number of clusters. The output are three matri-
ces W, C, R, containing k weights, £ means and k variances
respectively corresponding to each cluster and a partition of
Y into k subsets. Matrices C' and R are d x k and W is kx 1.
Throughout this work three subscripts are used to index ma-
trices: i =1,...,n,5=1,...,k,l=1,...,d. To refer to one
column of C' or R we use the j subscript (e.g. Cj, R;); C;
can be understood as a d-dimensional vector containing the
centroid of the jth cluster having the respective squared ra-
diuses per dimension given by R;. For transposition we will
use the T" superscript. For instance C; refers to the jth cen-
troid in column form and CJT is the jth centroid in row form.
Let X1, Xo, ..., Xk be the k subsets of Y induced by clusters
st. X; NX; =0,7 # 5. K-means uses Euclidean distance
to find the nearest centroid to each input point, defined as
d(yi, Ci) = (yi — C3)"(yi — Cj) = X (s — Cuy)*.

K-means can be described at a high level as follows. Cen-
troids C; are generally initialized with k points randomly
selected from Y for an approximation when there is an idea
about potential clusters. The algorithm iterates executing
the E and the M steps starting from some initial solution un-
til cluster centroids become stable. The E step determines
the nearest cluster for each point and adds the point to it.

That is, the E step determines cluster membership and par-
titions Y into k subsets. The M step updates all centroids C}
by averaging points belonging to the same cluster. Then the
k cluster weights W; and the k diagonal variance matrices
R; are updated based on the new C; centroids. The quality
of a clustering solution is measured by the average quantiza-
tion error ¢(C') (also known as squared assignment distance
[6]). The goal of K-means is minimizing ¢(C), defined as
q(C) = > d(yi;,C;)/n. where y; € X;. This quantity
measures the average squared distance from each point to
the cluster where it was assigned according to the parti-
tion into k subsets. K-means stops when ¢(C) changes by a
marginal fraction (€) in consecutive iterations. K-means is
theoretically guaranteed to converge decreasing ¢(C') at each
iteration [6], but it is common to set a maximum number of
iterations to avoid long runs.

3. IMPLEMENTING K-MEANS IN SQL

This section presents our main contributions. We explain
how to implement K-means in a relational DBMS by auto-
matically generating SQL code given an input table Y with
d selected numerical columns and k, the desired number of
clusters as input as defined in Section 2. The SQL code
generator dynamically creates SQL statements monitoring
the difference of quality of the solution in consecutive itera-
tions to stop. There are two main schemes presented in here.
The first one presents a simple implementation of K-means
explaining how to program each computation in SQL. We re-
fer to this scheme as the Standard K-means implementation.
The second scheme presents a more complex K-means im-
plementation incorporating several optimizations that dra-
matically improve performance. We call this scheme the
Optimized K-means implementation.

There are important assumptions behind our proposal
from a performance point of view. Two tables with n rows
having the same primary key can be joined in time O(n)
using a hash-based join. So if a different DBMS does not
provide hash-based indexing, joining tables may take longer
than O(n). However, the proposed scheme should still pro-
vide the most efficient implementation even in such cases.
In general it is assumed that n is large, whereas d and k
are comparatively small. This has a direct relationship to
how tables are defined and indexed, and to how queries are
formulated in SQL. These assumptions are reasonable in a
database environment.

3.1 Basic Framework

The basic scheme to implement K-means in SQL, having
Y and k as input (see Section 2), follows these steps:
Setup. Create, index and populate working tables.
Initialization. Initialize C.

E step. Compute k distances per point y;.

E step. Find closest centroid C; to each point y;.
M step. Update W, C and R.

M step. Update table to track K-means progress.
Steps 3-6 are repeated until K-means converges.

3.2 Standard K-means

ZR AN R

Creating and populating working tables

In the following paragraphs we discuss table definitions, in-
dexing and several guidelines to write efficient SQL code

to implement K-means. In general we omit Data Defini-
tion Language (DDL) statements and deletion statements to
make exposition more concise. Thus most of the SQL code
presented involves Data Manipulation Language (DML) state-
ments. The columns making up the primary key of a table
are underlined. Tables are indexed on their primary key for
efficient join access. Subscripts i, j, 1 (see Section 2) are de-
fined as integer columns and the d numerical dimensions of
points of Y, distances, and matrix entries of W, C, R are de-
fined as FLOAT columns in SQL. Before each INSERT state-
ment it is assumed there is a "DELETE FROM ... ALL;”
statement that leaves the table empty before insertion.

As introduced in Section 2 the input data set has d di-
mensions. In database terms this means there exists a table
Y with several numerical columns out of which d columns
are picked for clustering analysis. In practice the input ta-
ble may have many more than d columns but to simplify
exposition we will assume its definition is Y (Y1, Y2, .., Ya).
So the SQL implementation needs to build its own reduced
version projecting the desired d columns. This motivates
defining the following ”horizontal” table with d 4+ 1 columns:
Y H(i,Y1,Ya, ..., Yq) having ¢ as primary key. The first col-
umn is the 4 subscript for each point and then Y H has the
list of d dimensions. This table saves Input/Output access
(I/O) since it may have fewer columns than Y and it is
scanned several times during the algorithm progress. In
general it is not guaranteed ¢ (point id) exists because the
primary key of Y may consist of more than one column, or it
may not exist at all because Y is the result of some aggrega-
tions. In an implementation in an imperative programming
language like C++ or Java the point identifier is immaterial
since Y is accessed sequentially, but in a relational database
it is essential. Therefore it is necessary to automatically
create ¢ guaranteeing a unique identifier for each point y;.
The following statement computes a cumulative sum on one
scan over Y to get ¢ € {1...n} and projects the desired d
columns.

INSERT INTO YH

SELECT sum(1) over(rows unbounded preceding) AS i
Y1,Y2,...,Y,

FROM Y;

The point identifier i can be generated with some other
SQL function than returns a unique identifier for each point.
Getting a unique identifier using a random number is not a
good idea because it may get repeated, specially for very
large data sets. As seen in Section 2 clustering results are
stored in matrices W, C, R. This fact motivates having one
table for each of them storing one matrix entry per row
to allow queries access each matrix entry by subscripts j
and I. So the tables are as follows: W(j,w), C(l,J,val),
R(l,7,val), having k, dk and dk rows respectively.

The table Y H defined above is useful to seed K-means,
but it is not adequate to compute distances using the SQL
“sum()” aggregate function. So it has to be transformed
into a "vertical” table having d rows for each input point,
with one row per dimension. This leads to table YV with
definition YV (i,1,val). Then table YV is populated with d
statements as follows:

INSERT INTO YV SELECT j,1,Y1 FROM YH;

INSERT INTO YV SELECT i,d,Y; FROM YH,;

Finally we define a table to store several useful numbers
to track K-means progress. Table model serves this purpose:
model(d, k, n, iteration, avg_q,dif f_avg_q).

Initializing K-means

Most K-means variants use k points randomly selected from
Y to seed C. Since W and R are output they do not re-
quire initialization. In this case Y H proves adequate for
this purpose to seed a "horizontal” version of C. Table
C’H(l', Y1,...,Ys) is updated as follows.

INSERT INTO CH
SELECT 1,Y1,..,Y; FROM YH SAMPLE 1;

INSERT INTO CH
SELECT k,Y1,..,Ys FROM YH SAMPLE 1,

Once CH is populated it can be used to initialize C' with
dk statements as follows,

INSERT INTO C
SELECT 1,1,Y; FROM CH WHERE j = 1;

INSERT INTO C
SELECT d, k, Y, FROM CH WHERE j = k;

Computing Euclidean distance

K-means determines cluster membership in the E step. This
is an intensive computation since it requires O(dkn) oper-
ations. Distance computation needs YV and C as input

The output should be stored in a table having k& dis-
tances per point. That leads to the table YD defined as
Y D(i, j, distance). The SQL is as follows.

INSERT INTO YD
SELECT ¢, j,sum((YV.val-C.val)**2)
FROM YV,C WHERE YV. = C.[GROUP BY i,7;

After the insertion Y D contains kn rows. Before doing the
GROUP BY there is an intermediate table with dkn rows.
This temporary table constitutes the largest table required
by K-means.

Finding the nearest centroid

The next step involves determining the nearest neighbor
(among clusters) to each point based on the k distances and
storing the index of that cluster in table Y NN(¢,j). There-
fore, table Y NN will store the partition of Y into k subsets
being j the partition subscript. This requires two steps in
SQL. The first step involves determining the minimum dis-
tance. The second step involves assigning the point to the
cluster with minimum distance. A derived table and a join
are required in this case. Table Y NN contains the parti-
tion of Y and will be the basic ingredient to compute cen-
troids. This statement assumes that the minimum distance
is unique for each point. In abnormal cases, where distances
are repeated (e.g. because of repeated centroids, or many
repeated points) ties are broken in favor of the cluster with
the lowest subscript j; that code is omitted.

INSERT INTO YNN
SELECT YD.i,YD.j
FROM Y D, (SELECT 4, min(distance) AS mindist
FROM YD GROUP BY ¢)YMIND
WHERE YD.i =YMIND.i
and Y D.distance = Y M IN D.mindist;

Updating clustering results

The M step updates W, C, R based on the partition Y NN
obtained in the E step. Given the tables introduced above
updating clustering parameters is straightforward. The SQL
generator just needs to count points per cluster, compute the
average of points in the same cluster to get new centroids,
and compute variances based on the new centroids. The
respective statements are shown below.

INSERT INTO W SELECT j,count(*)
FROM YNN GROUP BY j;
UPDATE W SET w = w/model.n;

INSERT INTO C
SELECT [, j,avg(YV.wal) FROM YV,YNN
WHERE YV.i = YNN.i GROUP BY [, j;

INSERT INTO R
SELECT C.1,C.j,avg((YVwal — C.wal) * %2)
FROM C,YV,YNN
WHERE YV.i=YNN.

and YV.l = C.l and YNN.j = C.j
GROUP BY C.I,C.j;

Observe that the M step as computed in SQL has com-
plexity O(dn) because Y NN has n rows and YV has dn
rows. That is, the complexity is not O(dkn), which would
be the time required for a soft partition approach like EM.
This fact is key to a better performance.

Finally, we just need to track K-means progress:

UPDATE model

FROM (SELECT sum(W * R.val) AS avg_q
FROM R,W WHERE R.j = W.j)avgR

SET avg_q = avgR.avg_q,iteration=iteration+1;

3.3 Optimized K-means

Even though the implementation introduced above cor-
rectly expresses K-means in SQL there are several optimiza-
tions that can be made. These optimizations go from physi-
cal storage organization and indexing to concurrent process-
ing and exploiting sufficient statistics.

Physical storage and indexing of large tables

We now discuss how to index tables to provide efficient ac-
cess and improve join performance. Tables Y H (3, Y1, .., Yy)
and YNN (i, j) have n rows each, each has i as its primary
key and both need to provide efficient join processing for
points. Therefore, it is natural to index them on their pri-
mary key ¢. When one row of Y H is accessed all d columns
are used. Therefore, it is not necessary to individually index
any of them. Table YV (4,1, val) has dn rows and needs to
provide efficient join processing with C' to compute distances
and with YNN to update W,C; R. When K-means com-
putes distances squared differences (y;; — Clj)z are grouped
by i and j, being ¢ the most important factor from the per-
formance point of view. To speed up processing all d rows
corresponding to each point ¢ are physically stored on the
same disk block and YV has an extra index on i. The table
block size for YV is increased to allow storage of all rows
on the same disk block. The SQL to compute distances is
explained below.

Faster distance computation

For K-means the most intensive step is distance computa-
tion, which has time complexity O(dkn). This step requires
both significant CPU use and I/O. We cannot reduce the
number of arithmetic operations required since that is in-
trinsic to K-means itself (although under certain constraints
computations may be accelerated), but we can optimize dis-
tance computation to decrease I/O. Recalling the SQL code
given in Section 3.2 we can see distance computation re-
quires joining one table with dn rows and another table
with dk rows to produce a large intermediate table with dkn
rows (call it Ykdn). Once this table is computed the DBMS
groups rows into dk groups. So a critical aspect is being able
to compute the k distances per point avoiding this huge in-
termediate table Ydkn. A second aspect is determining the
nearest cluster given k distances for ¢ € 1...n. Determining
the nearest cluster requires a scan on Y D, reading kn rows,
to get the minimum distance per point, and then a join to
determine the subscript of the closest cluster. This requires
joining kn rows with n rows.

To reduce 1/O we propose to compute the k distances ”in
parallel” storing them as k& columns of Y D. Then the new
definition for table Y D is Y D(i,d1,d2, . . ., di) with primary
key ¢, where d; = d(y;, C;), the distance from point ¢ to the
jth centroid. This decreases I/O since disk space is reduced
(less space per row, index on n rows instead of kn rows)
and the k distances per point can be obtained in one I/O
instead of k£ I/Os. This new scheme requires changing the
representation of matrix C' to have all k values per dimen-
sion in one row or equivalent, containing one cluster centroid
per column, to properly compute distances. This leads to
a join producing a table with only n rows instead of kn
rows, and creating an intermediate table with dn rows in-
stead of dkn rows. Thus C is stored in a table defined as
C(l,Cv,Cq,...,Ck), with primary key ! and indexed by .
At the beginning of each E step column C is copied from a
table W CR to table C. Table WCR is related to sufficient
statistics concepts and will be introduced later. The SQL to
compute the k distances is as follows:

INSERT INTO YD
SELECT ¢
sum((YVal — C.C1)**2) AS di

sum((YVial — C.C)**2) AS dj
FROM YV,C WHERE YV.I = C.Il GROUP BY j;

Observe each dimension of each point in YV is paired
with the corresponding centroid dimension. This join is effi-
ciently handled by the query optimizer because YV is large
and C is small. An alternative implementation with UDF's,
not explored in this work, would require to have a different
distance UDF for each value of d, or a function allowing a
variable number of arguments (e.g. the distance between
yi and C; would be distance(yii, C1j,y2i, Coj, - - -, Ydi, Cdj)-
This is because UDF's can only take simple data types (float-
ing point numbers in this case) and not vectors. Efficiency
would be gained by storing matrix C in cache memory and
avoiding the join. But a solution based on joins is more
elegant and simpler and time complexity is the same.

Nearest centroid without join

The disadvantage about k distances being all in one row
is that the SQL min() aggregate function is no longer use-

ful. We could transform Y D into a table with kn rows and
then use the same approach introduced in Section 3.2 but
that transformation and the subsequent join would be slow.
Instead we propose to determine the nearest cluster using
a CASE statement instead of calling the min() aggregate
function. Then the SQL to get the subscript of the closest
centroid is:

INSERT INTO YNN SELECT 4,
CASE

WHEN d; <d .. AND d; <d, THEN 1

WHEN ds < ds .. AND ds < di, THEN 2

ELSE &k
END FROM Y D;

It becomes evident from this approach there is no join
needed and the search for the closest centroid for one point
is done in main memory. The nearest centroid is determined
in one scan on Y D. Then I/O is reduced from (2kn + n)
I/Os to n I/Os. Observe that the jth WHEN predicate has
k—j terms. That is, as the search for the minimum distance
continues the number of inequalities to evaluate decreases.
however, the CASE statement has time complexity O(k?)
instead of O(k) which is the usual time to determine the
nearest centroid. So we slightly affect K-means performance
from a theoretical point of view. But I/O is the main per-
formance factor and this CASE statement works in memory.
If k£ is more than the maximum number of columns allowed
in the DBMS YD and C' can be vertically partitioned to
overcome this limitation. This code could be simplified with
a User Defined Function ”argmin()” that returns the sub-
script of the smallest argument. The problem is this func-
tion would require a variable number of arguments.

Sufficient Statistics

Now we turn our attention to how to accelerate K-means us-
ing sufficient statistics. Sufficient statistics have been shown
to be an essential ingredient to accelerate data mining al-
gorithms [2, 4, 14, 7]. So we explore how to incorporate
them into a SQL-based approach. The sufficient statistics
for K-means are simple. Recall from Section 2 X; repre-
sents the set of points in cluster j. We introduce three new
matrices N, M, Q to store sufficient statistics. Matrix N is
k x 1, matrices M and @ are d X k. Observe their sizes
are analogous to W, C, R sizes and that Q); represents a di-
agonal matrix analogous to R;. N; stores the number of
points, M stores the sum of points and); stores the sum
of squared points in cluster j respectively. Then N; = | X;],
M; = Zyiexj vi, Q; = Zyier y¥y:. Based on these three
equations W,C, R are computed as W; = Nj/2§:1 Wy,
C; = M;/Nj, Rj = Q;/N; — C{ Cj.

To update parameters we need to join Y NN, that con-
tains the partition of Y into k subsets, with YV, that con-
tains the actual dimension values. It can be observed that
from a database point of view sufficient statistics allow mak-
ing one scan over the partition X; given by Y NN grouped
by j. The important point is that the same statement can
be used to update N, M, Q if they are stored in the same
table. That is, keeping a denormalized scheme. So instead
of having three separate tables, N, M, are stored on the
same table. But if we keep sufficient statistics in one table
that leads to also keeping the clustering results in one table.

So we introduce table definitions: NMQ(l,j, N, M, Q) and
WCR(l,j,W,C,R). Both tables have the same structure
and are indexed by the primary key (I,5). So these table
definitions substitute the table definitions for the Standard
K-means implementation introduced above. Then the SQL
to update sufficient statistics is as follows:

INSERT INTO NM@ SELECT

l,j,sum(1.0) AS N

sum(YVoval) AS M sum(YV.val*YV.val) AS Q
FROM YV, YNN WHERE YV.i =YNN.i
GROUP BY [, j;

By using table NMQ the SQL code for the M step gets
simplified and becomes faster to update WCR.

UPDATE WCR SET W = 0;
UPDATE WCR SET
W=N
,C=CASE WHEN N > 0 THEN M/N ELSE C END
,R=CASE WHEN N > 0 THEN Q/N — (M/N) %2
ELSE R END
WHERE NMQ.l = WCR.Il AND NMQ.j = WCR.j;
UPDATE WCR SET W=W /model.n;

An INSERT/SELECT statement, although equivalent and
more efficient, would eliminate clusters with zero points from
the output. We prefer to explicitly show those clusters. The
main advantages of using sufficient statistics compared Stan-
dard K-means, is that M and @ do not depend on each other
and together with N they are enough to update C, R (elim-
inating the need to scan YV). Therefore, the dependence
between C and R is removed and both can be updated at the
same time. Summarizing, Standard K-means requires one
scan over Y NN to get W and two joins between Y NN and
YV to get C and R requiring in total three scans over Y NN
and two scans over Y'V. This requires reading (3n + 2dn)
rows. On the other hand, Optimized K-means, based on
sufficient statistics, requires only one join and one scan over
Y NN and one scan over YV. This requires reading only
(n+ dn) rows. This fact speeds up the process considerably.

Table WCR is initialized with dk rows having columns
W, R set to zero and column C' initialized with & random
points taken from C'H. Table C'H is initialized as described
in Section 3.2. Then C'H is copied to column C in WCR.
At the beginning of each E step WCR.C is copied to table
C' so that table C is current.

4. EXPERIMENTAL EVALUATION

Experiments were conducted on a Teradata machine. The
system was an SMP (parallel Symmetric Multi-Processing)
with 4 nodes, having one CPU each running at 800 Mhz,
and 40 AMPs (Access Module Processors) running Teradata
V2R4 DBMS. The system had 10 terabytes of available disk
space. The SQL code generator was programmed in the Java
language, which connected to the DBMS through the JDBC
interface.

4.1 Running time varying problem sizes

Figure 1 shows scalability graphs. We conducted our tests
with synthetic data sets having defaults d = 8, k = 8,n =
1000k (with means in [0,10] and unitary variance) which rep-
resent typical problem sizes in a real database environment.

Since the number of iterations K-means takes may vary de-
pending on initialization we compared the time for one itera-
tion. This provides a fair comparison. The first graph shows
performance varying d, the second graph shows scalability at
different k values and the third graph shows scalability with
the most demanding parameter: n. These graphs clearly
show several differences among our implementations. Opti-
mized K-means is always the fastest. Compared to Standard
K-means the difference in performance becomes significant
as d, k,n increase. For the largest d, k,n values Optimized
K-means is ten orders of magnitude faster than Standard K-
means. Extrapolating these numbers, we can see Optimized
K-means is 100 times faster than Standard K-means when
=32, k=32andn=1M (ord =32, k =8, n = 16M)
and 1000 times faster when d = 32, k = 32 and n = 16 M.

5. RELATED WORK

Research on implementing data mining algorithms using
SQL includes the following. Association rules mining is ex-
plored in [12] and later in [5]. General data mining primi-
tives are proposed in [3]. Primitives to mine decision trees
are introduced in [4, 13]. Programming the more powerful
EM clustering algorithm in SQL is explored in [8].

Our focus was more on the side of writing efficient SQL
code to implement K-means rather than proposing another
“fast” clustering algorithm [1, 2, 14, 9, 7]. These algorithms
require a high level programming language to access memory
and perform complex mathematical operations. The way we
exploit sufficient statistics is similar to [2, 14]. This is not
the first work to explore the implementation of a cluster-
ing algorithm in SQL. Our K-means proposal shares some
similarities with the EM algorithm implemented in SQL [8].
This implementation was later adapted to cluster gene data
[11], with basically the same approach. We explain impor-
tant differences between the EM and K-means implemen-
tations in SQL. K-means is an algorithm strictly based on
distance computation, whereas EM is based on probability
computation. This results in a simpler SQL implementa-
tion of clustering with wider applicability. We explored the
possibility of using sufficient statistics in SQL, which are
crucial to improve performance. The clustering model is
stored in a single table, as opposed to three tables. Sev-
eral aspects related to table definition, indexing and query
optimization not addressed before are now studied in de-
tail. A fast K-means prototype to cluster data sets inside
a relational DBMS using disk-based matrices is presented
in [10]. The disk-based implementation and the SQL-based
implementation are complementary solutions to implement
K-means in a relational DBMS.

6. CONCLUSIONS

This article introduced two implementations of K-means
in SQL. The proposed implementations allow clustering large
data sets in a relational DBMS eliminating the need to ex-
port or access data outside the DBMS. Only standard SQL
was used; no special data mining extensions for SQL were
needed. This work concentrated on defining suitable ta-
bles, indexing them and writing efficient queries for clus-
tering purposes. The first implementation is a naive trans-
lation of K-means computations into SQL and serves as a
framework to introduce an optimized version with superior
performance. The first implementation is called Standard

Performance varying d

Performance varying k

St kM ——/]

Opt KM --x4-

12000
11000
10000
9000
8000
7000
6000
5000

Performance varying n

StdKM
Opt KM

Time in seconds

4000 -
3000 |-
2000 -
1000

1600 : g
1500 - ——/ 1800
0or OptKM -4 |
1400 1600
1300
1200 1400
o 1100 [@
21000 - 2 1200
g M0F 8 1000
o 800 0
o 10 o 800
£ ew0f £
=500 | F 600
400 -
300 40
200 200 |
100 |
0 0
0 32 0

nx 1 million

Figure 1: Time per iteration varying d, k,n. Defaults: d = 8,k = 8, n = 1’000, 000

K-means and the second one is called Optimized K-means.
Optimized K-means computes all Euclidean distances for
one point in one I/0, exploits sufficient statistics and stores
the clustering model in a single table. Experiments evaluate
performance with large data sets focusing on elapsed time
per iteration. Standard K-means presents scalability prob-
lems with increasing number of clusters or number of points.
Its performance graphs exhibit nonlinear behavior. On the
other hand, Optimized K-means is significantly faster and
exhibits linear scalability. Several SQL aspects studied in
this work have wide applicability for other distance-based
clustering algorithms found in the database literature.

There are many issues that deserve further research. Even
though we proposed an efficient way to compute Euclidean
distance there may be more optimizations. Several aspects
studied here also apply to the EM algorithm. Clustering
very high dimensional data where clusters exist only on pro-
jections of the data set is another interesting problem. We
want to cluster very large data sets in a single scan using
SQL combining the ideas proposed here with User Defined
Functions, OLAP extensions, and more efficient indexing.
Certain computations may warrant defining SQL primitives
to be programmed inside the DBMS. Such constructs would
include Euclidean distance computation, pivoting a table to
have one dimension value per row and another one to find
the nearest cluster given several distances. The rest of com-
putations are simple and efficient in SQL.

7. REFERENCES

[1] C. Aggarwal and P. Yu. Finding generalized projected
clusters in high dimensional spaces. In ACM SIGMOD
Conference, pages 70-81, 2000.

[2] P. Bradley, U. Fayyad, and C. Reina. Scaling
clustering algorithms to large databases. In Proc.
ACM KDD Conference, pages 9-15, 1998.

[3] J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and
P. Lohman. Non-stop SQL/MX primitives for
knowledge discovery. In ACM KDD Conference, pages
425-429, 1999.

[4] G. Graefe, U. Fayyad, and S. Chaudhuri. On the
efficient gathering of sufficient statistics for
classification from large SQL databases. In Proc. ACM

(10]

(11]

KDD Conference, pages 204—208, 1998.

H. Jamil. Ad hoc association rule mining as SQL3
queries. In IEEE ICDM Conference, pages 609-612,
2001.

J.B. MacQueen. Some methods for classification and
analysis of multivariate observations. In Proc. of the
5th Berkeley Symposium on Mathematical Statistics
and Probability, 1967.

C. Ordonez. Clustering binary data streams with
K-means. In Proc. ACM SIGMOD Data Mining and
Knowledge Discovery Workshop, pages 10-17, 2003.
C. Ordonez and P. Cereghini. SQLEM: Fast clustering
in SQL using the EM algorithm. In Proc. ACM
SIGMOD Conference, pages 559570, 2000.

C. Ordonez and E. Omiecinski. FREM: Fast and
robust EM clustering for large data sets. In ACM
CIKM Conference, pages 590-599, 2002.

C. Ordonez and E. Omiecinski. Efficient disk-based
K-means clustering for relational databases. I[EEE
Transactions on Knowledge and Data Engineering
(TKDE), 16(8):909-921, 2004.

D. Papadopoulos, C. Domeniconi, D. Gunopulos, and
S. Ma. Clustering gene expression data in SQL using
locally adaptive metrics. In ACM DMKD Workshop,
pages 35-41, 2003.

S. Sarawagi, S. Thomas, and R. Agrawal. Integrating
association rule mining with relational database
systems: alternatives and implications. In Proc. ACM
SIGMOD Conference, pages 343-354, 1998.

K. Sattler and O. Dunemann. SQL database
primitives for decision tree classifiers. In Proc. ACM
CIKM Conference, pages 379-386, 2001.

T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
An efficient data clustering method for very large
databases. In Proc. ACM SIGMOD Conference, pages
103-114, 1996.

