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Abstract—K-means is one of the most popular clustering
algorithms. This article introduces an efficient disk-based im-
plementation of K-means. The proposed algorithm is designed
to work inside a relational database management system. It can
cluster large data sets having very high dimensionality. In general
it only requires three scans over the data set. It is optimized to
perform heavy disk I/O and its memory requirements are low.
Its parameters are easy to set. An extensive experimental section
evaluates quality of results and performance. The proposed
algorithm is compared against the Standard K-means algorithm
as well as the Scalable K-means algorithm.
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I. INTRODUCTION

Clustering algorithms partition a data set into several groups
such that points in the same group are close to each other and
points across groups are far from each other [15]. Without
any doubt clustering is one of the most popular data mining
[42], [18] techniques used nowadays. This problem has been
extensively studied by the statistics community [41], [14], [38],
the database community [8], [17], [46], [24], [2], [33] and
the machine learning community [15], [39], [45], [26]. Most
algorithms work with numeric data [4], [46], [21], [8], [45],
but there is some recent work on clustering categorical data
[22], [20], [25]. There has been extensive database research on
clustering large data sets; some important approaches include
[8], [4], [24], [46], [2], [10], [29]. The problem is not easy.
High dimensionality [24], [1], [2], [3], data sparsity [2], [3],
[21] and noise [4], [9], [10], [24] make clustering a harder
problem. Finding optimal grid partitions for high dimensional
data is introduced in [24]. Finding clusters on projections of
high dimensional data has been the approach in [4], [1], [2],
[3]. Sampling and choosing representative points is proposed
in [21]. On a related theme there has been an interest in
finding ways to integrate data mining with relational database
management systems [40], [16], [11], [31], [12], [35], but for
the most part the integration problem is far from having a final
solution.
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A. Motivation

Despite many proposals for scalable clustering algorithms
made by the database and data mining communities [2], [24],
[4], [21], [46] the K-means algorithm remains one of the most
popular clustering algorithm used in practice [8], [17], [39],
[37], [25], [32], [34]. K-means has several advantages. It is
simple and fast. It works well with a variety of probability
distributions. K-means only has two input parameters: the
number of clusters and the desired accuracy. It can be adapted
to work with categorical data [25]. However, it does have some
drawbacks as well. It may converge to suboptimal solutions
[8], [9], [17]. It may take a high number of iterations to
converge [8], [17], [37]. Such number of iterations cannot
be determined beforehand and may change from run to run.
Results may be bad with high dimensional data. It cannot be
used for clustering problems whose results cannot fit in main
memory; that is the case when the data set has very high
dimensionality or the desired number of clusters is too big.
These limitations motivate having an improved algorithm that
can obtain high quality clusters, that is able to handle big
problem sizes, that is scalable, that is robust to noise and that
has predictable performance.

Now we motivate the need to integrate clustering with a
relational DBMS. In most clustering algorithms the input data
set is given as a plain file or table. Each line in the file contains
one data point and all points have exactly the same number of
dimensions. We believe this framework is restrictive and too
simple from a practical point of view for several reasons. Data
sets are stored mostly in relational databases and in general
there needs to be a conversion to the format required by the
clustering program. This conversion may require exporting
data outside the DBMS, which may take significant time and
in general it is supposed to take place outside the scope of the
algorithm. For very high dimensional data many dimension
values may be zero for many points. So, a plain table/file
wastes a lot of disk space and more importantly, it requires
a lot of CPU computation rendering the clustering algorithm
slower. The storage of clustering results, which are mostly
matrices, is left open ended. Most algorithms work in memory
and leave such results in text or binary files without any special
structure. Again, we believe something has to be done to
integrate the clustering algorithm in a tighter and more flexible
manner to the DBMS to make results easier to use. We propose
storing clustering results in disk-based matrices to solve these
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problems, but trying to keep performance at an acceptable
level. All our improvements have the goal to allow K-means to
cluster large data sets inside a relational database management
system.

B. Contributions and article outline

A summary of our contributions follows. They are divided
into two major groups: algorithmic improvements and disk
organization of input data set and matrices.

Our algorithmic improvements include the following. Ini-
tialization of centroids is based on the global mean and
covariance of the data set. Sufficient statistics are combined
with periodic M steps to achieve faster convergence. The
algorithm uses cluster splitting to improve the quality of the
solution. The algorithm can effectively handle transaction data
by having special operations for sparse matrices (with many
null entries). In general the algorithm only requires three scans
over the data set for each run and one additional one-time run
to compute the global mean and covariance.

We propose organizing the input data set and matrices
on disk instead of managing them in memory having two
goals in mind: to handle clustering problems of any size
and to integrate the algorithm into a relational DBMS. The
organization we propose for the input data set is relational
having one row per dimension value per point. Matrices
are organized as binary files having a fixed structure during
the algorithm execution. Disk I/O (Input/Output access) is
minimized using an adequate disk organization depending
on the K-means algorithm matrix access pattern. Memory
requirements are low and memory management is simple.

The rest of this article is organized as follows. Section
II provides definitions and an overview of K-means. Section
III introduces the efficient disk-based K-means algorithm to
cluster large data sets inside a relational database. Section
IV contains experiments to evaluate quality of results and
performance. Section V discusses related work. The article
concludes with section VI.

II. PRELIMINARIES

A. Definitions

The input is a data set D containing n d-dimensional points:
D = {x1, x2, . . . , xn}, and k, the desired number of clusters.
The output are three matrices C, R, W , containing the means,
the variances and the weights respectively for each cluster and
a partition of D into k subsets. Matrices C and R are d × k
and W is k × 1. Three subscripts are used to index matrices:
i = 1 . . . n, j = 1 . . . k, l = 1 . . . d. Let D1, D2, . . . , Dk be the
k subsets of D induced by clusters s.t. Dj ∩ Dj′ = ∅, j 6= j′.
To refer to one column of C or R we use the j subscript
(e.g. Cj , Rj). K-means uses Euclidean distance to determine
the closest centroid to each point xi. The squared Euclidean
distance from xi to Cj is defined as

d(xi, Cj) = (xi − Cj)
t(xi − Cj). (1)

B. The K-means algorithm

Since K-means can be considered a simplified and con-
strained version of the EM algorithm [13] for a mixture of
Gaussian distributions [39], [9], we describe it under the EM
framework [36]. Due to lack of space we do not show pseudo-
code for the K-means algorithm.

K-means can be described at a high level as follows. K-
means assumes spherical Gaussians [39], [8] (i.e. dimensions
have the same variance). Centroids Cj are generally initialized
with k random points. The algorithm iterates executing the E
and the M steps starting from some initial solution until cluster
centroids become stable. The E step determines the closest
cluster for each point and adds the point to it. That is, the E
step determines cluster membership. The M step updates all
centroids Cj by averaging points belonging to the same cluster.
The cluster weights Wj and diagonal covariance matrices Rj

are also updated based on the new centroids. The quality of
a clustering solution is measured by the average quantization
error q(C), defined in Equation 2 (also known as distortion and
squared reconstruction error) [15], [27], [39]. Lower values for
q(C) are better.

q(C) =
1

n

n
∑

i=1

d(xi, Cj), (2)

where xi ∈ Dj . This quantity measures the average squared
distance from each point to the centroid of the cluster where
it belongs, according to the partition into k subsets. The K-
means algorithm stops when centroids change by a marginal
fraction (ε) in consecutive iterations measured by the quanti-
zation error. K-means is theoretically guaranteed to converge
decreasing q(C) at each iteration [15], [27], [39], but it is
customary to set a threshold on the number of iterations to
avoid excessively long runs.

III. AN EFFICIENT K-MEANS ALGORITHM FOR
RELATIONAL DATABASES

In this section we present our main contributions. We start
by presenting an overview of the proposed algorithm and then
we explain its features in detail. The algorithm features are
presented in two groups. The first group introduces general
algorithmic improvements to K-means. The second group
discusses disk organization of matrices and the input data
set to implement the algorithm inside a relational database
management system. The proposed algorithm will be called
RKM, which stands for Relational K-Means.

A. RKM: the disk-based K-means algorithm

In this section we present an overview of RKM. General
algorithmic improvements are presented in Section III-B and
a disk organization for matrices is presented in Section III-C.
The RKM pseudo-code is given in Figure 1. This is a high-
level description. The algorithm sets initial values of C in
Initialize() based on µ, Σ as proposed in Section III-B. It then
makes three scans over D. The goal of the first scan is to
get good approximations for centroids Cj by exploiting data
redundancy via frequent M steps and by splitting clusters when
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necessary. The goal of the second and third scan is to tune Cj

and shrink Rj values, like Standard K-means. The second and
third scan are not sensitive to the order of points and reduce
the sensitivity (if any) to the order of points from the first
scan. The E step is executed n times per scan. The M step is
periodically executed L =

√
n times per scan. I/O for D and

P is buffered with blocks having b rows. I/O for the matrices
is also buffered using the corresponding block as a buffer for
matrix rows or columns.

Initialize() computes µ, Σ if they are not already computed
and based on them initializes C and R. Global statistics µ and
Σ are computed once per data set, stored on disk and retrieved
in each run thereafter (they are small matrices). Initialize() also
precomputes ∆ and determines d, and based on that memory
is dynamically allocated.

The Estep(), shown in Figure 1, computes the k distances
δ(xi, Cj , Rj) for every point xi and updates M, Q, N based
on the closest cluster index m. Note that the code is prepared
to handle D as a sparse data set seeking and reading the block
corresponding to dimension l of C and R. If D is a non-sparse
matrix, that is, having d rows per point, then the E step visits
all d blocks from C and R. If D is a sparse matrix then ∆
helps saving computation and M and Q cached blocks are
updated in a sparse manner. This optimization is essential to
keep performance at an acceptable level for a sparse matrix
D. Since K-means produces a hard partition only one block
from M and Q needs to be updated. This block is the one
corresponding to the closest cluster m. Updating is expensive
as it requires reading a block and writing it back to disk.
Finally, on the last scan P is written to make the partition
explicit. Weights (W ) are not used in the E step.

The Mstep(), shown in Figure 1, updates C, R, W based on
M, Q, N , splits higher weight clusters when there are clusters
with weight below ω/k and precomputes ∆j , as described
in Section III-B. The code is organized to take M and Q as
input and C and R as output. Since C, R have a transposed
organization with respect to M, Q dk I/Os are needed. Note
that only one entry of C and R, out of k, can be updated per
I/O. An alternative way for the M step would be to swap
the loops and read/write C, R d times and read M, Q dk
times improving performance a little bit. Splitting high weight
clusters and updating ∆ are memory-only operations. The final
task is flushing W to disk.

B. General algorithmic improvements to K-means

Several improvements to K-means are introduced in this
section to deal with very high dimensionality, sparsity, large
data set size and slow convergence. These improvements are
valid for both a memory-based (standard version) or disk-
based (our proposed framework) versions of K-means. We are
also concerned with how to manage all these matrices on disk
to handle unlimited problem sizes, while keeping the algorithm
efficient. That aspect will be addressed in the next section.

The usual way to initialize K-means is to use k random
points as seeds for the centroids [15], [8]. We propose a dif-
ferent method. The global mean µ and the global covariance Σ
[15] are used to seed the algorithm. The matrices µ and Σ are

Input: D and k.
Output: C,R, W and a partition D1,D2, . . . ,Dk

Initialize()
L← √n
FOR scan = 1 TO 3 DO

FOR i = 1 TO n DO
Estep()
IF(i mod (n/L) = 0 AND scan = 1) THEN

Mstep()
END

END
Mstep()

END

Estep()
δ ← ∆
xli ← readRow(D)
i← D.PID, l← D.l
WHILE D.PID = i DO

Cblock← read(C, l)
Rblock ← read(R, l)
FOR j=1 TO k DO

δj = δj + (D.value− Cblockj)2 − Cblock2

j

END
xli ← readRow(D)
i← D.PID, l← D.l

END
Let m be s.t. δm ≤ δj , j = 1, . . . , k
Nm = Nm + 1
Mblock← read(M,m)
Mblock←Mblock + xi, write(Mblock,M, m)
Qblock← read(Q, m)
Qblock← Qblock + xt

i
xi, write(Qblock,Q,m)

IF scan = 3 THEN write({i, m}, P ) END

Mstep()
FOR j = 1 TO k DO

Mblock← read(M, j)
Qblock← read(Q, j)
FOR j = 1 TO d DO

IF Nj > 1 THEN
Cblock← read(C, l)
Cblockj ←Mblockl/Nj

write(Cblock,C, l)
Rblock← read(R, l)
Rblockj ← Qblockl/Nj + (Mblockl/Nj)2

write(Rblock, R, l)
END

END
Wblockj ← Nj/|N |

END
FOR j = 1 TO k DO ∆j ← δ(0̄, Cj) END
write(Wblock,W, 1)
IF scan = 1 THEN splitClusters() END

Fig. 1. Pseudo-code for the RKM algorithm

computed in a one-time pass over D using sufficient statistics
and are available thereafter for future runs. These matrices are
computed as µ = 1

n

∑n

i=1
xi and Σ = ( 1

n

∑n

i=1
xix

t
i) + µµt.

The matrix Σ is a diagonal covariance matrix, and σ is the
matrix whose entries are the square root of Σ entries, that can
be interpreted as standard deviations. The cluster centroids are
initialized using Clj = µl ± rσlj/(d), where r is a uniformly
distributed random number in [0, 1] and the ± sign is also
randomly taken with probability 1/2 since clusters are assumed
to be symmetrical. Notice that as d grows Cj seeds get closer
to µ, the global centroid of D. It is easy to prove that µ is
the closest point to all points in D, even though it does not
belong to D. So what we are doing is getting centroid seeds
that are small distortions of µ. This helps computing high-
dimensional distances. The advantage of this method is that it
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avoids making a pass over D to get the k points. Sampling k
points may be expensive in a database environment. However,
RKM can use that initialization without any changes to the
rest of the algorithm.

When D has many entries equal to zero and d is high
evaluating Equation 1 can be expensive. In typical transaction
databases a few dimensions may have non-zero values. So we
precompute a distance from every Cj to the null vector 0̄. To
that purpose, we define the following k-dimensional vector:
∆j = d(0̄, Cj). Then d(xi, Cj) = ∆j +

∑d

l=1,xlj 6=0
((xli −

Clj)
2−C2

lj). This precomputation will save time when D has
entries equal to zero (transaction files or high-d data), but will
not affect performance when points in D have no coordinates
equal to zero (low dimensional numeric files).

Besides speed of convergence K-means is often criticized
for finding a sub-optimal solution [8], [17], a common problem
with clustering algorithms [14], [15]. Most of the times sub-
optimality involves several clusters grouped together as one
while other clusters have almost no points or no points at all
[8], [17]. So we propose splitting ”heavy” clusters to achieve
higher quality results. RKM splits clusters with higher than
average weight and drops those with very few points. This
process is different from the one proposed in [8], where zero-
weight clusters are re-seeded to some random point that is
far from the current centroid. In more detail, the process is
as follows. When a cluster falls below a minimum weight
threshold it is assigned a new centroid coming from the highest
weight cluster. This high weight cluster gets split in two. The
two new centroids are random points taken within one standard
deviation from the heavy cluster mean. The reason behind
this is that we want to split clusters without unnecessarily
absorbing points that effectively belong to other clusters. We
introduce a minimum weight threshold ω to control splitting;
ω will be an input parameter for RKM. Let a be the index
of the weight of a cluster s.t. Wa < ω/k. Let b be the index
of the weight of the cluster with highest weight. Then Cb −
√

vect[Rj ] and Cb +
√

vect[Rj ] are the new centroids (the
right terms are precisely one standard deviation). The weight
of re-seeded clusters will be Wb/2. The weight of the old low
weight cluster a is ignored and its points are absorbed into
other clusters in future M steps. This process gets repeated
until there are no more clusters below ω/k. Cluster splitting
will be done in the M step.

Sufficient statistics [30], [28], [8], [46], are summaries
of groups of points (in this case clusters), represented by
D1, . . . , Dk. RKM uses matrices M , N and Q, where M and
Q are d× k and N is k × 1, containing sum of points: Mj =
∑

∀xi∈Dj
xi, sum of squared points: Qj =

∑

∀xi∈Dj
xix

t
i, and

number of points per cluster: Nj = |Dj |. The output matrices
C, R, W can be computed from M, Q, N with the following
equations:

Cj = Mj/Nj ,

Rj =
Qj

Nj

−
MjM

t
j

N2

j

,

Wj =
Nj

∑k

J=1
NJ

.

Note that this is a powerful feature since we do not need to
refer to D anymore.

Sufficient statistics reduce I/O time by avoiding repeated
scans over the data and by allowing parameter estimation
periodically as transactions are being read. Periodic M steps
are used to accelerate convergence. Remember that cluster
membership is determined in the E step and C, R, W are
updated in the M step. By using sufficient statistics the
algorithm can run the M step at different times while scanning
D. At one extreme we could have an on-line version [45],
[8] that runs the M step after every point. That would be a
bad choice. The algorithm would be slower because of matrix
operations and it would also be very sensitive to the order
of points because centroids would change after every point
is read. At the other extreme, we could have a version that
runs the M step after all n points are read. This would reduce
it to the standard version of K-means and no performance
improvement would be achieved. However, it must be noted
that the standard version of K-means is not sensitive to the
order of points and has the potential of reaching a local
optimal solution. Therefore, it is desirable to choose a point
somewhere in the middle, but closer to the standard version.
That is, running the M step as few times as possible. We
propose to periodically execute the M step every n/L points,
or equivalently, L times per scan. This accelerates convergence
when n is large and there is high redundancy in D. To some
extent L resembles number of iterations. In fact, L would be
equal to the number of iterations if every block of n/L points
had the same points. The default value for the number of M
steps is L =

√
n. The reason behind this number is that the

algorithm uses as many points to make one M step as the
number of M steps it executes per iteration. The value for L
will be fixed and is not considered a running parameter for
RKM. Observe L is independent from d and k. As n grows
the algorithm will take advantage of data set size to converge
faster. The E step is executed for every point, i.e. n times
per scan. The E step cannot be executed fewer times, unless
sampling is done. In general RKM will run for three iterations.
The first iteration will obtain a good approximation to C by
making frequent M steps and splitting clusters. The second
and third iterations will tune results by making a complete M
step based on the n data points. They also have the purpose
of reducing sensitivity to the order of points on disk from the
first iteration. Further iterations can improve quality of results
by a marginal fraction like the Standard K-means algorithm,
but for our experiments all measurements are taken at the end
of the third iteration.

C. Disk organization of matrices and input data set

In this part we present our proposed disk layout to effi-
ciently manage big clustering problems involving very high
dimensionality or a large number of clusters. Our approach is
different from previous approaches in the sense that we use
disk instead of memory to manage clustering results. This may
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sound counter-intuitive given higher memory capabilities and
disk performance remaining more or less constant in modern
computer systems [11]. Nevertheless, performance is still good
giving the ability to manage problems of unlimited sizes as
we shall see. Besides, an algorithm that uses less memory
at a reasonable speed may be preferable to a very efficient
algorithm that uses a lot of memory. In the end clustering
results have to be stored on disk.

Disk organization for input data set and partition table:
The following discussion is based on the relational model [16],
[44]. Our approach assumes the input data set D is in a certain
relational form. Instead of assuming we have a plain table
with n d-dimensional rows as most other algorithms, each row
contains only the value for one dimension of one point when
such value is different from zero. This is done for efficiency
reasons when D is a matrix having many zeroes, which is
the case of transaction data. The schema (definition) for D
is D(PID, l, value), where PID is the point identifier, l is
the dimension subscript and value is the corresponding non-
zero value. When D has exactly dn rows we refer to it as
a non-sparse matrix, otherwise (when it has less rows) D is
called a sparse matrix. If D is sparse it will have in total td
rows, where t is the average of s(xi) and s(xi) represents the
number of non-zero dimensions for xi; the number t can be
thought of as average transaction size. In practice this table
may have an index, but for our implementation it will not be
required since D is read sequentially. The primary key of D
is simply (PID, l). This representation becomes particularly
useful when D is a sparse matrix, but it is still adequate for
any data set. Converting D to our proposed scheme takes time
O(dn) and is done once per data set. As mentioned in Section
II, K-means produces a hard partition of D into k subsets
D1, D2, . . . , Dk. Each xi is assigned to one cluster and such
assignment is stored in the table P (PID, j). So P contains the
partition of D into k subsets. Each subset Dj can be selected
using j to indicate the desired cluster number. This table is
used for output only and its I/O cost is very low since it is
written n times during the last scan and each row is very
small. We close this part stressing that disk seeks (positioning
the file pointer at a specific disk address inside the file) are not
needed for D and P because they are accessed sequentially.
Also, I/Os are buffered reading a group of D rows or writing
a group of P rows. This buffering capability is provided by
the I/O library of the programming language. This scenario
will be completely different for matrices as we shall see in
the following paragraphs.

Disk organization for matrices: Now we explain how to
organize matrices on disk. This disk organization is oriented
towards making the RKM implementation efficient, but it is
not strictly relational as it was the case for D and P . In fact,
a pure relational scheme would not work in this case because
arrays and subscripts are needed to manipulate matrices. In any
case it is straightforward to transform the proposed matrices
layout into simple relational tables having a primary key and
a number of non-key columns.

When organizing matrices on disk there are three potential
alternatives depending on the granularity level for I/O: (1)
doing one I/O per matrix entry, (2) doing one I/O per matrix

row or column or (3) doing one I/O for the entire matrix.
For performance and memory efficiency reasons we chose (2).
Alternative (1) would require significant I/O effort and mini-
mal memory. Alternative (3) would require a lot of memory
for big clustering problems making it impractical. So each
matrix is stored in a binary file storing its rows or columns
as blocks of floating point numbers. Physical block order in
matrices is important. That is, their position within the file is
used to locate the desired block during RKM operation. Our
disk-based matrices resemble the memory arrays automatically
allocated by a compiler run-time library when matrices are
declared in a high-level programming language [7]. Accessing
entries in memory-based matrices requires computing their
memory address based on matrix sizes. We do an analog thing,
but on disk, at a block level and taking into account that I/O
must be minimized. I/O for matrices is minimized because a
group or matrix entries are read/written as a single block of
information. It would be very slow to do an I/O per matrix
entry. Observe that from a performance point of view this
aspect is immaterial when matrices are memory-based. Each
block is used and accessed as a one-dimensional array to locate
a specific entry. Each block is directly accessed with one seek
(positioning on the required disk address) and one I/O to read
it or write it. The following organization considers that the E
step is executed for every point, but the M step is executed
a few times. Recalling what we said before the E step will
be executed n times and the M step L times per scan. Matrix
disk organization is summarized in Table I.

In the E step C and R have to be read for every xi to
compute δ(xi, Cj , Rj). Note that W is not needed in the E
step. If D is a sparse matrix then most dimensions in C, R
will not be needed to compute δ. But in any case, all k
distances must be computed at each E step. This motivates
storing C, R with all k values for each cluster as one block
for each dimension. That is, each row of C and R, as defined
in Section II becomes one block. Each block is accessed using
the dimension l as an index. If there are s(xi) rows for xi then
only s(xi) blocks from C and R are read. When s(xi) < d
this saves significant I/O. As mentioned before we use ∆ to
store precomputed distances. This auxiliary matrix is small
and therefore it is kept in memory. Once the k distances
δ(xi, Cj , Rj) have been computed we have to add xi to the
closest cluster through its sufficient statistics. This means we
have to read and write only information about one cluster from
M and Q. This motivates storing all d dimensions of one
cluster as one block and using the cluster index j as index.
That is, each column of M and Q, as defined in Section III-B
becomes one block. Let m be the index of the closest cluster.
When xi is added to Mm we have to read Mm from, disk, add
xi to it, and then write Mm back to disk. A similar reasoning
motivates organizing Q in the same manner as M . So only 2
I/Os are needed to update M and 2 I/Os are needed to update
Q per E step. Note that in this case the disk organization we
have for C, R would be inefficient as it would require d I/Os
every time M is updated. Since N is a small matrix it is kept
in memory as one row of k vales avoiding reading it or writing
it. To assign xi to Dm, representing the closest cluster, we just
need to write its PID and m to P in a single I/O.
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Matrix Contents Index # of blocks Block length Memory Disk
D Input points PID,l dn/b or tn/b b b× 16 dn× 16
P Partition PID,m n/b b b× 12 n× 12
C Centroids l d k k × 8 dk × 8
R Variances l d k k × 8 dk × 8
W Weights - 1 k k × 8 k × 8
M Suff. stats j k d d× 8 kd× 8
Q Suff. stats j k d d× 8 kd× 8
N |Dj | - 1 k k × 8 k × 8

TABLE I
DISK ORGANIZATION

The M step is expensive in I/O cost since each entry of every
matrix needs to be accessed and C, R are disk-transposed
with respect to M, Q. Matrices M, Q, N have to be read in
order to write C, R, W . But fortunately the M step is executed
infrequently, and in general the size of the matrices is small
compared to a large data set D. This makes seeks/reads/writes
performance acceptable as we will see in the experimental
section. Matrix W can be organized in a similar manner to
N storing the k weights as a single block, but updating it in
each M step. By writing C, R, W to disk at every M step an
advantage is gained: the algorithm can be stopped at any time.
So if there is an I/O error while scanning D or the algorithm is
simply interrupted by the user the latest results are available
on disk. Even further, the exact value of C, R, W could be
obtained up to the last read point by reading M, Q, N , which
are updated in every E step. Due to lack of space we omit a
further discussion on how to seek, read and write blocks of
C, R, W, M, Q and N .

The read/write operations on the data set and all matrices
are summarized in Table II. The data set D is read in the E
step. Since each row corresponds to one dimension t I/Os are
needed on average per E step if D is sparse and d otherwise.
Also, when cluster membership has been determined P is
updated during the 2nd scan. This produces the hard partition.
Matrices D and P are not needed in the M step. As mentioned
before C, R have to be read in the E step. Each access requires
one seek and one I/O to read the blocks with k values. For
the M step the story is quite different since M and Q are
transposed. So 2dk seeks and I/Os are needed per M step
to update C and R respectively. Note that this is expensive
compared to the E step. An on-line version, running the M
step after every E step, would make RKM extremely slow.

Key observation. RKM has time complexity O(dkn). It re-
quires O(dk) memory operations per E step but only O(d+k)
I/Os per E step. The M step requires O(dk) I/Os but it
is executed only L =

√
n times per scan. So M step’s

contribution to disk I/O is insignificant for large n. Therefore,
an entire scan requires O((d + k)n + dk2) = O((d + k)n)
I/Os for large n. This is a key ingredient to get an efficient
algorithm that is disk-based.

Memory and disk requirements: This section explains how
much memory and how much disk space is needed by the
proposed approach. From Table I it can be seen that memory
requirements are O(d+k), which for large clustering problems
are much smaller than O(dk). This latter space complexity is
the minimum requirement for any approach that is memory-

based. I/O for D and P is buffered with blocks having b rows;
this number is independent from d and k. I/O for the matrices
is also buffered using the corresponding block as a buffer.
There is header information not included for space numbers.
That includes the matrix name, its number of blocks and its
number of columns. We ignore the space required by the
header since it is negligible.

Disk space requirements are O(dk) for matrices O(n) for
P and O(dn) for D. That is, the algorithm does not introduce
any extra space overhead. We assume points in D are available
in any order as long as all rows (dimensions) belonging to the
same point are contiguous. In practice, this involves having
an index, but note that D is accessed sequentially; there is no
need to search a key or make random access. On the other
hand, matrix organization is fixed throughout the algorithm
execution. Then each block can either be located through an
index or through a direct disk address computation. In our
case we directly compute disk addresses based on matrix size
and desired dimension l or cluster number j. Storage for D
assumes PID and dimension are 4 byte integers and dimension
value a double precision (8 bytes). Storage for all matrices is
based on double precision variables. Disk usage in bytes is
summarized in Table I.

D. Examples

We show two examples of potential input data sets and their
corresponding clustering output in Figure 2. Recall that each
block of C represents one dimension, each block has k =
2 values and it is read/written in a single I/O. Blocks are
identified and located (via a disk seek) by dimension index
l. As mentioned before matrix block order is important; in
fact the examples show C exactly as it is physically stored on
disk. W only has one block containing the k cluster weights.
Due to lack of space we do not show R or sufficient statistics
M, Q, N , but they follow the layout defined in Section III-C.

The first example represents a data set D having d = 3 and
n = 4. This data set is a non-sparse matrix. In this case there
are two clusters clearly represented by the repeated rows. The
cluster centroids and weights appear to the right. It can be the
case that some dimensions are not present as rows when their
value is zero. That is the case with the right data set, which
is sparse.

The second example shows a hypothetical transaction table
D containing items treated as a sparse binary matrix. For this
data set d = 4 and n = 5. Those items that are not present
in a transaction do not appear as rows, as it happens it a
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Matrix E step E step M step M step
usage I/Os usage I/Os

D r t or d - 0
P w 1 - 0
C r t or d w 2dk
R r t w 2dk
W - 0 w 1
M rw 2 r k
Q rw 2 r k
N - 0 - 0

TABLE II
READ/WRITE USAGE OF MATRICES

PID l value
1 1 5
1 2 2
1 3 1
2 1 5
2 2 2
2 3 1
3 1 3
3 2 6
3 3 9
4 1 3
4 2 6
4 3 9

C =

l block contents
1 5 3
2 2 6
3 1 9

W =
Key block contents

- 0.5 0.5

TID item value
1 3 1
1 4 1
2 3 1
2 4 1
3 1 1
4 1 1
5 1 1
5 2 1

C =

item block contents
1 0.00 1.00
2 0.00 0.33
3 1.00 0.00
4 1.00 0.00

W =
Key block contents

- 0.4 0.6

Fig. 2. Examples: a multidimensional numeric data set and a transaction data set

typical database environment. The d items are treated as binary
dimensions. When the item is present the dimension value is
1. Otherwise, a value of zero is assumed. However, this value
could stand for some metric like item price or item quantity if
clustering was desired on such characteristics. Clusters appear
on the right just like the first example; first the centroids and
then the weights.

IV. EXPERIMENTAL EVALUATION

This section presents an extensive experimental evaluation.
RKM is compared against the Standard K-means algorithm
[17], [15] and the well-known Scalable K-means algorithm [8].
We implemented the improved Scalable K-means algorithm
proposed in [17]. Both Standard K-means and Scalable K-
means use memory to manipulate C, R, W and M, Q, N
and access disk only to read D or write P . On the other
hand, RKM uses disk all the time keeping one block of each
matrix in memory at any given moment. All experiments were
performed on a Personal Computer running at 800 MHz with
64 MB of memory and a 40 GB hard disk. All algorithms

were implemented in the C++ language. No optimizations
such as parallel processing, multi-threading, caching files or
compression were used in the following tests.

There are three subsections discussing experiments with real
data sets, synthetic numeric data sets and synthetic transaction
data sets respectively. Although there is no universal agree-
ment we consider 20 dimensions or less low dimensionality,
from 30 to 100 high dimensionality, 1000 and beyond very
high dimensionality. In general in order to use K-means it is
necessary to normalize or transform the input data set D to
have dimensions with similar scales since K-means assumes
spherical Gaussians [39]. All data sets were transformed to
have zero mean and unit variance before using the algorithms
using a z-score transformation [28].

The main input parameter was k, the desired number of
clusters. I/O for D and P was buffered using b = 100 rows
for RKM. To stop Scalable K-means and Standard K-means
we used a tolerance threshold of 0.001 for the quantization
error to get acceptable results. A smaller threshold would
only slow the algorithms and it would marginally improve
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the quality of solutions. Buffer size for Scalable K-means was
set at 1% of n, which was the best setting according to the
experiments reported in [8] and [17]. For RKM the default
weight threshold was ω = 0.2 to re-seed clusters. For Scalable
K-means zero-weight clusters were re-seeded to the furthest
neighbor as explained in [8], [17]. Cluster centroids were not
re-seeded for Standard K-means under any circumstance.

The three algorithms used Euclidean distance and were
compared with the quantization error defined in Equation 2
(average distance from each data point to the centroid of the
cluster containing the point). For RKM the global mean µ and
the global variance Σ were used to initialize Cj , as explained
in Section III-B. For Scalable K-means and Standard K-means
k random points were used as seeds for Cj , which is the most
common way to seed K-means as explained in Section II.

A. Real data sets

In general with real data it is not possible to find the global
optimal clustering solution. Therefore, the only acceptable way
to compare the algorithms is by analyzing the quantization
error; the lower the better. It is customary to run K-means
several times to find a good clustering solution. Table III
contains the quantization error and elapsed time to find the
best solution out of 10 runs with several real data sets with
two different values of k for each of them.

This is a short description of each data set. The Astronomy
data set sizes were n = 36, 889 and d = 4; this data set
contained information about stars and was obtained from the
California Institute of Technology. The Medical data set sizes
were n = 655 and d = 13; this data set contained information
about patients being treated for heart disease and was obtained
from the Emory University Hospital. The Internet data set had
n = 10, 105 points with d = 72. This data set contained
log information from users at a web site and was taken from
the UCI Machine Learning repository; it had many zeroes.
The USCensus data set had n = 8, 000 points with d = 68
sampled from the US census data set available from the UCI
Machine Learning repository; this data set had many zeroes.
The Votes data set contained categorical columns about a
sample of voters in 1984 and was obtained from the UCI
Machine Learning Repository. Dimensions were converted to
binary. It had n = 435, d = 17. This was a small data set with
many zeroes.

In seven instances RKM found the best solution. In two
problem instances (Astronomy) Standard K-means found the
best solution, but the solution found by RKM was very close.
RKM and Standard K-means were tied in one instance. In
general Scalable K-means came in third place. Even though
a lower quantization error means a better clustering solution
there was not a significant difference in the quality of the
solutions found by the three algorithms. For small data sets the
three algorithms had similar performance. For low dimensional
large data sets (Astronomy) Scalable K-means was the fastest,
with RKM coming second being about twice as slow. For
high dimensional large data sets (USCensus and Internet)
RKM and Scalable K-means had similar performance, and
Standard K-means was about an order of magnitude worse.

RKM took advantage of the abundance of zeroes for these
high dimensional data sets.

B. Numeric synthetic data sets

The numeric synthetic data generator we used allowed us to
generate clusters having a multidimensional Gaussian (normal)
distribution. The generator allows specifying d, k, n, the scale
for dimensions, the cluster radiuses Rj and a noise level η.
In general we kept dimensions in the [0 − 100] range and
cluster radiuses at 10 so that they could overlap and at the
same time not be perfectly separated. Note that since clusters
follow a normal distribution, they contain points that are up to
±3σ from µ [15], [28]. The defaults were n = 10, 000, d =
10, k = 10, η = 1%.

Noise, dimensionality and a high number make clustering
a more difficult problem [2], [4], [43], [8]. The following
experiments analyze the algorithm behavior under each aspect.
The next set of experiments is not complete as we do not show
what happens when we vary combinations of these parameters,
but we chose values that are common in a typical data mining
environment.

Quality of results: Accuracy is the main quality concern
for clusters. A confusion matrix [2], [15] is a common tool
to evaluate clustering accuracy when clusters are known. But
that would allows us to show only a few results. In our case
one cluster is considered accurate if there is no more than ε
error in its centroid and weight. This is computed as follows.
Let cj , wj be the correct mean and weight respectively (as
given by the data generator) of cluster j having estimated
Cj , Wj values by the clustering algorithm, and let ε be the
estimation error. Then cluster j is considered accurate if
(1/d)

∑d

l=1
|clj − Clj |/|clj | ≤ ε and |wj − Wj |/wj ≤ ε.

For the experiments below we set ε = 0.1. That is, we will
consider a cluster to be correct if it its mean and weight differ
by no more than 10% from the generated cluster. The process
to check clusters for accuracy is as follows. Cluster seeds
are generated in a random order and then clustering results
may also appear in any order. So there are many permutations
in which clusters may correspond to each other (k!). To
check clusters we build a list of pairs (estimated,generated)
clusters. Each estimated cluster is matched (by distance)
with the closest synthetic cluster and it is eliminated from
further consideration. For each matched cluster we compute
its accuracy error according to its weight and centroid. If both
are below ε the discovered cluster will be considered accurate.

In graphs shown in Figure 3 we evaluate quality of results
under a variety or conditions. All the algorithms were run
with k + 1 clusters in order to separate noise as a potential
cluster. The graphs in Figure 3 show the average percentage
of accurate clusters in 10 runs. They represent what the user
might expect from running the algorithm once. Analyzing
the average run in more detail we have the following. The
first graph shows what happens when noise is gradually
incremented. It can be seen that RKM outperforms the other
two algorithms by a wide margin. In the second graph we show
what happens when dimensionality grows. RKM performs
best, Scalable K-means comes second and Standard K-means
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Quantization error Time in seconds
Dataset k RKM Scal K-means Std K-means RKM Scal K-means Std K-means
Astronomy 8 1.17 1.21 1.15 15 6 67
Astronomy 16 0.82 0.89 0.79 20 8 92
Medical 10 5.44 5.72 5.60 2 1 2
Medical 20 4.25 4.71 4.25 3 2 4
Internet 8 61.13 62.14 61.55 26 24 142
Internet 16 54.36 55.85 54.93 40 40 236
USCensus 10 35.46 36.36 35.86 24 21 110
USCensus 30 26.95 27.12 27.21 52 60 313
Votes 10 7.05 7.19 7.06 2 1 2
Votes 25 5.31 5.83 5.42 3 2 3

TABLE III
QUALITY OF RESULTS AND PERFORMANCE WITH REAL DATA SETS
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Fig. 3. Quality of results with synthetic data sets: average percentage of accurate clusters

Data set Algorithm
d k η RKM Scal K-means Std K-means

10 10 1% 1.161 1.499 1.637
10 20 1% 1.094 1.490 1.538
20 10 1% 2.431 4.122 3.497
40 10 1% 4.601 7.154 11.216
10 10 10% 1.212 2.144 1.913
20 20 10% 4.432 5.496 5.209
20 40 10% 4.229 5.248 4.805

TABLE IV
QUALITY OF RESULTS WITH SYNTHETIC DATA SETS: AVERAGE

QUANTIZATION ERROR

comes last. There is no significant difference. The third graph
shows what happens when the data set contains an increasing
number of clusters. Since K-means is not hierarchical it has
trouble identifying low-weight clusters. RKM again finds a
higher percentage of accurate clusters than their rivals; getting
more than 80% of clusters right when k = 50. Due to lack
of space we do not show graphs with the best run out of
10 runs; results are similar, but percentages are higher for all
algorithms.

Table IV shows the average quantization error for 10 runs
of each algorithm with n = 10k. This table corresponds to
some instances graphed in Figure 3. This table gives more
specific evidence about the quality of solutions found by
each algorithm on well separated clusters. RKM finds the
best solution in all instances. Scalable K-means finds better
solutions than Standard K-means at the lower noise levels. At

higher noise Scalable K-means is slightly worse than Standard
K-means. We can conclude that quality-wise RKM performs
better than Scalable K-means and Standard K-means, and
Scalable K-means and Standard K-means find solutions of
similar quality on well separated clusters with a low level of
noise.

Performance: This section analyzes performance. We ex-
cluded the time to transform D into the proposed relational
scheme. That process is executed once per data set and takes
time O(dn) as explained in Sections III-B and III-C.

In Figure IV-B we evaluate how much performance is lost
by having a disk-based implementation. The default sizes
were n = 100k, d = 10, k = 10. In the memory-based
implementation the algorithm is identical but it does not use
disk at all to manage matrices. In the disk-based implemen-
tation we use the proposed disk organization and disk access
optimizations. In the memory based implementation we use
dynamic matrices based on pointers and dynamic memory
allocation. These comparisons try to answer the question of
how much speed we are losing in performance by using disk
instead of memory. To our surprise it was not much and in fact
for higher dimensionality the disk-based implementation was
better. A close inspection revealed I/O cost is amortized as d
grows, while memory access remains constant. Another reason
is that our memory-based version uses dynamic memory
allocation for matrices. This introduces some overhead. A
memory-based version with static arrays would be slightly
faster. Nevertheless, that option is discarded since it is not
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Fig. 4. Performance: comparing disk versus memory implementations

practical in a real-world scenario. So this is telling us it would
not be worth it to try to optimize the algorithm by caching the
most frequently accessed blocks of the matrices. There would
be a performance gain, but it would not be significant and
memory management overhead could even make it slower.

In Figure 5 we compare RKM performance against Standard
K-means and Scalable K-means. We used data sets having the
following defaults: d = 10, k = 10, n = 10k. Clearly times
scale linearly for RKM. Scalable K-means is the fastest, RKM
comes second and Standard K-means comes last. Observe that
in order for K-means to have similar performance to RKM it
would need to converge to an acceptable solution in no more
than three iterations, which is unlikely in practice.

C. Very high dimensional synthetic data sets

We used synthetic transaction data sets to evaluate RKM
against very high-d data sets. The IBM synthetic data gen-
erator has seven parameters to generate transactions con-
taining items to test association rule algorithms [5], [6]. In
general we only varied n (number of transactions, called D
by the generator), t (average transaction size, called T by
the generator), average pattern length (about 1/2 of T and
called I by the generator) and used defaults for the rest,
unless specified otherwise. The number of items d (called
nitems by the generator) was set to 1,000 or 10,000. The
defaults are number of patterns npatterns = 1000, average
rule confidence conf = 0.75, item correlation corr = 0.25.
Transaction files are named after the parameters with which
they were created. The standard way [6] is to use T , I and D
to label files since those are the three most common parameters
to change.

Performance: In Figure 6 we show performance graphs to
cluster sparse transaction files containing transactions. It was
not possible to run Standard K-means or Scalable K-means
given the big memory requirements and running time. The
chosen test file was T10I5D100k; which is one of the most
common files used in the literature [6], [23]. The number of
transactions was 100k by default, the average transaction size
was 10 and the average pattern length is 5. There are some
basic differences between these data sets and the multidimen-
sional data sets shown before: they are binary, dimensionality

is very high, noise content is low and transactions are very
sparse vectors (with 10 items present out of 1,000 or 10,000).
In each case we plot the times to cluster with d = 1, 000
and d = 10, 000. We can see that performance is minimally
affected by dimensionality because the average transaction size
remains constant.

V. RELATED WORK

BIRCH [46] is an important precursor of scalable clustering
algorithms used in a database environment. It is loosely based
on K-means and keeps a similar set of sufficient statistics as
ours (sums of points and sums of squared points). However,
it is hierarchical, memory-based and it has been shown that
it does not work well with high dimensional data or a
high level of noise [24]. Improving K-means to find higher
quality solutions has been investigated before. The idea of
splitting and merging clusters based on the EM algorithm is
presented in [43]. The main differences with [43] are that
we do not merge clusters, our splitting criterion is simpler
(since we do not compute distances between two distributions),
several clusters may be divided at the same time in a single
M step and we split high weight clusters that are sparser.
Their experiments show high quality solutions are found,
but computational cost is increased five times. Moving bad
centroids to better locations in K-means is presented in [19].
This approach is also different from ours. Only one bad
cluster is discarded at the end of an iteration, while we may
split several clusters in one M step, the splitting criterion is
more complex and the computation cost is higher. A memory-
based K-means algorithm to cluster binary data streams was
introduced in [34]; this algorithm is faster and more efficient
than RKM but it is only suitable for sparse binary data. The
well-known Scalable K-means algorithm is introduced in [8].
This is a memory-based algorithm, also based on sufficient
statistics, that makes compression in two phases for dense and
quasi-dense regions. It only requires one scan over the data,
but it makes heavier CPU use and it requires careful tuning
of running parameters (buffer size, compression ratio). The
authors use it to build several models concurrently incurring a
high overhead, but having the ability to automatically pick the
highest quality model. They propose re-seeding empty clusters
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Fig. 5. Performance: time to cluster numeric data sets. Defaults: n = 10k, d = 10, k = 10

0

2

4

6

8

10

0 100 200 300 400 500

T
im

e
 i
n
 m

in
u
te

s

n x 1000

d=1000  k=10
d=10000  k=10

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450 500

T
im

e
 i
n
 m

in
u
te

s

k

d= 1000 n=100k
d=10000 n=100k

0

5

10

15

20

0 10 20 30 40 50

T
im

e
 i
n
 m

in
u
te

s

t (avg trans size)

d=1000
d=10000

Fig. 6. Performance: time to cluster transaction data sets. Defaults: n = 100k, k = 10, T = 10

to low probability clusters. No splitting is done; basically a bad
cluster is moved to a far location where it has a higher chance
of getting points. An important improvement of Scalable K-
means was introduced in [17]. The authors simplify buffer
management and make extensive comparisons with several
versions of K-means. One of their findings is that K-means
with sampling is inaccurate. They also show that Scalable K-
means is slightly faster than Standard K-means, and in fact
in some cases it turns out to be slower given the overhead
to perform the two-phase compression. They also show that
the quality of solutions for Standard K-means and Scalable
K-means is about the same on high dimensional data. They
show their improved version of Scalable K-means is faster
than Standard K-means and finds solutions of similar quality.
These facts motivated us to compare against Standard K-means
and the improved version of Scalable K-means. A related
approach to integrate a clustering algorithm with a relational
DBMS is presented in [35], where SQLEM is introduced.
SQLEM represents the EM clustering algorithm programmed
in SQL and therefore executing on top of the query optimizer
without directly accessing the file management system. RKM
represents the counterpart of SQLEM, directly accessing the
file management system and overriding the query optimizer.
This article presented a prototype for sequential processing
but more research is needed to get a tighter integration with a
parallel DBMS. Many aspects about RKM can also be applied

to the EM clustering algorithm. That topic is also subject of
future research.

VI. CONCLUSIONS

This article presented a disk-based K-means clustering
algorithm, called RKM, suitable to be programmed inside
a relational DBMS. RKM is designed to manage big clus-
tering problem sizes. We proposed a series of algorithmic
improvements as well as a disk organization scheme for the
data set and matrices. Its main algorithmic improvements
include sparse matrix manipulation, periodic M steps, mean-
based initialization and cluster splitting. The algorithm only
requires three scans over the data to cluster a sparse data
set. The algorithm does not use sampling. We proposed a
disk organization for the input data set and the matrices. We
recommend organizing the input data set D in a relational
form with one row per dimension value for each point. In
this manner we can easily manage sparse data sets and make
dimension an explicit index for matrices. Our disk organization
for matrices is based on the assumption that the E step is
executed for every point and the M step is executed a few
times per iteration. We recommend organizing the means
matrix C and variances matrix R with d blocks having k
values each. In contrast, we recommend organizing M and
Q with k blocks having d values each. N and W can be
updated in memory because they are small, but writing W in
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every M step. This allows results to be available at any time
should the algorithm be interrupted. Experimental evaluation
shows RKM can obtain solutions of comparable quality to
Standard K-means and Scalable K-means on a variety of real
and synthetic data sets. We also included experiments to justify
RKM’s capability to cluster high dimensional transaction files.
Performance is linear in the number of points, dimensionality,
desired number of clusters and transaction size. Performance
is minimally affected by dimensionality when transaction size
remains constant. RKM has no practical memory limitations.

Future work. Since RKM can cluster binary data it may be
good to cluster categorical data. Caching several rows of the
matrices does not seem a promising research direction given
our experiments but there may be optimizations we cannot
foresee. We would like to use our algorithm as a foundation
to build more complex data mining programs inside relational
Database Management Systems. We would like to explore
other data mining techniques that use memory intensively
and modify them to work on disk keeping performance at
an acceptable level.
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