
Optimizing Recursive Queries in SQL

Carlos Ordonez
Teradata, NCR

San Diego, CA, USA

ABSTRACT
Recursion represents an important addition to the SQL lan-
guage. This work focuses on the optimization of linear re-
cursive queries in SQL. To provide an abstract framework
for discussion, we focus on computing the transitive closure
of a graph. Three optimizations are studied: (1) Early eval-
uation of row selection conditions. (2) Eliminating duplicate
rows in intermediate tables. (3) Defining an enhanced index
to accelerate join computation. Optimizations are evaluated
on two types of graphs: binary trees and sparse graphs. Bi-
nary trees represent an ideal graph with no cycles and a
linear number of edges. Sparse graphs represent an aver-
age case with some cycles and a linear number of edges.
In general, the proposed optimizations produce a significant
reduction in the evaluation time of recursive queries.

1. INTRODUCTION
Recursion is a fundamental concept in computer science.

Most data structures, like trees or lists, are recursive. Many
search algorithms have a natural recursive definition. De-
spite its prominent importance, recursion was not available
in SQL for a long time. But the ANSI ’99 SQL standard
[7] introduced recursion into SQL with syntactic constructs
to define recursive views and recursive derived tables. More
recently, SQL recursive mechanisms have become available
in relational Database Management Systems. This work
focuses on optimizing linear recursive queries [11] in SQL,
which constitute a broad class of queries used in practice.

The article is organized as follows. Section 2 introduces
definitions. Section 3 presents our main contributions. Sec-
tion 4 presents experiments focusing on query optimization.
Related work is discussed in Section 5. Section 6 concludes
the article and discusses some directions for future work.

2. DEFINITIONS
We define a base table T as T (i, j, v) with primary key

(i, j) and v representing a numeric value. Table T will be
used as the input for recursive queries using columns i and
j to join T with itself. Let R be the result table returned by
a recursive query, with a similar structure to T . Table R is
defined as R(d, i, j, v) with primary key (d, i, j), where d rep-
resents recursion depth, i and j identify result rows at each
recursion depth and v represents an arithmetic expression

c© ACM, 2005 . This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in SIGMOD Conference 2005.
http://doi.acm.org/10.1145/1066157.1066260

(typically recursively computed). For practical reasons, we

assume there exists a recursion depth threshold k. Let R[k]

represent a partial result table obtained from k−1 self-joins
having T as operand k times. The queries we are interested
are of the form R[k] = T 1 T 1 · · · 1 T.

To provide an abstract framework for discussion we use
graphs. Let G = (V, E) be a directed graph with n vertices
and m edges. An edge in E links two vertices in V and has a
direction. An edge can represent a parent/child relationship
or a road between two locations. Notice our definition allows
the existence of cycles in graphs. A tree is a particular case
of a graph, where there is a hierarchical structure linking
vertices and there are no cycles. There are two common rep-
resentations for graphs; one is called the adjacency list and
the other one is called the adjacency matrix. In this article
we use the adjacency list. The adjacency list representation
of a graph is a set L of edges joining vertices in V . If there is
no edge between two vertices then there is no corresponding
element in the list. Each edge has an associated weight (e.g.
distance, capacity or cost). A path is defined as a subset
of E linking two vertices in V . Therefore, a row from ta-
ble T represents a weighted edge between vertices i and j
in list L. Table T has m rows (edges), i ∈ {1, . . . , n} and
j ∈ {1, . . . , n}. We focus on computing the transitive closure
of G. The transitive closure G∗ computes all vertices reach-
able from each vertex in G and is defined as: G∗ = (V, E′),
where E′ = {(i, j) s.t. there exists a path between i and j}.

3. OPTIMIZING RECURSIVE QUERIES
In this section we present several optimizations for recur-

sive queries. We start by explaining the SQL syntax pro-
vided by Teradata to define recursive views. We explain the
basic evaluation algorithm for recursive queries. We then
propose query optimization strategies. Our discussion fo-
cuses on computing the transitive closure of G. Most of our
optimizations involve rewriting queries, changing order of
evaluation of relational operations and defining index struc-
tures to get equivalent non-recursive SQL queries that can
be evaluated in less time.

3.1 Recursive Views
The basic mechanism to define recursive queries in the

Teradata RDBMS is a recursive view. We omit syntax for
an equivalent statement for derived tables (WITH RECUR-
SIVE). A recursive view has one or more base select state-
ments without recursive references and one or more recur-
sive select statements. Recursion is given in the join in a
recursive select statement, where the view name appears in

the ”FROM” clause. A join condition can be any compari-
son expression, but we focus on equality (i.e. natural join).
To avoid long runs with large tables, infinite recursion with
graphs having cycles or infinite recursion with an incorrectly
written query, it is advisable to add a ”WHERE” clause to
set a threshold on recursion depth, that we call k (a con-
stant). We call the statement without the recursive join the
base step and we call the statement with the recursive join
the recursive step. They may appear in any order, but for
clarity purposes the base step appears first.

The following view computes the transitive closure of a
graph G stored as an adjacency list in T with a maximum
recursion depth k = 8. Columns i, j, v are qualified with the
corresponding table/view name to avoid ambiguity. The
view computes the length/cost v of each path, but it will be
irrelevant for the transitive closure.

CREATE RECURSIVE VIEW R(d, i, j, v) AS (
SELECT 1,i, j, v FROM T /* base step */
UNION ALL
SELECT d + 1, R.i, T.j, R.v + T.v
FROM R JOIN T ON R.j = T.i /* recursive step */
WHERE d < 8);

CREATE VIEW TransitiveClosureG AS (
SELECT DISTINCT i, j FROM R);

In general, the user can write queries or define additional
views on R treating it as any other table/view. Recursive
views in Teradata have several constraints. There must be
no ”group by”, ”distinct”, ”having”, ”not in”clauses inside the
view definition. However, such clauses can appear outside in
a query calling the view, leaving the optimization task open
for the query optimizer. Recursion must be linear; non-
linear recursion is not allowed (view name appearing twice
or more times in the internal ”from”clause). Recursive views
cannot be nested. We will study the optimization of queries
using the recursive view introduced above, that represents a
linear recursive query.

3.2 Algorithm to evaluate a recursive query
The algorithm to evaluate a recursive query is straight-

forward. Let R[s] be the result table after step s, where
s = 1 . . . k. The base step produces R[1] = T. The recursive
steps produce R[2] = T 1 T = R[1]

1 T , . . . , and so on. In
general R[s] = R[s−1]

1 T. Finally, R = R[1]∪R[2]∪· · ·∪R[k].
Since step s depends on step s − 1 the query evaluation al-
gorithm is sequential and works in a bottom-up fashion. If
R[s] is ever empty, because no rows satisfy the join condition,
then query evaluation stops sooner. The query evaluation
plan is a deep tree with k − 1 levels.

3.3 Query Optimization
We study three optimizations: (1) Early evaluation of row

selection conditions, (2) deleting duplicate rows, (3) index-
ing base and result table for efficient join computation. Due
to lack of space we include only a brief discussion of another
optimization, used for aggregation queries.

Early evaluation of row selection conditions
Early evaluation of row selection conditions may be used
when there is a ”WHERE” clause specifying a filter condi-
tion on columns from R. When G has cycles the recursion
may become infinite; this becomes a practical problem for

many applications. Therefore, we emphasize the use of a
”WHERE” clause because it is the only way to guarantee a
recursive query will stop in general. The queries we study
are of the form

SELECT i, j, v FROM R
WHERE <condition>;

One of the general guidelines in traditional query opti-
mization is to evaluate selection (σ) of rows and projection
(π) as early as possible. The rationale behind such opti-
mization is that a join (1) operation can operate on smaller
tables reducing work. This optimization involves automati-
cally transforming the given query into an equivalent query
that is evaluated faster. This guideline also applies to recur-
sive queries, but we distinguish two cases. The first case is
given by a condition on the columns from the primary key
of R other than d (i.e. i, j). The second case is given by a
condition on non-key columns v or depth d, that change at
each recursive step.

We explain the first case. If there is a ”WHERE”condition
on a column belonging to the primary key (i or j), and
the column does not participate in the join condition then
the ”WHERE” condition can be evaluated earlier. In this
manner each intermediate table is smaller. Let us recall the
transitive closure view introduced in Section 3.1. If we only
want vertices reachable from vertex 1 the following query
gives the answer.

SELECT i, j
FROM transitiveClosureG
WHERE i = 1;

The clause ”WHERE i = 1” can be evaluated earlier dur-
ing the recursion. It can be evaluated at the base step and at
each recursive step, with caution, as explained below. Then
the earliest it can be evaluated is at the base step to produce
a subset of T , stored in R[1]. This optimization propagates
a reduction in the size of all intermediate tables R[s]. Then
the base step of the recursive view SQL code, presented in
Section 3.1, is rewritten as follows.

SELECT 1,i, j, v FROM T /* base step */
WHERE i = 1
UNION ALL . . .

Evaluating ”WHERE i = 1” in the recursive step is tricky.
First of all, i must be qualified. Using ”WHERE T.i = 1”
would produce incorrect results because it would only in-
clude vertex 1. Observe the recursive step uses T.i in the
”WHERE” clause, but not on the projected columns. Con-
versely, it uses R.i in the projected columns and not on the
”WHERE” clause. Evaluating ”WHERE R.i = 1” produces
correct results because R.i is not part of the join condition,
but in this case it is redundant because the partial result ta-
ble R[s−1], only contains rows satisfying R.i = 1, propagated
from the base step. Therefore, in this case it is sufficient to
evaluate selection on key i on the base step.

We discuss the second case. Row selection with gen-
eral ”WHERE” conditions on v is hard to optimize and
conditions on d are easier to optimize. The corresponding
”WHERE” clause may be pushed into both the base and re-
cursive part depending on how v is computed. In general v
changes after each recursive step. We distinguish two possi-
bilities: v is recursively computed (with addition or product)

or v is not recursively computed when it is an attribute of
vertex i or vertex j.

If the filter condition is of type ”WHERE v ≤ vU” and v
is recursively incremented then the query can stop at some
step. If all T rows satisfy v > 0 and v is incremented at
each step then the query will stop. But if there exist rows
such that v = 0 or v < 0 then the query may not stop.
Only in the case that v > 0 for all rows and v increases
monotonically can we evaluate ”WHERE v ≤ vU” at each
recursive step. By a similar reasoning, if the condition is
v ≥ vL and v > 0 in every row then the query may continue
indefinitely; then ”WHERE v ≥ vL” cannot be evaluated at
each recursive step. The transitive closure will eventually
stop when the longest path between two vertices is found if
there are no cycles, but it may produce an infinite recursion
if there are cycles. If v is not recursively computed then v
may increase or decrease after each recursive step; then it is
not possible to push the ”WHERE”clause because discarded
rows may be needed to compute joins.

We can think of d as a particular case of v. Depth d
monotonically increases at each recursive step since it is al-
ways incremented by 1. If the filter expression is ”WHERE
d ≤ k” then this sets a limit on recursion depth and then
query evaluation constitutes an iteration of at most k steps;
this is the case we use by default because the recursion is
guaranteed to stop. If the condition is of type d ≥ k then
recursive steps may continue beyond k, perhaps indefinitely;
we assume no recursive view is defined with such condition.
Also, the clause ”WHERE d ≥ k” cannot be evaluated at
early recursive steps because it would discard rows needed
for later steps.

Deleting duplicate rows
Consider the problem of computing the transitive closure
of G, but we are not interested in v, the weight/distance
of each path; we just want to know all vertices that are
reachable from each vertex. Refer to the recursive view given
in Section 3.1.

SELECT DISTINCT i, j
FROM R;

Query evaluation is affected by how connected G is. If
G is complete then there are O(n) paths for each pair of
vertices. If G is dense then there are probably two or more
paths between vertices. This will produce duplicate rows
that in turn will increase the size of partial tables after each
recursive step. On the other hand, if G is sparse then there
are fewer paths with less impact on join performance. In
particular, if G is a tree there is only one path between
pairs of vertices resulting in good join performance without
using this optimization.

We optimize recursive queries by deleting duplicate rows
at each step. If there are duplicate rows in T for any rea-
son pre-filtering them reduces the size of the table from the
base step. If there are no duplicate rows this optimization
has no effect on table sizes. Applying this optimization the
equivalent query used to evaluate the base step is:

SELECT DISTINCT 1,i, j FROM T /* base step */

The following equivalent query eliminates duplicates within
one recursive step.

SELECT DISTINCT d + 1, R.i, T.j
FROM R JOIN T ON R.j = T.i /* recursive step */
WHERE d < k

Assume G is a complete graph. If no optimization is done
each recursive step s produces ns+1 rows. Therefore, time
complexity is O(nk+1) without optimization and O(kn3)
with optimization at maximum depth k. This produces a
significant speedup.

It is important to observe that another ”SELECT” with
DISTINCT on R at the end is required to get all distinct
rows regardless of depth.

Aggregations queries on the recursive view can be opti-
mized in a similar manner to queries with ”SELECT DIS-
TINCT”. The grouping clause and the aggregate function
can be evaluated at the base step and at each recursive step
producing a reduction in size on all intermediate tables. In
the case of the transitive closure this optimization is appli-
cable only when rows are grouped by i and j.

Indexing base and result table for efficient join
We assume a recursion depth threshold k. If the partial
result table R[s] is empty the recursion stops sooner at step
s < k. The indexing schemes explained below are defined
based on two facts. (1) The base table T will be used as a
join operand k−1 times. (2) The result table R will be used
as join operand k − 1 times, but selecting only result rows
from the previous recursive step. Recall R = ∪sR

[s].
We propose two schemes to index the base table T and the

result table R computed from the recursive view. Scheme 1
involves defining one index for T and one index for R based
on the recursive join condition. In our two problems the join
expression is R.j = T.i. Therefore, T has an index on (i)
and R has an index on (j) allowing non-unique keys in both
cases. Scheme 2 defines one index for T and one index for
R based on their respective primary keys. That is, T is in-
dexed on (i, j) and R is indexed on (d, i, j). The explanation
behind scheme 1 is that T and R are optimally indexed to
perform a hash join based on R.j = T.i. But having many
rows satisfying the condition for each value of i may affect
join performance because of hashing collisions. On the other
hand, having a few rows (in particular one or zero) satisfy-
ing the join condition can improve hash join performance. In
scheme 2 each recursive join cannot take advantage of the
index because the join condition differs from the indexed
columns, but each row can be uniquely identified efficiently.
The optimizer uses a merge join making a full scan on both
table R and table T at each step. However, only rows from
R[s] are selected before the join.

3.4 Practical Issues
In general, a Cartesian product returns a large table, whose

size is the product of the sizes of the tables involved. A
Cartesian product appearing in a recursive view will be
even worse since result size will grow fast as recursion depth
grows. Most times this is caused by a user error because
there is a missing join condition or the condition is not cor-
rectly written. This supports the idea of always setting a
recursion depth threshold (k).

4. EXPERIMENTAL EVALUATION
In this section we present experiments on an NCR com-

puter running the Teradata RDBMS software V2R6. The

G type m edges cycles complexity case
binary tree n − 1 N best
sparse 4n Y average

Table 1: Characteristics for each type of graph G.

n k G: binary tree G: sparse
opt=N opt=Y opt=N opt=Y

32 2 2 2 3 2
32 4 3 3 4 2
32 8 4 3 5 3
32 16 5 5 8 5
64 2 2 2 2 2
64 4 3 2 4 2
64 8 4 3 6 3
64 16 5 5 8 5

128 2 3 2 2 2
128 4 3 2 4 2
128 8 5 3 6 4
128 16 6 5 8 5

Table 2: Early row selection. Times in seconds.

system had four nodes with one CPU each, running at 800
MHz, 40 AMPs (parallel virtual processors), 256MB of main
memory and 10 TB of disk space. We used the data sets de-
scribed below. Each experiment was repeated five times and
the average time measurement is reported.

We study two broad query optimization aspects with two
types of graphs: binary trees and sparse graphs The first
set of experiments evaluates the impact of each optimiza-
tion leaving the other optimizations fixed. The second set
of experiments shows scalability varying the two most im-
portant parameters: n, the number of vertices in G and k,
the maximum recursion depth. Due to the intensive nature
of recursive queries all optimizations are turned on by de-
fault. Otherwise, several recursive queries, even on small
data sets, could not be completed in reasonable time. We
shall see query evaluation time depends on the type of graph.

We evaluate optimization strategies for recursive queries
with synthetic data sets. We generated graphs G of varying
number of vertices (n) and varying number of edges (m) to
get different types of graphs. Each edge becomes a row in
table T . Therefore, m = |T |. Two types of graphs were
used. To evaluate the best case we used balanced binary
trees; where G has n−1 edges (i, j) (j = 1 . . . n, i = j/2) and
no cycles; the number of rows grows linearly as n increases,
m = n − 1 = O(n). To evaluate an average case we used
sparse graphs with 4 random edges per vertex; the number
of rows grows linearly as n increases, m = 4n = O(n). Data
sets characteristics are summarized in Table 1.

4.1 Impact of Each Optimization

Early evaluation of row selection
We show experiments studying the performance gained by
performing selection of rows as early as possible. The queries
are based on the following query at different recursion depths,
k ∈ {2, 4, 8, 16}. For this particular query row selection can
be evaluated in the base step, as explained before.

n k G: binary tree G: sparse
opt=N opt=Y opt=N opt=Y

4 2 2 2 5 4
4 4 3 3 6 6
4 8 3 3 9 7
4 16 3 3 1951 10
8 2 2 2 5 5
8 4 3 3 7 7
8 8 3 3 12 10
8 16 3 3 * 11

16 2 2 2 5 5
16 4 3 2 6 6
16 8 3 4 15 7
16 16 3 4 * 10

Table 3: Deleting duplicates. Times in seconds.

SELECT d, i, j FROM transitiveClosureG
WHERE i = 1 AND d ≤ k;

Table 2 shows the effect of early row selection turning the
early row selection optimization on (Y) and off (N). In gen-
eral, the gain in performance for small recursion depths (2
or 4) is marginal or zero. Differences come up with deeper
recursion levels. For binary trees the gain in performance
is small; there is an average difference of one second; times
scale linearly in both cases. It is interesting that for the
largest tree the difference in times becomes smaller. For
sparse graphs the gain in performance is higher; time differ-
ences are around 2 seconds. Nevertheless, times scale lin-
early with and without this optimization. For larger sparse
graphs queries run in half the time when the optimization is
applied. We conclude this optimization is valuable in all
cases, but becomes more important for highly connected
graphs when recursion depth is high.

The impact of this optimization will depend on the selec-
tivity of the condition being pushed, like in non-recursive
queries, but combined with recursion depth. A highly selec-
tive filter condition that can be pushed into the base step
will significantly improve evaluation time. Selecting rows in
a binary tree that correspond to leaves will evidently pro-
duce a great evaluation time decrease since recursion will
stop immediately, but selecting rows corresponding to up-
per nodes with many children will produce smaller tables,
but recursion will go deep anyway. On the other hand, if
G is highly connected then cycles will force the query to be
evaluated at many recursion depth levels, but the sizes of
intermediate results will decrease, producing again an im-
portant improvement.

Deleting duplicates
The next set of experiments studies the effect of deleting
duplicate rows after each step for the transitive closure.
The queries are based on the transitive closure view intro-
duced in Section 3.1. The graphs used in these experiments
are small, but queries become very demanding as recursion
depth grows, as we explain below. The optimizer performs
a sort operation to eliminate duplicates whenever the ”DIS-
TINCT” keyword appears. Binary trees are shown for com-
pleteness since this optimization has no impact on them.

Table 3 summarizes results. The ”opt” header indicates
if the optimization is turned on (Y) or off (N). The en-

n G Indexing scheme
type Indexing for Join Index on PK

32 binary tree 4 6
64 binary tree 4 6

128 binary tree 4 5
256 binary tree 4 5
512 binary tree 4 5

1024 binary tree 4 5
16 sparse 9 8
32 sparse 7 8
64 sparse 7 9

128 sparse 8 9
256 sparse 12 16
512 sparse 32 25

Table 4: Indexing schemes. Times in seconds.

tries marked with * mean the query could not be completed
within one hour and then it had to be interrupted. The first
general observation is that the transitive closure problem be-
comes intractable at modest recursion levels even with the
small graphs studied. For binary trees times are similar with
and without this optimization; there was only a single case
where this optimization produced better times for binary
trees. This is explained by the fact that there is at most
one path between vertices and the overhead from the sort-
ing process. In general, for sparse graphs and n ≥ 8 times
are better. Time growth is minimal for binary trees when
k or n grow. Time measurements grow fast when this opti-
mization is not used for sparse graphs. On the other hand,
when duplicates are deleted times grow slowly as recursion
goes deeper or data set size increases for sparse graphs. We
conclude that duplicate rows should be deleted from inter-
mediate tables whenever that does not affect the correctness
of results or the semantics of the query.

Indexing
The following experiments compare the two indexing schemes
introduced in Section 3.3, based on the join condition and
primary keys, respectively. Default recursion depth is k = 8.
Table 4 summarizes results. In general, the index optimized
for hash-joining T and R provides best performance when G
is a tree or a sparse graph; this confirms recursion is efficient
with sparse graphs. However, as G becomes more connected
collisions affect hash join performance. For a sparse graph
with n = 512 indices on the table primary keys provide best
performance. The trend indicates the difference in perfor-
mance is not significant. We conclude that in most cases,
enhanced indexing for hash-join provides best performance.
However, there will be some performance loss when G is
highly connected.

4.2 Scalability
The following experiments show scalability varying n and

k with large data sets, using all optimizations except early
row selection. The first goal is to evaluate time growth as
m, n or k increase. The second goal is to know what prob-
lem characteristics are more critical for performance. The
number of vertices n was chosen based on m and how con-
nected G was. Therefore, graphs for binary trees have many
vertices and sparse graphs have fewer vertices.

Graph size
The two left graphs on Figure 1 show time growth as n
varies. Binary trees have a default recursion depth k = 16,
whereas sparse graphs use k = 8. Notice n is much larger
for binary trees; numbers shown must be multiplied by 1024
for correct interpretation. For binary trees time grows in a
linear fashion. In sparse graphs time grows more rapidly in
a super-linear fashion for both problems; the time difference
becomes more significant as n grows. These experiments in-
dicate graph size can become a serious performance problem
for highly connected graphs.

Recursion depth
The right two graphs on Figure 1 show time growth as re-
cursion depth k varies with a default data set size of n =
131, 072 = 128K for balanced binary trees and n = 2, 048
for sparse graphs. For binary trees time growth is linear
and towards the end time stops growing, confirming the fact
that G is a balanced binary tree because the partial result
table becomes empty. For sparse graphs time grows rapidly
on the lower end, but gradually becomes linear as recursion
depth approaches k = 8. This can be explained by the fact
that each recursion level produces an increasingly more con-
nected graph until it stabilizes. These experiments let us
conclude that recursion depth will produce a linear increase
in time for sparse graphs. Recursion depth in dense graphs
may not be a significant performance problem, provided it
is bounded and all optimizations are turned on.

5. RELATED WORK
SQL is the standard language used in relational databases.

SQL has evolved significantly since its introduction [1], but
it took a long time to have a standard syntax and semantics
for recursion [7]. Research on extending SQL to compute
recursive queries includes [8, 9]. In [8] an operator is pro-
posed to allow recursion in a similar manner to Datalog.
The evaluation algorithm works incrementally in a bottom-
up fashion, in a similar manner to ours. The approach in [9]
relies on creating tables that can contain a set of values in
one column, thereby violating first normal form.

Efficient evaluation of recursive queries is a classic and
broad topic in the database literature. Most work has been
theoretical or in the context of deductive databases. Some
approaches assume there are no cycles in the underlying
graph, which sometimes is not a practical assumption (e.g.
a geographical database); we have shown our optimization
strategies also work on graphs with cycles. Important chal-
lenges exhibited by recursive queries are summarized in [2,
3, 4, 11]. Optimization by reducing redundant intermedi-
ate results is studied in [6]; our optimization on duplicate
deletion is similar. Maintenance of recursive views through
incremental insertions or deletions for the transitive closure
is studied in [4]. Indexing for evaluation of recursive queries
based on semi-naive or logarithmic evaluation algorithms, is
studied in [10]. Our enhanced indexing scheme is somewhat
similar to that proposed in [10], but we have shown that in
some cases the alternative indexing scheme, based on pri-
mary keys, is better. Also, our enhanced indexing scheme is
tailored to perform hash-based joins storing required tuples
on the same logical address. The authors of [12] study recur-
sive queries when the underlying graph has cycles. Comput-
ing the transitive closure of a graph has received significant

0

5

10

15

20

25

30

35

40

64 128 192 256

T
im

e
 i
n

 s
e

c
s

n X 1024

G: binary tree

transitive closure

0

50

100

150

200

250

0 256 512 768 1024 1280 1536 1792 2048

T
im

e
 i
n

 s
e

c
s

n

G: sparse

transitive closure

0

5

10

15

20

25

0 4 8 12 16 20 24 28 32

T
im

e
 i
n

 s
e

c
s

k

G: binary tree

transitive closure

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

T
im

e
 i
n

 s
e

c
s

k

G: sparse

transitive closure

Figure 1: Scalability: Time growth varying n (graph size) and k (recursion depth).

attention. An early work on the relationship between the
transitive closure and matrix powering is [5].

6. CONCLUSIONS
We studied the optimization of linear recursive queries in

SQL, which represent a broad class of useful queries based on
recursion. Graphs were used to provide an abstract frame-
work and were represented by a table having one row per
edge. We focused on computing the transitive closure of a
graph. Three query optimizations were analyzed, including
early evaluation of row selection conditions, deleting dupli-
cate rows and enhanced indexing for join computation. Ex-
periments studied the individual impact of each optimiza-
tion and scalability of recursive queries. Graph connected-
ness, recursion depth and data set size, were the main per-
formance factors analyzed by the experiments. Two types
of graphs were used to study the impact of each query op-
timization: balanced binary trees and sparse graphs. Early
evaluation of row selection had an impact on performance
for both binary trees and sparse graphs. A highly selective
filter condition that can be pushed into the base step, sig-
nificantly improves evaluation time. Deleting duplicate rows
turned out to be an essential optimization to get results in
reasonable time for sparse graphs due to cycles. Recursion
depth significantly impacted evaluation time of queries on
sparse graphs when duplicate rows were not deleted. Having
a non-unique index based on the recursive view join expres-
sion for each table, was the best indexing scheme for binary
trees and sparse graphs. Data set size and recursion depth
had a strong impact on performance if the graph was sparse.
We evaluated scalability using all optimizations except early
row selection. In general, times for queries on binary trees
scale linearly as graph size increases. Time on sparse graphs
increases quadratically as graph size increases. Time scales
linearly as recursion depth grows.

There are several aspects for future work. We want to
study queries on unbalanced trees, non binary trees and
lists. Composite keys may require special join optimizations.
Some queries on highly connected graphs may produce too
many rows; for instance, showing all potential paths between
pairs of vertices. Evaluation of row selection needs to be fur-
ther optimized for queries where the filter condition cannot
be evaluated in the base step or only at the end of the recur-
sion. Some queries may be evaluated by an algorithm with
less recursive steps than those required by the sequential al-

gorithm used in this work. Indexing can be improved based
on the fact that the result table is incrementally appended
and only one partial table is needed at a given time.

7. REFERENCES
[1] D.D. Chamberlin and R.F. Boyce. SEQUEL: A

structured English query language. In Proc. ACM
SIGMOD Workshop, pages 249–264, 1974.

[2] S. Cosmadakis. Inherent complexity of recursive
queries. In ACM PODS Conference, pages 148–154,
1999.

[3] S. Dar, R. Agrawal, and H.V. Jagadish. Optimization
of generalized transitive closure queries. In ICDE
Conference, pages 345–354, 1991.

[4] G. Dong and J. Su. Incremental maintenance of
recursive views using relational calculus/SQL. ACM
SIGMOD Record, 29(1):44–51, 2000.

[5] M.J. Fischer and A.R. Meyer. Boolean matrix
multiplication and transitive closure. In IEEE FOCS
Conference, pages 129–131, 1971.

[6] J. Han and L.J. Henschen. Handling redundancy in
the processing of recursive database queries. In ACM
SIGMOD Conference, pages 73–81, 1987.

[7] ISO-ANSI. Database Language SQL-Part2:
SQL/Foundation. ANSI, ISO 9075-2 edition, 1999.

[8] K. Koymen and Q. Cai. SQL*: a recursive SQL. Inf.
Syst., 18(2):121–128, 1993.

[9] V. Linnemann. Non first normal form relations and
recursive queries: An SQL-based approach. In IEEE
ICDE Conference, pages 591–598, 1987.

[10] P. Valduriez and H. Boral. Evaluation of recursive
queries using join indices. In Expert Database Systems,
pages 271–293, 1986.

[11] M.Y. Vardi. Decidability and undecidability results for
boundedness of linear recursive queries. In ACM
PODS Conference, pages 341–351, 1988.

[12] C. Wu and L.J. Henschen. Answering linear recursive
queries in cyclic databases. In Proc. FGCS, pages
727–734, 1988.

