
Vector and Matrix Operations Programmed with UDFs
in a Relational DBMS

Carlos Ordonez
University of Houston

Houston, TX, USA

Javier García-García
UNAM University

Mexico City, Mexico

ABSTRACT
In general, a relational DBMS provides limited capabilities
to perform multidimensional statistical analysis, which re-
quires manipulating vectors and matrices. In this work, we
study how to extend a DBMS with basic vector and matrix
operators by programming User-Defined Functions (UDFs).
We carefully analyze UDF features and limitations to imple-
ment vector and matrix operations commonly used in statis-
tics, machine learning and data mining, paying attention to
DBMS, operating system and computer architecture con-
straints. UDFs represent a C programming interface that
allows the definition of scalar and aggregate functions that
can be used in SQL. UDFs have several advantages and lim-
itations. A UDF allows fast evaluation of arithmetic expres-
sions, memory manipulation, using multidimensional arrays
and exploiting all C language control statements. Neverthe-
less, a UDF cannot perform disk I/O, the amount of heap
and stack memory that can be allocated is small and the
UDF code must consider specific architecture characteris-
tics of the DBMS. We experimentally compare UDFs and
SQL with respect to performance, ease of use, flexibility
and scalability. We profile UDFs based on call overhead,
memory management and interleaved disk access. We show
UDFs are faster than standard SQL aggregations and as fast
as SQL arithmetic expressions.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query lan-
guages; H.2.8 [Database Management]: Database appli-
cations—Data mining

General Terms
Algorithms, Languages

1. INTRODUCTION
SQL is the standard language to query and analyze data

in a relational DBMS [5]. Unfortunately, SQL has no vec-
tor and matrix computation capabilities that are essential in
multidimensional (multivariate) statistics, machine learning
and data mining. There exists work that has proposed SQL
constructs and SQL primitives for data mining [4, 17], but
such constructs do not offer adequate and flexible matrix
manipulation capabilities. There exist proposals that have

c© ACM, 2006 . This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in CIKM Conference 2006.
http://doi.acm.org/10.1145/1183614.1183687

used SQL queries to integrate data mining algorithms [14,
12, 17, 16]. Other proposals have integrated data mining al-
gorithms internally into the DBMS. In our case, Teradata is
a parallel DBMS, which makes the integration of statistical,
machine learning and data mining algorithms particularly
difficult. The Teradata DBMS has a shared-nothing parallel
architecture, in which each processing thread is responsible
for its own memory and disk management; memory and disk
cannot be shared. Even further, vector functions, matrix op-
erators and optimizations are more difficult to develop in a
parallel DBMS than in a sequential DBMS. These are some
important reasons. A SELECT statement is automatically
executed with data parallelism, which is both an advantage
and a constraint because the user has little or no control
over parallelism. Specifically, row distribution among par-
allel processing threads cannot be controlled by the UDF.
The order in which rows are processed cannot be determined
beforehand, which hinders incremental processing.

A UDF is a subroutine that is developed in the C lan-
guage, which is compiled to object code and that can be used
like any standard SQL function in a SELECT statement.
UDFs represent an application programming interface (API)
that allows an end-user to extend the DBMS functionality,
subject to several DBMS architecture constraints. In this
work, we study the implementation of User-Defined Func-
tions (UDFs) to extend the DBMS with vector and ma-
trix manipulation capabilities, which are essential in statis-
tical, machine learning and data mining analysis. We study
several operating system, DBMS and computer architecture
constraints which play an important role in the implemen-
tation of UDFs.

1.1 Research Issues
The research questions we answer in this article are the

following. Can UDFs help writing common data mining,
machine learning and statistical vector operations as SQL
queries?, can we take advantage of the C language pro-
gramming instructions and arithmetic operators to imple-
ment vector and matrix operations?, can a UDF match or
even improve SQL time performance?, are there computer
or DBMS architecture limitations for UDFs?, are there any
performance bottlenecks to optimize UDFs?.

1.2 Article Organization
The article is organized as follows. Section 2 presents

definitions and an overview of UDFs. Section 3 presents
two sets of UDFs: basic vector operations and computing
sufficient statistics matrices. Section 4 presents experiments
comparing SQL and UDFs, profiling UDF execution and

analyzing time complexity. Section 5 discusses related work.
Section 6 concludes the article.

2. PRELIMINARIES

2.1 Definitions
Our discussion is based on a multidimensional data set.

Let X = {x1, . . . , xn} be a data set with n d-dimensional
points. In mathematical terms, X is a d × n matrix, where
xi is a column vector and Xli is the lth dimension from xi.
We use i = 1 . . . n as a subscript for points and l, a, b as
dimension subscripts. Matrix transposition is denoted by T
and it is used to make matrices compatible for multiplica-
tion. We prefer the term “dimension” instead of variable or
feature. The data set X is stored as a table with an addi-
tional column i that acts as primary key (e.g. a record id),
which is not used for statistical purposes. Thus table X is
defined as X(i, X1, X2, . . . , Xd) with primary key i.

2.2 User-Defined Functions
UDFs are programmed in the C language, compiled to ob-

ject code and called in a“SELECT”statement, like any stan-
dard SQL function. There are two fundamental classes of
functions: (1) Scalar functions, that take a set of parameter
values and return a single value. A scalar function produces
one value for each input row. (2) Aggregate functions, which
work like standard SQL aggregate functions and return one
row for each distinct combination of grouping columns.

3. VECTOR AND MATRIX OPERATIONS
This section presents our main contributions. We first ex-

plain the integration of data mining algorithms in a parallel
DBMS like Teradata. We identify important programming
considerations. We introduce a set of scalar UDFs that per-
form basic vector operations and finally, we introduce an ag-
gregate UDF that computes two essential matrices for data
summarization.

3.1 Integration of Data Mining with a DBMS
In the case of Teradata, we have identified three alterna-

tives to integrate a data mining algorithm with the DBMS:
(1) Implementing the algorithm internally so that matrix
operations are handled directly by C code, bypassing the
DBMS storage manager; disk blocks are directly accessed
and memory has to be carefully managed. Results from
each processing thread need to be combined through mes-
sage passing. This alternative is particularly difficult given
the shared-nothing architecture of the DBMS. (2) Devel-
oping the data mining algorithms with SQL queries; SQL
has limited matrix computation capabilities, but it exploits
available DBMS functionality [14, 12, 11, 13]. This is the
alternative currently used in some data mining techniques
working on Teradata. (3) Exploiting UDFs combined with
SQL. UDFs have somewhat limited memory management
capabilities and they cannot perform disk I/O. But they are
fast, they provide the programming flexibility from the C
language, they automatically execute in parallel and they
exploit DBMS functionality. This is the alternative we ex-
plore in depth in this article and which is used to accelerate
particular data mining operations.

3.2 UDF Programming Considerations

We have identified the following constraints to implement
vector and matrix operations with UDFs in the Teradata
DBMS. (1) A UDF can only accept parameters of simple
types (e.g. int, float, char) and return values of simple types.
Therefore, arrays are not allowed as parameters and a UDF
cannot return an array as result. This is not a significant
limitation because a UDF can take up to 128 parameters,
which can be used as a substitute for arrays. For higher di-
mensional data sets, vector entries can be packed as strings
and strings can be passed as parameters to the UDF. At run-
time vector entries must be packed as a string casting num-
bers as strings and when the UDF receives the string it has
to unpack it to get vector entries for internal vector and ma-
trix manipulation. (2) A scalar UDF cannot allocate heap
memory. On the other hand, an aggregate UDF can allocate
heap memory, but the amount of memory is limited and it
cannot be shared among threads. The maximum amount of
heap memory that can be currently allocated by an aggre-
gate UDF under the current (32 bit) UNIX operating system
is one 16-bit segment. That is, it is 64 kb. This limit will
change when Teradata is ported to a 64 bit operating system
architecture. (3) All variables and parameters are local to
the UDF, even the aggregation variable allocated in global
memory. All variables are allocated in the stack with the ex-
ception of the aggregation “struct” record, to be explained
below. All stack variables disappear after each call for each
row. (4) The only way to write UDF results to disk in the
DBMS is to store the result value as a column value in a re-
sult table. A UDF is executed in main memory at all times
and it cannot perform any I/O during its execution; this is
done to protect internal storage and to ensure the UDF is
properly managed by the parallel DBMS. (5) SQL semantics
require careful handling of nulls. In general, if some value
is null in an arithmetic expression then the result is null.
Therefore, if some parameter for the UDF is null then the
UDF returns null. In practical terms, this means that for
data set X there are d values that are passed at run-time
but also d null markers that are also dynamically computed
at run-time. (6) UDFs are automatically executed in paral-
lel in a shared-nothing database architecture. Data set X is
horizontally partitioned and each partition is independently
processed by one thread. Each row from X has an address
that is computed when the row is inserted. The address is a
hash code that is composed of one thread id (called AMP)
and a physical block address. On one hand, threads cannot
share memory, but on the other hand, the UDF developer
does not worry about mutual exclusion or synchronization.
In other words, a UDF called on one row cannot read the re-
sults from the same UDF called on another row. (7) A UDF
can be executed in unprotected mode guaranteeing maxi-
mum performance, but risking operating system failure if
unexpected memory leaks arise. Otherwise, a UDF can be
executed in protected mode which runs in a separate UNIX
process with low parallelism that can handle memory man-
agement errors, but which has bad performance. In general,
we run UDFs in unprotected mode after careful testing. (8)
Arrays are statically sized when the UDF is compiled; the
UDF cannot allocate an array with a user-specified size at
run-time. This means that several versions of the same UDF
with different memory usages may be needed when memory
becomes scarce (e.g. extremely large SQL queries with many
terms). In the C language, unidimensional arrays with d en-
tries are indexed from 0 to d − 1. On the other hand, algo-

rithms and statistical techniques are typically specified with
vectors and matrices starting in subscript 1. To provide a
more abstract and faithful implementation we manipulate
arrays starting in subscript 1, wasting just the array entry
at subscript 0.

Pivoting X

Data set X has to be pivoted in order to use standard SQL
aggregations. Teradata does not currently provide PIVOT
and UNPIVOT operators, like other DBMSs. However, piv-
oting can be easily accomplished with d SELECT state-
ments. Table Xpivot is defined as Xpivot(i, l, Xl)

INSERT INTO Xpivot SELECT i,1,X1 FROM X;
INSERT INTO Xpivot SELECT i,2,X2 FROM X;
...
INSERT INTO Xpivot SELECT i,d,Xd FROM X;

This code transforms X into a table that has dn rows.
In the following discussion we assume Xpivot has already
been computed in order to apply standard SQL aggrega-
tions. Pivoting is an operation that is not appropriate for
UDFs because it changes table structure and it is not of a
mathematical nature.

3.3 Scalar Functions
We use xi as the input vector for each operation. For each

vectorial operation we show three solutions: using an arith-
metic expression, using an aggregation and using a scalar
UDF. For UDFs we show the main fragment of C code and
we omit the C code to pass parameters, to declare variables,
to initialize arrays and to handle nulls. Also, we omit the
UDF definition in SQL, which specifies input parameters
data types, output data type, null handling and maximum
memory that can be allocated.

Vectorial sum
The task is to get

d∑

l=1

Xl

for each point xi. The SQL based on aggregations, using X
in pivoted form, is as follows:

SELECT i, sum(Xl)
FROM Xpivot
GROUP BY i;

The statement based on a SQL arithmetic expression dy-
namically evaluates the equation at run-time:

SELECT i,X1+X2+. . . +Xd

FROM X;

The vectorial sum UDF C code and the respective UDF
call follow.

for(l=1,sum=0;l<=d;l++) sum+=X[l];

*result= ∑

SELECT i,vectsum(X1, X2, . . . , Xd)
FROM X;

This framework can be generalized to compute distance
functions (Manhattan, Euclidean, Mahalanobis), which are
essential in nearest neighbor classifiers and clustering.

Dot product
A dot product between two vectors is useful for regression
and other statistical techniques like factor analysis. Given
two d-dimensional vectors x and y the task is to compute

x · y = xT y =
d∑

l=1

xlyl.

Assume β is a d-dimensional vector of coefficients. For
linear regression, the Ŷ predicted column is determined by

Ŷ = βT X,

or equivalently for one point, ŷi = βT xi. For binary logistic
regression

ŷi = exp(
βT xi

1 + βT xi

).

The SQL to compute dot products, assuming β is also in
pivoted form (i.e. betapivot(l,betal)), using aggregations is:

SELECT i,sum(betal*Xl)
FROM Xpivot JOIN betapivot ON Xpivot.l=betapivot.l
GROUP BY i;

The SQL statement using an arithmetic expression to
compute the dot product between β and xi is:

SELECT i,beta1*X1+. . . + betad*Xd

FROM X,beta;

The dot product UDF takes vector β and vector xi as
parameters. The C code for the UDF to compute the dot
product of β and xi and the UDF call in SQL are included
below. Each product βl ∗Xl is evaluated in compiled C code
at run-time.

for(l=1,sum=0;l<=d;l++) sum+=beta[l]*X[l];

*result= ∑

SELECT
i

,dotproduct(beta1,beta2,..,betad,X1, X2, . . . , Xd)
FROM X;

The vectorial sum UDF can be reused to compute a dot
product by passing sum terms as parameters. Each product
βl ∗ Xl is evaluated in SQL at run-time.

SELECT i,vectsum(beta1*X1,..,betad*Xd)
FROM X;

Subscript of minimum argument
One of the most common tasks when programming a statis-
tical algorithm is to determine the subscript of the minimum
(maximum) element in a vector. Such task is needed in clus-
tering [14] to determine the nearest centroid to a point, in a
Bayesian classifier to determine the class with highest proba-
bility, in decision trees to determine the dimension (feature)
with highest gain or the best split point or in logistic regres-
sion to determine the target value with highest probability.
The SQL solution is as follows:

SELECT i, l
FROM Xpivot

JOIN
(SELECT i,min(Xl) AS minXl

FROM Xpivot GROUP BY 1)Xmin
ON Xpivot.i=Xmin.i and Xl=minXl;

The only way we have discovered to compute the subscript
of the minimum argument without aggregate functions re-
quires a long CASE statement with d−1 WHEN conditions,
where each condition is a conjunction of l − 1 inequalities,
l = 1, 2, . . . , d:

SELECT
i

,CASE
WHEN X1 ≤ X2 and .. and X1 ≤ Xd THEN 1
WHEN X2 ≤ X3 and .. and X2 ≤ Xd THEN 2
...
ELSE d

END
FROM X;

This code takes O(d2) because the total number of com-
parisons is: (d − 1) + (d − 2) + · · · + 1 = (d − 1)d/2. We
now show the C code implementing the UDF that finds the
subscript of the minimum argument and the corresponding
UDF call in a SELECT statement.

argmin=1;

for(l=2;l<=d;l++) if(X[l]<X[argmin]) argmin= l;

*result= &argmin;

SELECT i,argmin(X1, X2, . . . , Xd) AS l FROM X;

Distance
Computing distance is fundamental for clustering and near-
est neighbor classifiers. Let C represent a vector with d
coordinates. Let R represent a diagonal variance-covariance
matrix. There are three main distance functions, widely
used in the machine learning literature.

(1) Manhattan [1], also known as block-based:
∑

l

|xil − Cl|;

(2) Euclidean [8], which is the length of the shortest line
linking two points in space:

∑

l

(xil − Cl)
2

(3) Mahalanobis [15], which is a scaled distance by vari-
ance so that dimensions in different scales can be compared
mainly for clustering purposes:

∑

l

(xil − Cl)
2/Rl.

These equations are computed in SQL and C using the
same framework above. The main difference is that we need
to pass more parameters. In the SQL code below we show
the UDF call for each distance implementation and three
statements reusing the vectorial sum.

SELECT i,ManhattanDist(C1, C2, . . . , Cd,X1, X2, . . . , Xd)
FROM X;

SELECT i,EuclideanDist(C1, C2, . . . , Cd,X1, X2, . . . , Xd)
FROM X;

SELECT i,MahalanobisDist(C1, C2, . . . , Cd,
R1, R2, . . . , Rd,X1, X2, . . . , Xd)

FROM X;

/* Manhattan */
SELECT i,vectsum(abs(C1 − X1),..,abs(Cd − Xd))
FROM X;
/* Euclidean */
SELECT i,vectsum((C1 − X1)**2,..,(Cd − Xd)**2)
FROM X;
/* Mahalanobis */
SELECT i,vectsum((C1 − X1)**2/R1,..,(Cd − Xd)**2/Rd)
FROM X;

3.4 Aggregate Functions
We concentrate on computing vector L and matrix Q:

L =
n∑

i=1

xi. (1)

Q = XXT =
n∑

i=1

xix
T

i . (2)

Vector L in Eq. 1 contains the linear sum of points and
it is d × 1. For practical purposes, L can be considered a
1 × d matrix. Matrix Q in Eq. 2 is d × d and contains the
quadratic sum of points, where each point is squared with a
cross product.

Vector L and matrix Q together with n represent suf-
ficient statistics for several linear models including cluster-
ing, linear regression, Principal Component Analysis (PCA),
Maximum Likelihood Factor Analysis and correlation (not
strictly a model). In other words, {n, L, Q} can be used
instead of X in each technique internal calculations. This
makes computation much faster since L and Q are much
smaller than X (i.e. d << n). It is beyond the scope of
this article explaining in mathematical terms why n, L, Q
have such wide applicability and showing how they can sig-
nificantly accelerate processing in a relational DBMS. Such
aspects will be studied in future work.

There are three optimizations that can be applied to com-
pute Q. First, when dimensions are assumed to be indepen-
dent, cross-products can be ignored and then Q becomes a
diagonal matrix. This is the case for clustering (K-means
and EM) [14] and makes Q computation take O(d) instead
of O(d2). We call it the diagonal matrix optimization. Sec-
ond, in all other cases only one half of Q can be computed
because Q is symmetrical. This is the case for linear regres-
sion, PCA, Factor Analysis and correlation. If needed, the
upper (lower) half can be copied to the lower (upper) half at
the end. This makes Q computation take d(d− 1)/2 opera-
tions instead of d2. We call this improvement the triangular
matrix optimization. Third, n, L and Q can be computed
in the same table scan because they do not depend on each
other; such matrix independence is a mathematical property
that can be exploited to reduce disk I/O.

Computing sufficient statistics with SQL queries
n, L and Q can be obtained from Xpivot with aggregations
with one value per row. We compute the lower triangular
submatrix of Q (diagonal Q: “WHERE a = b”).

/* n */
SELECT sum(1.0) AS n
FROM X;

/* L */
SELECT l,sum(Xl)
FROM Xpivot
GROUP BY l;

/*Q*/
SELECT A.l AS a,B.l AS b,sum(A.Xl*B.Xl)
FROM Xpivot A

JOIN Xpivot B ON A.i=B.i
WHERE a > b
GROUP BY a, b;

This solution requires reading Xpivot three times because
of the linear sum and the self-join. L and Q can be more
efficiently computed on a single table scan on X with one
SELECT statement with 1 + d + d2 aggregation terms, cor-
responding to n, L and Q.

L and Q can be computed more efficiently using X as
follows in a table with 1 + d + d2 columns.

SELECT sum(1.0) AS n
,sum(X1),sum(X2),. . . ,sum(Xd) /*L*/
,sum(X1 ∗ X1),null,. . . ,null /*Q*/
,sum(X2 ∗ X1),sum(X2 ∗ X2),. . . ,null
...
,sum(Xd ∗ X1),sum(Xd ∗ X2),. . . ,sum(Xd ∗ Xd)

FROM X;

Computing sufficient statistics with a UDF
Based on the same framework introduced above, n, L and
Q can be computed by one UDF in a single table scan on X.
The crucial difference between a scalar UDF and an aggre-
gate UDF is that the aggregate UDF can allocate global
memory: the aggregate UDF can store n, L, Q in mem-
ory and it can perform all incremental update operations
in memory as well.

The UDF stores aggregation results in a C“struct” record.
Currently, due to specific operating system and computer
architecture constraints, a UDF can only allocate up to 64
kb. In practical terms, this allows computing matrices up to
d = 64, which represents a good threshold for medium and
low dimensional data sets. Matrices with d > 64 can be com-
puted in blocks of 64 × 64 sub-matrices with separate UDF
calls. Since Teradata has a shared-nothing architecture each
processing thread has its own“struct” record. The aggregate
UDF is executed in the following phases: (1) Memory is al-
located in each thread and arrays for each matrix are ini-
tialized. (2) Each thread updates n, L and Q independently
on a portion of X. Each row from X is scanned. (3) Par-
tial results from each thread are aggregated into one global
result. (4) Matrices are packed as a string and returned to
the user. Clearly, phase 2 is expected to be the most time-
consuming and that is why we incorporate the diagonal or
triangular matrix optimization here. The C code choosing
the desired matrix type optimization is below. We omit C
code to aggregate partial results from each thread.

thread_storage->n+=1.0;

for(a=1;a<=d;a++) {

thread_storage->L[a]+=X[a];

if(matrix_type==MATRIX_TYPE_DIAGONAL)

thread_storage->Q[a][a]+=X[a]*X[a];

n aggregation arithm expression UDF
100k 3 1 1
200k 4 1 1
400k 9 2 2
800k 19 4 4

1600k 47 8 9

Table 1: Time in seconds to get vectorial sum for all

vectors xi; d = 32.

n aggregation arithm expression UDF
100k 18 1 1
200k 37 2 2
400k 77 2 3
800k 168 4 6

1600k 349 10 11

Table 2: Time in seconds for dot product βT X; d =
32.

else

if(matrix_type==MATRIX_TYPE_TRIANGULAR)

for(b=1;b<=a;b++)

thread_storage->Q[a][b]+=X[a]*X[b];

else

if(matrix_type==MATRIX_TYPE_FULL)

for(b=1;b<=d;b++)

thread_storage->Q[a][b]+=X[a]*X[b];

}

4. EXPERIMENTAL EVALUATION
We present experiments on the Teradata RDBMS V2R6.

Our Teradata database server had 20 parallel processing
threads in a shared-nothing architecture. The server had
four CPUs running in parallel at 1.2 GHz, 256 MB of mem-
ory per CPU and 1 TB of disk space. The operating sys-
tem was UNIX MP-RAS (a parallel OS version derived from
Unix System V). Data set X was never cached and was read
from disk in every run. That is, I/O cost played a crucial role
in performance. Our experiments vary n and d to compare
SQL and UDFs. Each run with the same parameters was
repeated five times to get average execution time. Times are
reported in seconds.

4.1 Comparing SQL and UDFs
Data set X had d = 32 by default. Table 1 compares the

three implementations to get the vectorial sum. The SQL
aggregation time grows faster than their counterparts. We
expected UDFs to be slightly faster than SQL since the sum
arithmetic expression is interpreted at run-time and the C
code is compiled. The SQL arithmetic expression and the
UDF have the same performance: I/O dominates time since
this vectorial operation performs only d − 1 floating point
additions in memory.

Table 2 compares the dot product for the three implemen-
tations. There are two differences with respect to vectorial
sum: There are d multiplications in addition to d − 1 addi-
tions. The β vector is stored in a one-row table. We can see
the SQL aggregation time grows much faster than the other
two implementations. In this case joining β (with a Carte-

n aggregation CASE statement UDF
100k 3 2 1
200k 7 2 1
400k 20 4 2
800k 41 5 4

1600k 113 11 10

Table 3: Time in seconds for the subscript of mini-

mum argument UDF for all xi; d = 32.

n one aggr. aggr. term list UDF
100k 62 23 5
200k 124 32 10
400k 247 42 20
800k 490 58 41

1600k 985 104 76

Table 4: Time in seconds to get n, L, Q on X; d = 32.

sian product) with X, and performing dn multiplications
significantly hurts performance. Both the SQL arithmetic
expression and the UDF times are slightly higher than their
respective times for the dot product. In fact, the arithmetic
expression time increment because of the additional d multi-
plications and joining β is marginal. On the other hand, we
can see the gap between UDF and the SQL arithmetic ex-
pression remains the same. The UDF overhead comes from
passing 4d parameters on the stack (xi and null markers
twice).

Table 3 provides another perspective comparing SQL and
UDFs. First, even though we join two tables with n and
dn rows, the time to compute the subscript of the mini-
mum argument is better than the time to get dot product.
However, the SQL aggregation is still an order of magni-
tude worse than the other two implementations. Recall the
CASE statement makes O(d2) comparisons, compared to
O(d) comparisons for the UDF. That does make a differ-
ence, since now the UDF is always faster.

Table 4 compares the three implementations to compute
n, vector L and matrix Q. We used the triangular matrix
optimization to compute Q by default. The aggregation is
much slower than the term list and the aggregate UDF; in
fact, for the largest data set it is one order of magnitude
slower. The UDF is the fastest in all cases. The term list
creates a“wide”table with 1+d+d2 terms, whereas the UDF
returns only one “wide” column, but the gap in performance
narrows as n grows.

We compare a scalar UDF and an aggregate UDF that
do exactly the same work. For the scalar UDF we use our
simplest UDF which is the vectorial sum. For the aggregate
UDF we simplify our aggregate UDF to compute the sum
of all elements in L. The difference is that the scalar UDF
returns the vectorial sum for one xi and the aggregate UDF
returns the sum for all vectors xi. Both UDFs: perform
O(dn) work, receive xi as a list of d parameters, access the
d entries, perform d − 1 additions; the aggregate UDF just
does an additional sum to increment the global sum. The
scalar UDF execution returns a table with two columns and
n rows, whereas the aggregate UDF returns a table with one
row and one column. In short, they do the same work. From
an execution perspective the scalar UDF works only on the

n scalar UDF aggregate UDF
100k 1 1
200k 2 3
400k 4 4
800k 6 6

1600k 12 12

Table 5: Scalar UDF vs aggregate UDF; d = 64.

stack, whereas the aggregate UDF works on the stack and
the heap. There is small additional overhead to assemble
the results from all threads into one result; for large n it is
negligible. As we can see in Table 5 both UDFs take about
the same time, but the aggregate UDF is slightly slower.

4.2 Profiling UDF execution
Our comparisons between scalar and aggregate UDFs sug-

gest disk I/O is a bottleneck for performance. However, we
are not sure how much time it takes to create the activation
call for the UDF, to pass the vector xi and the correspond-
ing null markers, to create local variables, to actually run
the desired vector or matrix functionality and finally, return
results to the user. In the following experiments we took a
data set X with n = 3200k and d = 64, which represents
a fairly large data, high dimensional data set where we can
study the relative importance of each internal operation in
the UDF. We want to emphasize again, that X is read from
disk every time and it is never cached. We made a separate
experiment setting for the scalar and the aggregate UDF
since both have different implementations.

Table 6 shows the relative importance of each UDF inter-
nal operation. We indicate if the UDF is called or not and if
vector xi is passed as parameter or not. Column time indi-
cates the cumulative elapsed time for each operation within
the UDF. In column ∆ we compute the incremental time
difference between each consecutive operation. Finally, the
percentage column shows the fraction of each operation run-
ning time; this column highlights the relative overhead and
importance of each operation.

To profile the scalar UDF we picked the simplest func-
tion: vectorial sum. We ran experiments as follows. The
lower bound for UDF running time is evidently disk I/O
since the UDF needs to have as parameters columns from a
table. Since the UDF call itself introduces overhead we first
ran a straight “SELECT * FROM X” query to scan the en-
tire table and access every column. We created a UDF with
only one parameter (d), to quantify the overhead of creating
and destroying the UDF call activation record in the stack.
This function does no operation on X (we call it NOP) and
returns null. We created a UDF that had X (with its d coor-
dinates) as parameter, but which made no operation (NOP)
on X; each vector entry had also its null marker as required
by SQL. A local array X was created in the stack to store
the parameter vector. The UDF returns a null value. We
used the UDF that did all the work as described in Section
3 and returned a floating point number for each row. Our
first surprise is that disk I/O accounts for slightly over 50%
time, and we expected it to be higher. Our second surprise
was that the actual vectorial sum computation took only 4%
of the total time. It is interesting that the UDF call over-
head is the second contributing factor to time. We expected
passing xi should take some time since it requires assign-

Operation call UDF pass xi time ∆ %
Scalar UDF:
Disk I/O N N 13 13 54
Call UDF Y N 19 6 25
Pass xi as parameter Y Y 23 4 16
Compute sum and return result Y Y 24 1 4
Aggregate UDF:
Disk I/O N N 13 13 7
Call UDF Y N 14 1 1
Allocate/manage memory for L Y N 14 0 0
Allocate/manage memory for Q Y N 85 71 39
Pass xi as parameter Y Y 102 17 9
Compute n, L Y Y 110 8 4
Compute Q Y Y 141 31 17
Return n, L, Q Y Y 181 40 22

Table 6: Profile of scalar and aggregate UDFs; Data set with d = 64, n = 3200k.

ing each coordinate to an array entry and taking care of
null indicators. Our findings indicate that there is room for
performance improvement by reducing UDF call overhead.
On the other hand, it is not worth optimizing the desired
operation itself (summing vector entries in this case).

For the aggregate UDF we had to develop a more detailed
profile, given its C code and run-time execution complexity.
Recall we introduced only one aggregate UDF to compute
n, vector L and matrix Q (triangular by default). There
are some similarities with the scalar UDF profile described
above, but there are more internal operations. We now de-
scribe the setting. The output in every case is a table with
one row and one column, except for the “SELECT * FROM
X” query. Our baseline comparison was again a full table
scan (FTS) with the query “SELECT * FROM X”. We first
created an aggregate UDF that received only one parame-
ter (d) and returned a floating point number instead of a
string. The UDF did not perform any operation. We de-
fined a similar UDF which had to allocate L; notice L takes
little (linear) memory, less than 1 kb. We created a similar
UDF, but now allocating L and Q; in this case Q takes a lot
memory (quadratic space), relative to the UDF constraint
of 64 kb. In this case d = 64 makes memory allocation take
over 32 kb. This UDF did not perform any arithmetic op-
eration either. Then we built a UDF which passed vector
xi. This UDF did not perform any arithmetic operation and
returned a number. We created a UDF that passed xi, but
which computed n and L and returned a number. This UDF
makes a linear number of arithmetic operations. Then we
defined a UDF that passed xi and also computed n, L, Q.
This UDF makes a quadratic number of arithmetic opera-
tions. Last, this is the UDF that does all the work. That
is, it computes n, L, Q and packs n, L, Q into a long string,
which can be easily returned to the desired application or
client program. Findings are even more surprising that for
the scalar UDF. First of all, disk I/O is very low, just 7%.
Allocating arrays for L and Q and maintaining those arrays
in memory takes almost 40% of time. The operating sys-
tem incurs on significant overhead maintaining the arrays
in memory even though they are not used. Then packing
matrices as a string takes 22% of time; the operating system
needs to allocate memory to return the long string. That is
why all UDF versions, except the last one, return just one

number in order to avoid this extra overhead. Therefore,
62% of time of the UDF execution is spent on memory over-
head, and not on the actual arithmetic operations. In fact,
computing n, L, Q takes only approximately 20% (17+4) of
total time, even though Q requires a quadratic number of
operations per row. Passing xi takes little time. Last, call-
ing the UDF and allocating L take negligible time. In short,
for our aggregate UDF memory manipulation is the bottle-
neck. Optimizing disk I/O or arithmetic operations is not
worth it.

4.3 Time Complexity
Figure 1 shows time complexity as n grows. The first

graph shows two scalar UDFs: vectorial sum and dot prod-
uct. Both UDFs show linear scalability; dot product is
slightly slower than vectorial sum and the gap in perfor-
mance grows little. On one hand, this is good news because
we are basically doing twice the number of arithmetic op-
erations with almost the same performance. But on the
other hand, disk I/O remains a bottleneck, since we can-
not expect any UDF on a d-dimensional vector to be faster
than vectorial sum. The second graph in Figure 1 shows
time growth for the diagonal (time O(d)) and triangular Q
computation (time O(d2)). The aggregate UDF has linear
performance. The gap in performance is small, even though
computing Q takes O(d2). The difference in performance
between d = 32 and d = 64 for the diagonal Q computation
is practically zero. Also, such performance is almost the
same as the triangular Q computation at d = 32. In other
words, d plays a much smaller role in the aggregate UDF,
compared to the scalar UDFs. Similarly, we cannot expect
any aggregate UDF on a d-dimensional vector to be signifi-
cantly faster than the UDF with a diagonal Q computation
since that UDF does 2d + 1 computations. In short, both
scalar and the aggregate UDF exhibit linear scalability with
respect to n and time for both is dominated by disk I/O.

To conclude this section on time complexity, Figure 2 plots
scalability as d grows. The first graph shows scalar UDFs
behavior. Time growth for the vectorial sum UDF is sub-
linear, which is consistent with the results presented for n
growth. Time growth for the dot product UDF is fairly lin-
ear which can be explained by the fact that we join the one
row table for β with X and twice the number of arithmetic

0

3

6

9

12

15

0 400 800 1200 1600

T
im

e
 i
n
 s

e
c
s

n X 1000

data set size

scalar UDF vectsum d=32
scalar UDF dotproduct d=32

0

20

40

60

80

100

0 400 800 1200 1600

T
im

e
 i
n
 s

e
c
s

n X 1000

data set size

aggr UDF Q triang d=32
aggr UDF Q triang d=64
aggr UDF Q diag d=32
aggr UDF Q diag d=64

Figure 1: Scalability as n grows; d = 32.

operations. The second graph shows time for the aggregate
UDF. We can see that time remains almost constant when
we compute a diagonal Q matrix. Time grows slowly for
the triangular Q matrix when d = 32 and there is “jump”
when d > 32, indicating arithmetic operations start having
more weight with respect to I/O. In any case, time growth
is almost linear even for the triangular matrix computation.
We can see that the aggregate UDF incurs on significant
overhead since it takes an order of magnitude more time,
compared to scalar UDFs, for a data set with the same d
and n. Scalar UDFs are used in queries that produce one
table with n rows, whereas the aggregate UDF produces one
table with one big column.

4.4 Discussion
Scalar UDFs and SQL arithmetic expressions have similar

performance. Computing vector operations using aggrega-
tions on the pivoted version of X has significantly worse
performance than SQL arithmetic expressions and UDFs.
Both scalar and aggregate UDFs exhibit linear time scala-
bility with respect to data set size (number of rows). Dimen-
sionality (number of columns) is more important for UDFs
and SQL arithmetic expressions than for aggregate UDFs.
Disk I/O takes a significant portion of running time for the
scalar UDF. Memory overhead takes most of the time for
the aggregate UDF. Disk I/O is very low for our aggregate
UDF. Both types of UDFs indicate it is not worth to op-
timize the number of arithmetic operations. The number
of operations that can be done inside an aggregate UDF is
quadratic and performance remains almost linear.

4.5 Summary of UDF Advantages
and Disadvantages

Based on our vector and matrix operations implementa-
tion we summarize UDF advantages. UDFs allow the data
mining programmer to extend the SQL language with pow-
erful mathematical capabilities. Our set of UDFs can ex-
press most vector operations needed in many statistical tech-
niques, showing wide applicability. Having the possibility to
implement a complex mathematical operation with a UDF
avoids the need to export a data set outside the DBMS.

The C language provides great flexibility to implement vec-
tor and matrix operations with multidimensional arrays and
all C flow control statements, such as “for”,“if” and “while”.
A UDF runs fast because it is plugged directly as a piece of
executable code inside the DBMS, like any other SQL func-
tion. Important UDF disadvantages include the following.
There are certain limitations that are architecture depen-
dent, such as no control on parallel execution, no shared
memory, no complex types as parameters and low available
memory space. UDF capabilities provided by a particular
DBMS will vary; in particular, aggregate UDFs character-
istics are more OS and DBMS architecture dependent. A
set of UDFs cannot always be a substitute for an external
statistical package, when a complex statistical or data min-
ing technique is needed. Nevertheless, combining SQL and
UDFs can help doing pre-processing inside the DBMS, like
we did for the sufficient statistics for linear models.

5. RELATED WORK
Although there has been a considerable amount of work

in machine learning and data mining to develop efficient
and accurate techniques, most data mining work has concen-
trated on proposing efficient algorithms assuming the data
set is in a flat file outside the DBMS. Statistics and machine
learning have paid little attention to large data sets, whereas
that has been the primary focus of data mining. Studying
purely statistical techniques in a database context has re-
ceived little attention. Most research work has concentrated
on association rules [2], followed by clustering [14] and de-
cision trees [6]. The importance of the linear sum of points
and the quadratic sum of points (without cross-products) to
decrease I/O in clustering is recognized in [3, 15], assum-
ing the data set is directly accessible with some I/O inter-
face. We have gone beyond a scalable clustering approach,
by showing the linear sum and the quadratic sum of points
with cross-products solves four statistical problems. This
is orthogonal to implementation. Our approach to profile
UDFs shares similarities with other approaches where the
authors use queries to figure out in what level of the mem-
ory hierarchy there are bottlenecks. Reference [9] stresses
the importance of taking into account the ever-increasing

0

5

10

15

20

25

0 16 32 48 64

T
im

e
 i
n
 s

e
c
s

d

dimensionality

UDF vectsum n=1600k
UDF dotproduct n=1600k

0

20

40

60

80

100

0 16 32 48 64

T
im

e
 i
n
 s

e
c
s

d

dimensionality

UDF matrices diag
UDF matrices trian

Figure 2: Scalability as d grows; n = 1600k.

speed of CPUs and the much slower growth in memory ac-
cess speed; the authors propose techniques to accelerate join
processing on memory-resident tables.

Most proposals extend SQL with data mining functional-
ity, by adding syntax to SQL and optimizing queries using
the proposed extensions. Data mining primitive operators
are proposed in [4], including pivoting and sampling. SQL
extensions to define, query and deploy data mining models
are proposed in [10]. This approach is complementary to
our proposal. Getting sufficient statistics for classification
in SQL is studied in [7]. In [13] there is a proposal to en-
rich SQL to compute percentages in vertical and horizontal
layouts. In a related approach, [11] proposes special aggre-
gations to preprocess and transform data sets for machine
learning and statistical analysis. Developing data mining
algorithms using SQL has received some attention. Some
important approaches include [16] to mine association rules,
[14, 12] to cluster data sets using SQL queries, [17] to de-
fine primitives for decision trees. SQL syntax is extended to
allow spreadsheet-like computations in [18], letting an end-
user express complex equations in SQL, but such approach
is not as flexible and efficient as ours to express vector and
matrix computations.

6. CONCLUSIONS
We studied how to extend SQL with vector functions and

matrix operations exploiting scalar and aggregate UDFs.
UDFs are subroutines programmed in the C language that
can be used like any SQL function, which have constraints
due to the DBMS architecture and the operating system.
We focused on three vector operations including the vec-
torial sum, the dot product and the subscript of the mini-
mum argument. We presented three solutions: using aggre-
gations, writing an arithmetic expression and developing a
scalar UDF. We then studied how to compute two essential
matrices, called sufficient statistics, for several linear statis-
tical models. We showed three solutions: using aggregations
on a pivoted version of the data set, with a long list of terms
with aggregations and defining an aggregate UDF. Our ex-
periments were based on the Teradata DBMS, but we expect
most of our findings to be similar in other relational DBMSs

that offer scalar and aggregate UDF capabilities. Experi-
ments compare SQL and UDFs and study time complexity.
UDFs and SQL arithmetic expressions have similar perfor-
mance. SQL standard aggregations are much slower than
scalar UDFs. Scalar UDFs are as fast as arithmetic expres-
sions in SQL. The aggregate UDF that computes sufficient
statistics is faster than the two solutions using SQL stan-
dard aggregations. Disk I/O is significant for scalar UDFs,
whereas memory management overhead dominates time of
our aggregate UDF. Scalar and aggregate UDFs have linear
time scalability on data set size. Scalar UDFs have linear
time scalability on dimensionality. Aggregate UDFs have
almost linear time scalability when doing a quadratic num-
ber of operations with respect to dimensionality. Aggregate
UDFs time growth is almost zero when the number of oper-
ations is linear with respect to dimensionality.

There are several issues for future work. We plan to
develop mechanisms to decrease memory management and
UDF call overhead. We need to identify other mathematical
operations with wide applicability that can be implemented
with UDFs, thereby enhancing DBMS data mining func-
tionality. Scalar UDFs can benefit from allocating global
memory to maintain common matrices in memory and in
some cases small matrices can be stored in cache memory.
We want to understand how UDFs can simplify automati-
cally generated SQL code. Some operations in a UDF can
exploit cache memory, register variables or specific numeric
co-processor instructions to improve performance.

Acknowledgments
The second author was sponsored by the UNAM information
technology project “Macroproyecto de Tecnoloǵıas para la
Universidad de la Información y la Computación”.

7. REFERENCES
[1] C. Aggarwal and P. Yu. Finding generalized projected

clusters in high dimensional spaces. In ACM SIGMOD
Conference, pages 70–81, 2000.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large

databases. In ACM SIGMOD Conference, pages
207–216, 1993.

[3] P. Bradley, U. Fayyad, and C. Reina. Scaling
clustering algorithms to large databases. In Proc.
ACM KDD Conference, pages 9–15, 1998.

[4] J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and
P. Lohman. Non-stop SQL/MX primitives for
knowledge discovery. In ACM KDD Conference, pages
425–429, 1999.

[5] R. Elmasri and S.B. Navathe. Fundamentals of
Database Systems. Addison-Wesley, 4th edition, 2003.

[6] J. Gehrke, Venkatesh Ganti, and R. Ramakrishnan.
BOAT-optimistic decision tree construction. In Proc.
ACM SIGMOD Conference, pages 169–180, 1999.

[7] G. Graefe, U. Fayyad, and S. Chaudhuri. On the
efficient gathering of sufficient statistics for
classification from large SQL databases. In Proc. ACM
KDD Conference, pages 204–208, 1998.

[8] T. Hastie, R. Tibshirani, and J.H. Friedman. The
Elements of Statistical Learning. Springer, New York,
1st edition, 2001.

[9] S. Manegold, P.A. Boncz, and M.L. Kersten.
Optimizing main-memory join on modern hardware.
IEEE Transactions on Knowledge and Data
Engineering (TKDE), 14(4):709–730, 2002.

[10] A. Netz, S. Chaudhuri, U. Fayyad, and J. Berhardt.
Integrating data mining with SQL databases: OLE
DB for data mining. In Proc. IEEE ICDE Conference,
pages 379–387, 2001.

[11] C. Ordonez. Horizontal aggregations for building
tabular data sets. In Proc. ACM SIGMOD Data
Mining and Knowledge Discovery Workshop, pages
35–42, 2004.

[12] C. Ordonez. Programming the K-means clustering
algorithm in SQL. In Proc. ACM KDD Conference,
pages 823–828, 2004.

[13] C. Ordonez. Vertical and horizontal percentage
aggregations. In Proc. ACM SIGMOD Conference,
pages 866–871, 2004.

[14] C. Ordonez and P. Cereghini. SQLEM: Fast clustering
in SQL using the EM algorithm. In Proc. ACM
SIGMOD Conference, pages 559–570, 2000.

[15] C. Ordonez and E. Omiecinski. FREM: Fast and
robust EM clustering for large data sets. In ACM
CIKM Conference, pages 590–599, 2002.

[16] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating
association rule mining with relational database
systems: alternatives and implications. In Proc. ACM
SIGMOD Conference, pages 343–354, 1998.

[17] K. Sattler and O. Dunemann. SQL database
primitives for decision tree classifiers. In Proc. ACM
CIKM Conference, pages 379–386, 2001.

[18] A. Witkowski, S. Bellamkonda, T. Bozkaya,
G. Dorman, N. Folkert, A. Gupta, L. Sheng, and
S. Subramanian. Spreadsheets in RDBMS for OLAP.
In Proc. ACM SIGMOD Conference, pages 52–63,
2003.

