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ABSTRACT
Association rules and clustering are fundamental data min-
ing techniques used for different goals. We propose a uni-
fying theory by proving association support and rule confi-
dence can be bounded and estimated from clusters on binary
dimensions. Three support metrics are introduced: lower,
upper and average support. Three confidence metrics are
proposed: lower, upper and average confidence. Clusters
represent a simple model that allows understanding and ap-
proximating association rules, instead of searching for them
in a large transaction data set.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining

General Terms
Algorithms, Theory
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1. INTRODUCTION
Clustering [2, 7] finds groups of similar points according

to some similarity metric, generally distance. Association
rules describe frequent patterns found in large transaction
data sets. Research on association rules has become exten-
sive since their introduction in the seminal paper [1]. Un-
fortunately, little has been done on building a model for
them. This article proposes a simple, yet comprehensive,
model for association rules based on clustering. The rela-
tionship between clustering and association rules is interest-
ing because clustering looks for global patterns, producing in
general disjoint subsets of points, whereas association rules
describe local patterns referring to overlapping subsets of
points. Therefore, the model unifies two seemingly unre-
lated techniques.

2. DEFINITIONS
Definitions commonly used in clustering [7] are combined

with definitions used for association rules [1]. The intuition
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behind definitions is that item identifiers act as subscripts to
access dimensions from a cluster centroid. Clusters represent
a descriptive model summarizing a transaction data set.

This paragraph introduces clustering definitions. The in-
put is a data set D having n d-dimensional points and k,
the desired number of clusters. Let S = [0, 1]d be a d-
dimensional binary space. Let D = {t1, t2, . . . , tn} be a
data set of n points in S. That is, ti is a binary vector.
The model is represented by matrices C, R, W , containing
the means, the variances and the weights respectively for
each cluster and a partition of D into k subsets. Matrices
C and R are d × k and W is a k × 1 matrix. To refer to a
column of C or R we use the j subscript (i.e. Cj , Rj). We
use the following convention for subscripts. For transactions
we use i; i ∈ {1, 2, . . . , n}. Notice that i alone is a subscript
to index transactions, whereas ij refers to item j defined
below. For cluster number we use j; j ∈ {1, 2, . . . , k} and
to refer to one dimension we use l: l ∈ {1, 2, . . . , d}. Let
D1, D2, . . . , Dk be the k disjoint subsets of D induced by
clusters s.t. Dj ∩ Dg = ∅ for j 6= g.

This paragraph provides definitions for association rules.
Let Ti = {l|Dli = 1, l ∈ {1, 2, . . . , d}, i ∈ {1, 2, . . . , n}}.
That is, Ti is the set of non-zero coordinates of ti; Ti can be
understood as a transaction or an itemset to be defined be-
low. Since transactions represent sparse vectors |Ti| << d.
This fact is crucial for fast distance computation to effi-
ciently cluster high dimensional binary data [7]. Let I be a
set of d integers identifying d items, I = {1, 2, . . . , d}. Each
dimension of S corresponds to one item out of d items and
vice-versa. The presence/absence of an item in a transaction
is indicated by the presence/absence of its identifier. A set
of items is called an itemset. An itemset A = {i1, i2, . . . , ip},
containing p items, is called a p-itemset. We use the vecto-
rial notation (Cj)il meaning ”access the mean of dimension

il in cluster j”. In other words, items are used as an index
for dimensions. An itemset has a measure of statistical sig-
nificance or relative frequency called support. For an item-
set X ⊆ I, support(X) = |{Ti|X ⊆ Ti}|/n for i = 1 . . . n
(i.e. support is the fraction of transactions in D contain-
ing X). An association rule is an implication of the form
X ⇒ Y , where X, Y ⊂ I, and X ∩ Y = ∅, where X and Y
are itemsets. Itemset X is called the antecedent and item-
set Y is the consequent of the rule. The association rule
X ⇒ Y has a measure of strength called confidence defined
as confidence(X ⇒ Y ) = support(X ∪ Y )/support(X).

3. BOUNDING AND ESTIMATING
SUPPORT AND CONFIDENCE



We use a fast K-means algorithm that clusters D in one
pass [7]. Its most salient features are the use of sufficient
statistics, sparse matrix operations and efficient distance
computation for sparse binary data. Clusters are used to
compute bounds and to estimate support and confidence for
any potential association rule. Thus association rules can
be mined from clusters instead of the transaction data set.
Proofs are omitted due to lack of space.

3.1 Bounding and Estimating Support
The following propositions hold regardless of how D is

partitioned, but bounds are tighter if D is partitioned min-
imizing squared error. That is, when K-means converges to
a locally optimal solution, Let the upper bound of support
of A be defined as follows:

upper(A) =

k∑

j=1

Wjmin((Cj)i1 , (Cj)i2 , . . . , (Cj)ip). (1)

Theorem 3.1. Let D be a set of n transactions. Let

C, W represent k clusters from D. Let A be any p-itemset

given by A = {i1, i2, . . . , ip}. Then support(A) ≤ upper(A).

The following bound is the counterpart of upper().

lower(A) =

k∑

j=1

Wj [max(0, 1 +

p∑

l=1

((Cj)il − 1))], (2)

where max() avoids negative lower bounds per cluster.

Theorem 3.2. Let D, C, W be as stated in Theorem 3.1.

Let A be a p-itemset A = {i1, i2, . . . , ip}. Then lower(A) ≤
support(A).

Support can be estimated by:

average(A) =
lower(A) + upper(A)

2
. (3)

It is evident Theorems 3.1 and 3.2 also hold for Eq. 3.

3.2 Bounding and Estimating Confidence
Let A and B be two itemsets s.t. A ∩ B = ∅. Let the

lower confidence of a rule be defined as

lowerconfidence(A ⇒ B) =
lower(A ∪ B)

upper(A)
(4)

Let the upper confidence of a rule be defined as

upperconfidence(A ⇒ B) = min[
upper(A ∪ B)

lower(A)
, 1] (5)

Notice the symmetry between Eq. 4 and Eq. 5. These
equations lead to the following results that estimate tight
bounds for association rule confidence.

Theorem 3.3. Let D be a set of transactions. Let C, W
represent k clusters from D. Let A and B be two item-

sets s.t. A ∩ B = ∅. Then lowerconfidence(A ⇒ B) ≤
confidence(A ⇒ B) ≤ upperconfidence(A ⇒ B).

Finally, rule confidence can be estimated by:

averageconfidence(A ⇒ B) =
average(A∪ B)

average(A)
(6)

Theorem 3.4. Let D be a set of transactions. Let C, W
represent some clustering model of D into k clusters. Let A
and B be two itemsets. Then lowerconfidence(A ⇒ B) ≤
averageconfidence(A ⇒ B) ≤ upperconfidence(A ⇒ B).

4. RELATED WORK
There has been a lot of work on both scalable cluster-

ing [2] and efficient association mining [6, 4], but little has
been done finding relationships between association rules
and other data mining techniques. One such work is [3]
where association rules and classification rules obtained from
decision trees are contrasted. There has been work on how
to cluster transactions from itemsets [8]. Clustering associ-
ation rules, rather than transactions, once they are mined,
is analyzed in [5].

5. CONCLUSIONS
Clusters on binary dimensions are used as a simple and

comprehensive model for association rules. We proposed
novel metrics based on binary clusters that provide upper
bounds, lower bounds and estimations for both association
support and rule confidence. We presented theoretical re-
sults for the proposed metrics.

Using clusters to understand and approximate association
rules can be exploited for deeper research. We want to study
other association rule metrics based on clusters including
lift, entropy and gain. We intend to investigate the asymp-
totic properties of the model.
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