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ABSTRACT

Association rules represent a promising technique to find
hidden patterns in a medical data set. The main issue about
mining association rules in a medical data set is the large
number of rules that are discovered, most of which are irrel-
evant. Such number of rules makes search slow and interpre-
tation by the domain expert difficult. In this work, search
constraints are introduced to find only medically significant
association rules and make search more efficient. In medical
terms, association rules relate heart perfusion measurements
and patient risk factors to the degree of stenosis in four spe-
cific arteries. Association rule medical significance is eval-
uated with the usual support and confidence metrics, but
also lift. Association rules are compared to predictive rules
mined with decision trees, a well-known machine learning
technique. Decision trees are shown to be not as adequate
for artery disease prediction as association rules. Experi-
ments show decision trees tend to find few simple rules, most
rules have somewhat low reliability, most attribute splits are
different from medically common splits, and most rules re-
fer to very small sets of patients. In contrast, association
rules generally include simpler predictive rules, they work
well with user-binned attributes, rule reliability is higher
and rules generally refer to larger sets of patients.
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1. INTRODUCTION

One of the most popular techniques in data mining is asso-
ciation rules [1, 2]. Association rules have been successfully
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applied with basket, census and financial data [17]. On the
other hand, medical data is generally analyzed with classifier
trees, clustering [17], regression [18] or statistical tests [18§],
but rarely with association rules. This work studies asso-
ciation rule discovery in medical records to improve disease
diagnosis when there are multiple target attributes.

Association rules exhaustively look for hidden patterns,
making them suitable for discovering predictive rules involv-
ing subsets of the medical data set attributes [26, 25]. Nev-
ertheless, there exist three main issues. First, in general,
in a medical data set a significant fraction of association
rules is irrelevant. Second, most relevant rules with high
quality metrics appear only at low support (frequency) val-
ues. Third and most importantly, the number of discovered
rules becomes extremely large at low support. With these
issues in mind, we introduce search constraints to reduce the
number of association rules and accelerate search. On the
other hand, decision trees represent a well-known machine
learning technique used to find predictive rules combining
numeric and categorical attributes, which raises the ques-
tion of how association rules compare to induced rules by
a decision tree. With that motivation in mind, we compare
association rules and decision trees with respect to accuracy,
interpretability and applicability in the context of heart dis-
ease prediction.

The article is organized as follows. Section 2 introduces
definitions for association rules and decision trees. Section
3 explains how to transform a medical data set into a bi-
nary format suitable for association rule mining, discusses
the main problems encountered using association rules, and
introduces search constraints to accelerate the discovery pro-
cess. Section 4 presents experiments with a medical data set.
Association rules are compared with predictive rules discov-
ered by a decision tree algorithm. Section 5 discusses related
research work. Section 6 presents conclusions and directions
for future work.

2. DEFINITIONS

2.1 Association Rules

Let D = {T1,T>,...,Tn} be a set of n transactions and
let Z be a set of items, Z = {i1,42...im}. Each transac-
tion is a set of items, i.e. T; C Z. An association rule is
an implication of the form X = Y, where X,Y C Z, and
XNY =0; X is called the antecedent and Y is called the
consequent of the rule. In general, a set of items, such as X
or Y, is called an itemset. In this work, a transaction is a
patient record transformed into a binary format where only



positive binary values are included as items. This is done
for efficiency purposes because transactions represent sparse
binary vectors.

Let P(X) be the probability of appearance of itemset X in
D and let P(Y|X) be the conditional probability of appear-
ance of itemset Y given itemset X appears. For an itemset
X C I, support(X) is defined as the fraction of transactions
T; € D such that X C T;. That is, P(X) = support(X).
The support of a rule X = Y is defined as support(X =
Y) = P(X UY). An association rule X = Y has a mea-
sure of reliability called confidence(X = Y') defined as
P(Y|X)=P(XUY)/P(X) = support(XUY)/support(X).
The standard problem of mining association rules [1] is to
find all rules whose metrics are equal to or greater than
some specified minimum support and minimum confidence
thresholds. A k-itemset with support above the minimum
threshold is called frequent. We use a third significance met-
ric for association rules called lift [25]: lift(X = Y) =
PY|X)/P(Y) = confidence(X = Y)/support(Y). Lift
quantifies the predictive power of X = Y'; we are interested
in rules such that lift(X = Y) > 1.

2.2 Decision Trees

In decision trees [14] the input data set has one attribute
called class C that takes a value from K discrete values
1,..., K, and a set of numeric and categorical attributes
A1, ..., Ap. The goal is to predict C given A1,..., Ap. Deci-
sion tree algorithms automatically split numeric attributes
A; into two ranges and they split categorical attributes A;
into two subsets at each node. The basic goal is to maxi-
mize class prediction accuracy P(C = ¢) at a terminal node
(also called node purity) where most points are in class c
and ¢ € {1,..., K}. Splitting is generally based on the in-
formation gain ratio (an entropy-based measure) or the gini
index [14]. The splitting process is recursively repeated un-
til no improvement in prediction accuracy is achieved with
a new split. The final step involves pruning nodes to make
the tree smaller and to avoid model overfit. The output is
a set of rules that go from the root to each terminal node
consisting of a conjunction of inequalities for numeric vari-
ables (A; <=z, A; > x) and set containment for categorical
variables (A; € {z,y,z}) and a predicted value ¢ for class
C. In general decision trees have reasonable accuracy and
are easy to interpret if the tree has a few nodes. Detailed
discussion on decision trees can be found in [17, 18].

3. CONSTRAINED ASSOCIATION RULES

We introduce a transformation process of a data set with
categorical and numerical attributes to transaction (sparse
binary) format. We then discuss search constraints to get
medically relevant association rules and accelerate search.
Search constraints for association rules to analyze medical
data are explained in more detail in [26, 25].

3.1 Transforming Medical Data Set

A medical data set with numeric and categorical attributes
must be transformed to binary dimensions, in order to use
association rules. Numeric attributes are binned into inter-
vals and each interval is mapped to an item. Categorical at-
tributes are transformed by mapping each categorical value
to one item. Our first constraint is the negation of an at-
tribute, which makes search more exhaustive. If an attribute

has negation then additional items are created, correspond-
ing to each negated categorical value or each negated in-
terval. Missing values are assigned to additional items, but
they are not used. In short, each transaction is a set of items
and each item corresponds to the presence or absence of one
categorical value or one numeric interval.

3.2 Search Constraints

Our discussion is based on the standard association rule
search algorithm [2], which has two phases. Phase 1 finds
all itemsets having minimum support, proceeding bottom-
up, generating frequent 1-itemsets, 2-itemsets and so on,
until there are no frequent itemsets. Phase 2 produces all
rules whose support and confidence are above user-specified
thresholds. Two of our constraints work on Phase 1 and the
other one works on Phase 2.

The first constraint is k, the user-specified maximum item-
set size. This constraint prunes the search space for k-
itemsets of size such that £ > k. This constraint reduces
the combinatorial explosion of large itemsets and helps find-
ing simple rules. Each predictive rule will have at most s
attributes (items).

Let Z = {i1,i2,...im} be the set of items to be mined,
obtained by the transformation process from the attributes
A = {A1,...,Apy}. Constraints are specified on attributes
and not on items. Let attribute() be a function that returns
the mapping between one attribute and one item.

Let C = {c1,c2,...cp} be a set antecedent and consequent
constraints for each attribute A;. Each c¢; can take two
values: 1 if attribute A; can only appear in the antecedent
of a rule and 2 if A; can only appear in the consequent.
We define the function antecedent/consequent ac : A — C
as ac(A4;) = ¢; to make reference to one such constraint.
Let X be a k-itemset; X is said to satisfy the antecedent
constraint if for all i; € X then ac(attribute(i;)) = 1; X
satisfies the consequent constraint if for all 7; € X then
ac(attribute(ij)) = 2. This constraint ensures we only find
predictive rules with disease attributes in the consequent.

Let G = {g1,92,...9p} be a set of p group constraints
corresponding to each attribute Aj; g; is a positive inte-
ger if A; is constrained to belong to some group or 0 if
Aj is not group-constrained at all. We define the func-
tion group : A — G as group(A;) = g;. Since each at-
tribute belongs to one group then the group numbers in-
duce a partition on the attributes. Note that if g; > 0
then there should be two or more attributes with the same
group value of g;. Otherwise that would be equivalent to
having g; = 0. The itemset X satisfies the group con-
straint if for each item pair {a,b} s.t. a,b € Z it is true
group(attribute(a)) # group(attribute(b)). The group con-
straint avoids finding trivial or redundant rules.

3.3 Constrained Association Rule Algorithm

We join the transformation algorithm and search con-
straints from into an algorithm that goes from transforming
medical records into transaction to getting predictive rules.
The transformation process using the given cutoffs for nu-
meric attributes and desired negated attributes, produces
the input data set for Phase 1. Each patient record becomes
a transaction T; (see Section 2). After the medical data
set is transformed, items are further filtered out depending
on the prediction goal: predicting absence or existence of
heart disease. Items can only be filtered after attributes are



transformed because they depend on the numeric cutoffs and
negation. That is, it is not possible to filter items based on
raw attributes. This is explained in more detail in Section
4. In Phase 1 we use the group() constraint to avoid search-
ing for trivial itemsets. Phase 1 finds all frequent itemsets
from size 1 up to size k. Phase 2 builds only predictive rules
satisfying the ac() constraint. The algorithm main input pa-
rameters are k, minimum support and minimum confidence.

4. EXPERIMENTS

Our experiments focus on comparing the medical signifi-
cance, accuracy and usefulness of predictive rules obtained
by the constrained association rule algorithm and decision
trees. Further experiments that measure the impact of con-
straints in the number of rules and reducing running time
can be found in [25]. Our experiments were run on a com-
puter running at 1.2 GHz with 256 MB of main memory and
100 GB of disk space. The association rule and the decision
tree algorithms were implemented in the C++ language.

4.1 Medical Data Set Description

There are three basic elements for analysis: perfusion de-
fect, risk factors and coronary stenosis. The medical data set
contains the profiles of n = 655 patients and has p = 25 med-
ical attributes corresponding to the numeric and categorical
attributes listed in Table 1. The data set has personal infor-
mation such as age, race, gender and smoking habits. There
are medical measurements such as weight, heart rate, blood
pressure and pre-existence of related diseases. Finally, the
data set contains the degree of artery narrowing (stenosis)
for the four heart arteries.

4.2 Default Parameter Settings

This section explains default settings for algorithm pa-
rameters, that were based on the domain expert opinion and
previous research work [25]. Table 1 contains a summary of
medical attributes and search constraints.

Transformation parameters

To set the transformation parameters default values we must
discuss attributes corresponding to heart vessels. The LAD,
RCA, LCX and LM numbers represent the percentage of
vessel narrowing (stenosis) compared to a healthy artery.
Attributes LAD, LCX and RCA were binned at 50% and
70%. In cardiology a 70% value or higher indicates signifi-
cant coronary disease and a 50% value indicates borderline
disease. Stenosis below 50% indicates the patient is consid-
ered healthy. The LM artery has a different cutoff because
it poses higher risk than the other three arteries. LAD and
LCX arteries branch from LM. Therefore, a defect in LM
is likely to trigger more severe disease. Attribute LM was
binned at 30% and 50%. The 9 heart regions (AL, IL, IS, AS,
SI, SA, LI, LA, AP) were partitioned into 2 ranges at a cut-
off point of 0.2, meaning a perfusion measurement greater or
equal than 0.2 indicated a severe defect. CHOL was binned
at 200 (warning) and 250 (high). AGE was binned at 40
(adult) and 60 (old). Finally, only the four artery attributes
(LAD, RCA, LCX, LM) had negation to find rules referring
to healthy patients and sick patients. The other attributes
did not have negation.

Attribute Description Constraints
neg group ac
HD
AGE Age of patient N 00 1
LM Left Main Y 00 2
LAD Left Anterior Desc. Y 00 2
LCX Left Circumflex Y 00 2
RCA Right Coronary Y 00 2
AL Antero-Lateral N 11 1
AS Antero-Septal N 11 1
SA Septo-Anterior N 11 1
SI Septo-Inferior N 11 1
IS Infero-Septal N 11 1
IL Infero-Lateral N 11 1
LI Latero-Inferior N 11 1
LA Latero-Anterior N 11 1
AP Apical N 11 1
SEX Gender N 00 1
HTA Hyper-tension Y/N N 20 1
DIAB Diabetes Y/N N 20 1
HYPLD Hyperloipidemia Y/N N 20 1
FHCAD Family hist. of disease | N 20 1
SMOKE Patient smokes Y /N N 00 1
CLAUDI Claudication Y/N N 20 1
PANGIO Previous angina Y/N N 30 1
PSTROKE | Prior stroke Y/N N 30 1
PCARSUR | Prior carot surg Y/N N 30 1
CHOL Cholesterol level N 00 1

Table 1: Attributes of medical data set.

Search and filtering constraints

The maximum itemset size was set at k = 4. Association
rule mining had the following thresholds for metrics. The
minimum support was fixed at 1% = 7. That is, rules re-
ferring to 6 or less patients were eliminated. Such thresh-
old eliminated rules that were probably particular for our
data set. From a medical point of view, rules with high
confidence are desirable, but unfortunately, they are infre-
quent. Based on the domain expert opinion, the minimum
confidence was set at 70%, which provides a balance be-
tween sensitivity (identifying sick patients) and specificity
(identifying healthy patients) [26, 25]. Minimum lift was set
slightly higher than 1 to filter out rules where X and Y are
very likely to be independent. Finally, we use a high lift
threshold (1.2) to get rules where there is a stronger impli-
cation dependence between X and Y.

The group constraint and the antecedent /consequent con-
straint had the following settings. Since we are trying to
predict likelihood of heart disease, the 4 main coronary ar-
teries LM, LAD, LCX and RCA are constrained to appear
in the consequent of the rule; that is, ac(i) = 2. All the other
attributes were constrained to appear in the antecedent, i.e.
ac(i) = 1. In other words, risk factors (medical history
and measurements) and perfusion measurements (9 heart
regions) appear in the antecedent, whereas the four artery
measurements appear in the consequent of a rule. From a
medical perspective, determining the likelihood of present-
ing a risk factor based on artery disease is irrelevant. The
9 regions of the heart (AL, IS, SA, AP, AS, SI, LI, IL, LA)
were constrained to be in the same group (group 1). The



group settings for risk factors varied depending on the type
of rules being mined (predicting existence or absence of dis-
ease). Combinations of items in the same group are not
considered interesting and are eliminated from further anal-
ysis. The 9 heart regions were constrained to be on the
same group because doctors are interested in finding their
interaction with risk factors, but not among them. The de-
fault constraints are summarized in Table 1. Under column
“group”, the H subcolumn presents the group constraint to
predict healthy arteries and the D subcolumn has the group
constraint to predict diseased arteries.

4.3 Predictive Association Rules

The goal is to link perfusion measurements and risk fac-
tors to artery disease. Some rules were expected, confirming
valid medical knowledge, and some rules were surprising,
having the potential to enrich medical knowledge. We show
some of the most important discovered rules. Predictive
rules were grouped in two sets: (1) if there is a low per-
fusion measurement or no risk factor then the arteries are
healthy; (2) if there exists a risk factor or a high perfusion
measurement then the arteries are diseased. The maximum
association size k was 4.

Minimum support, confidence and lift were used as the
main filtering parameters. Minimum lift in this case was
1.2. Support was used to discard low probability patterns.
Confidence was used to look for reliable prediction rules. Lift
was used to compare similar rules with the same consequent
and to select rules with higher predictive power. Confidence,
combined with lift, was used to evaluate the significance of
each rule. Rules with confidence > 90%, with lift >= 2,
and with two or more items in the consequent were con-
sidered medically significant. Rules with high support, only
risk factors, low lift or borderline confidence were considered
interesting, but not significant. Rules with artery figures in
wide intervals (more than 70% of the attribute range) were
not considered interesting, such as rules having a measure-
ment in the 30-100 range for the LM artery.

Rules predicting healthy arteries

The default program parameter settings are described in
Section 4.2. Perfusion measurements for the 9 regions were
in the same group (group 1). Rules relating no risk fac-
tors (equal to “n”) with healthy arteries were considered
medically important. Risk factors HTA, DIAB, HYPLD,
FHCAD, CLAUDI were in the same group (group 2). Risk
factors describing previous conditions for disease (PANGIO,
PSTROKE, PCARSUR) were in the same group (group 3).
The rest of the risk factor attributes did not have any group
constraints. Since we were after rules relating negative risk
factors and low perfusion measurements to healthy arter-
ies, several items were filtered out to reduce the number of
patterns. The discarded items involved arteries with values
in the higher (not healthy) ranges (e.g. [30,100], [50,100],
[70, 100]), perfusion measurements in [0.2,1] (no perfusion
defect), and risk factors equal to “y” for the patient (per-
son presenting risk factor). Minimum support was 1% and
minimum confidence was 70%.

The program produced a total of 9,595 associations and
771 rules in about one minute. Although most of these rules
provided valuable knowledge, we only describe some of the
most surprising ones, according to medical opinion. Figure
1 shows rules predicting healthy arteries in groups. These

Con]dence = 1:
IF 0 <= AGE <40.0 —1.0<= AL < 0.2 PCARSUR=n
THEN 0 <= LAD < 50, s=0.01 ¢=1.00 1=2.1
IF 0<= AGE <40.0 —1.0<= AS<0.2 PCARSUR=n
THEN 0 <= LAD < 50, s=0.01 ¢=1.00 1=2.1
IF 40.0 <= AGE < 60.0 SEX =F 0<=CHOL < 200
THEN 0 <= LCX < 50, s=0.02 ¢c=1.00 1=1.6
IF SEX =F HTA=n 0<=CHOL < 200
THEN 0 <= RCA < 50, s=0.02 ¢=1.00 1=1.8
Two items in the consequent:
IF 0<= AGE <40.0 —1.0<= AL <0.2
THEN 0<=LM <30 0<=LAD < 50, s=0.02 c=0.89 1=1.9
IF SEX =F 0<=CHOL < 200
THEN 0<=LAD <50 0<= RCA < 50, s=0.02 ¢=0.73 1=2.1
IF SEX =F 0<=CHOL < 200
THEN 0<=LCX <50 0<= RCA < 50, s=0.02 ¢c=0.73 1=1.8
Con|dence >= 0.9:
IF 40.0 <= AGE <60.0 —1.0<=LI<0.2 0<=CHOL < 200
THEN 0 <= LCX < 50, s=0.03 ¢=0.90 1=1.5
IF 40.0 <= AGE <60.0 —1.0<=1IL <0.2 0<=CHOL < 200
THEN 0 <= LCX < 50, s=0.03 ¢c=0.92 1=1.5
IF 40.0 <= AGE <60.0 —1.0<=1L <0.2 SMOKE =n
THEN 0 <= LCX < 50, s=0.01 ¢=0.90 1=1.5
IF 40.0 <= AGE < 60.0 SEX =F DIAB =n
THEN 0 <= LCX < 50]), s=0.08 ¢c=0.92 1=1.5
IF HTA=n SMOKE =n 0<=CHOL < 200
THEN 0 <= LCX < 50, s=0.02 ¢c=0.92 1=1.5
Only risk factors:
IF 0 <= AGE < 40.0
THEN 0 <= LAD < 50, s=0.03 ¢=0.82 1=1.7
IF 0 <= AGE < 40.0 DIAB =n
THEN 0 <= LAD < 50, s=0.03 ¢=0.82 1=1.7
IF 40.0 <= AGE < 60.0 SEX =F DIAB =n
THEN 0 <= LAD < 50, s=0.07 ¢=0.72 1=1.5
IF 40.0 <= AGE < 60.0 SMOKE =n
THEN 0 <= LCX < 50, s=0.11 ¢=0.75 1=1.2
IF 40.0 <= AGE < 60.0 SMOKE =n
THEN 0 <= RCA < 50, s=0.11 ¢=0.76 1=1.3
Support >= 0.2:

IF —1.0<=1IL <0.2 DIAB =n
THEN 0 <= LCX < 50, s=0.41 ¢=0.72 1=1.2
IF —1.0<=LA <O0.2

THEN 0 <= LCX < 50, s=0.39 ¢=0.72 1=1.2
IF SEX =F

THEN 0 <= LCX < 50, s=0.23 ¢c=0.73 1=1.2
IF 40.0 <= AGE <60.0 —1.0<=1IL <O0.
THEN 0 <= RCA < 50, s=0.21 ¢=0.73 1=1.3

Figure 1: Association rules for healthy arteries.

rules have the potential to improve the expert system. The
group with confidence=1 shows some of the few rules that
had 100% confidence. It was surprising that some rules re-
ferred to young patients, but not older patients. The rules
involving LAD had high lift with localized perfusion defects.
The rules with LM had low lift confirming other risk fac-
tors may imply a healthy artery. The group with two items
shows the only rules predicting absence of disease in two
arteries. They include combinations of all the arteries and
have high lift. These rules highlight low cholesterol level,
female gender and young patients. It turned out all of them
refer to the same patients. The 90% confidence group shows
fairly reliable rules. Unfortunately, their lift is not high.
The group with only risk factors shows rules that do not
involve any perfusion measurements. These rules highlight
the importance of smoking habits, diabetes, low cholesterol,
gender and age in having no heart disease. The last group
describes rules with high support. Most of them involve the
LCX artery, the IL region and some risk factors. These rules
had low lift stressing the importance of many other factors
to have healthy arteries. Summarizing, these experiments
show LCX is more likely to be healthy given absence of risk
factors and low perfusion measurements. Lower perfusion
measurements appeared in heart regions IL and LI. Some
risk factors have less importance because they appear less
frequently in the rules. But age, sex, diabetes and choles-
terol level appear frequently stressing their importance.

Rules predicting diseased arteries

The default program parameter settings are described in
Section 4.2. Refer to Table 1 to understand the meaning of



abbreviations for attribute names. The four arteries (LAD,
LCX, RCA, LM) had negation. Rules relating presence of
risk factors (equal to “y”) with diseased arteries were consid-
ered interesting. There were no group constraints for any of
the attributes, except for the 9 regions of the heart (group
1). This allowed finding rules combining any risk factors
with any perfusion defects. Since we were after rules relat-
ing risk factors and high perfusion measurements indicat-
ing heart defect to diseased arteries, several unneeded items
were filtered out to reduce the number of patterns. Filtered
items involved arteries with values in the lower (healthy)
ranges (e.g. [0,30), [0,50), [0,70)), perfusion measurements
in [—1,0.2) (no perfusion defect), and risk factors having “n”
for the patient (person not presenting risk factor). Minimum
support was 1% and minimum confidence was 70%.

The program produced a total of 10,218 associations and
552 rules in less than one minute. Most of these rules were
considered important and about one third were medically
significant. Most rules refer to patients with localized per-
fusion defects in specific heart regions and particular risk
factors with the LAD and RCA arteries. It was surpris-
ing there were no rules involving LM and only 9 with LCX.
Tomography or coronary catheterization are the most com-
mon ways to detect heart disease. Tomography corresponds
to myocardial perfusion studies. Catheterization involves
inserting a tube into the coronary artery and injecting a
substance to measure which regions are not well irrigated.
These rules characterize the patient with coronary disease.

Figure 2 shows groups of rules predicting diseased arter-
ies. Hypertension, diabetes, previous cardiac surgery and
male sex constitute high risk factors. The 100% confidence
group shows some of the only 22 rules with 100% confidence.
They show a clear relationship of perfusion defects in the IS,
SA regions, certain risk factors and both the RCA and LAD
arteries. The rules with RCA have very high lift pointing
to specific relationships between this artery and cholesterol
level and the IS region. It was interesting the rule with
LAD>= 70 also had high lift, but referred to different risk
factors and region SA. The group of rules with two items in
the consequent shows the only rules involving two arteries.
They show a clear link between LAD and RCA. It is inter-
esting these rules only involve a previous surgery as a risk
factor. These four rules are surprising and extremely valu-
able. This is confirmed by the fact that two of these rules
had the highest lift among all discovered rules (above 4).
The 90% confidence group shows some outstanding rules out
of the 35 rules that had confidence 90-99%. All of these rules
have very high lift with a narrow range for LAD and RCA.
These rules show that older patients of male gender, high
cholesterol levels and localized perfusion measurements, are
likely to have disease on the LAD and RCA arteries. The
group involving only risk factors in the antecedent shows
several risk factors and disease on three arteries. Unfortu-
nately their support is relatively low, but they are valuable
as they confirm medical knowledge. The rule with lift=2.2
confirms that gender and high cholesterol levels may lead to
disease in the LCX artery. The group with support above
0.15 shows the rules with highest support. All of them in-
volved LAD and combinations of risk factors. Their lift was
low-medium, confirming more risk factors are needed to get
a more accurate prediction. There were no high-support
rules involving LCX, RCA or LM arteries, confirming they
have a lower probability of being diseased.

con|dence = 1:
IF 0.2<=SA<1.0 HYPLPD =y PANGIO =y
THEN 70 <= LAD < 100, s=0.01 ¢=1.00 1=3.2
IF 60 <= AGE < 100 0.2 <= SA < 1.0 FHCAD =y
THEN not(0 <= LAD < 50, s=0.02 ¢=1.00 1=1.9
IF 0.2<=IS<1.0 CLAUDI =y PSTROKE =y
THEN not(0 <= RCA < 50), s=0.02 ¢=1.00 1=2.3
IF 60 <= AGE < 100.0 0.2 <=1S < 1.0 250 <= CHOL < 500
THEN 70 <= RCA < 100, s=0.02 ¢=1.00 1=3.2
IF 0.2<=1I585<1.0 SEX =F 250 <= CHOL < 500
THEN 70 <= RCA < 100, s=0.01 ¢=1.00 1=3.2
IF 0.2<=1IS<1.0 HTA =y 250 <= CHOL < 500])
THEN 70 <= RCA < 100, s=0.011 ¢=1.00 1= 3.2
Two items in the consequent:
IF 0.2 <= AL < 1.1 PCARSUR =y
THEN 70 <= LAD < 100 not(0 <= RCA < 50), s=0.01 ¢=0.70 1=3.9
IF 0.2 <= AS <11 PCARSUR=y
THEN 70 <= LAD < 100 not(0 <= RCA < 50), s=0.01 ¢=0.78 1=4.4
IF 0.2 <= AP < 1.1 PCARSUR=y
THEN 70 <= LAD < 100 not(0 <= RCA < 50), s=0.01 ¢=0.80 1=4.5
IF 0.2 <= AP < 1.1 PCARSUR=y
THEN not(0 <= LAD < 50) not(0 <= RCA < 50), s=0.01 ¢=0.80 1=2.8
con|dence >= 0.9:
IF 0.2 <=SA <11 PANGIO =y))
THEN 70 <= LAD < 100, s=0.023 ¢=0.938 1= 3.0
IF 02<=SA<1.0 SEX =M PANGIO =y
THEN 70 <= LAD < 100, s=0.02 ¢=0.92 1=2.9
IF 60 <= AGE < 100.0 0.2 <=1IL < 1.1 250 <= CHOL < 500
THEN 70 <= RCA < 100, s=0.02 ¢=0.92 1=2.9
IF 0.2<=1I585<1.0 SMOKE =y 250 <= CHOL < 500
THEN 70 <= RCA < 100, s=0.02 ¢=0.91 1=2.9
Only risk factors:
IF SEX =M PSTROKE =y 250 <= CHOL < 500
THEN not(0 <= LAD < 50), s=0.01 ¢=0.73 1=1.4
IF 40.0 <= AGE < 60.0 SEX =M 250 <= CHOL < 500
THEN not(0 <= LCX < 50), s=0.02 c=0.83 1=2.2
IF SMOKE =y PANGIO =y 250 <= CHOL < 500
THEN not(0 <= RCA < 50), s=0.01 ¢=0.80 1=1.9
Support >= 0.15:
IF 0.2<=1IL<1.1
THEN not(0 <= LAD < 50), s=0.25 ¢=0.71 1=1.4
IF 0.2 <= AP < 1.1
THEN not(0 <= LAD < 50), s=0.24 ¢=0.78 1=1.5
IF 02<=1IL<11 SEX =M
THEN not(0 <= LAD < 50), s=0.19 ¢=0.72 1=1.4
IF 0.2<=AP <11 SEX =M
THEN not(0 <= LAD < 50), s=0.18 ¢=0.75 1=1.5
IF 60 <= AGE < 100.0 0.2 <= AP < 1.1
THEN not(0 <= LAD < 50), s=0.18 ¢=0.87 1=1.7

Figure 2: Association rules for diseased arteries.

4.4 Predictive Rules from Decision Trees

In this section we explain experiments using decision trees.
We used the CN4.5 decision tree [14] algorithm using gain
ratio for splitting and pruning nodes. Due to lack of space
we do not discuss experiments with CART decision trees
[18], but results are similar. In some experiments the height
of trees had a threshold to produce simpler rules. We show
some classification rules with the percentage of patients (Is)
they involve and their confidence factor (cf). The confidence
factor has a similar interpretation to association rule confi-
dence, but the percentage refers to the fraction of patients
where the antecedent appears (i.e. support of antecedent
itemset). For instance, if c¢f is less than 100% and s = 10%
then the actual support of the rule is less than 10%. These
experiments focused on predicting LAD disease using its bi-
nary version LAD> 50 as the target class. This artery was
recommended for analysis by the domain expert because in
general it is the most common to be diseased. Then it should
be easier to find rules involving it. Due to lack of space we do
not show experiments using RCA, LCX or LM as the depen-
dent variable, but results are similar to the ones described
below.

The first set of experiments used all risk factors and per-
fusion measurements without binning as independent vari-
ables. That is, the decision tree automatically splits numer-
ical variables and chooses subsets of categorical values to
perform binary splits. The first experiment did not have a
threshold for the tree height. This produced a large tree
with 181 nodes and 90% accuracy. The tree had height
14 with most classification rules involving more than 5 at-



tributes (plus one for the predicted LAD disease). With the
exception of five rules all rules involved less than 2% of the
patients. More than 80% of rules referred to less than 1% of
patients. Many rules involved attributes with missing infor-
mation. Many rules had the same variable being split several
times. A positive point was a few rules had c¢f = 1.0, but
with splits for perfusion measurements and artery disease in-
cluding borderline cases and involving a few patients. There-
fore, even though this decision tree had all our variables and
was 90% accurate it was not medically useful. In the second
experiment we decided to set a threshold for height of the
tree equal to 10. The resulting tree had 83 nodes out of
which 43 were terminal nodes and accuracy went down to
77%. Most decision rules predicting diseased arteries had re-
peated attributes (splits on same variable twice), more than
5 attributes, perfusion cutoffs higher than 0.50, low c¢f and
involved less than 1% of the population. Therefore, this tree
was not useful either. This motivated getting smaller trees
with simple rules involving larger sets of patients at the risk
of getting lower confidence factors. This affects accuracy, of
course, but it provides more control on the type of rules we
want.

We constrained the decision tree to have maximum height
equal to 3 to obtain simpler classification rules comparable
to association rules. The resulting tree had low accuracy
(65% accuracy) and only 6 terminal nodes. Figure 3 shows
the classification rules letting the decision tree split variables
automatically. Fortunately these rules are simpler than the
previous ones. We discuss rules predicting healthy vessels.
Rule 1 covers a wide group of patients, but it is too im-
precise about patient’s age since the range for AGE is too
wide. Also, the split for AP leaves a big gap between it
and 0.2 leaving potentially many patients with defects in
AP incorrectly included. Then rule 1 cannot be medically
used to predict no heart disease. Rule 2 goes against medi-
cal knowledge since it implies that two perfusion defects on
young patients imply no disease. It is no coincidence this
rule has such low support. We now explain rules predicting
diseased LAD. Rule 1 is interesting since it involves 10% of
patients and has decent confidence, but it combines almost
absence of perfusion defect with existence of perfusion defect
giving a “mixed” profile of such patients. Rule 2 is of little
value since it includes absence of perfusion defects (range
[-1,0.2]). We are rather interested in knowing the fraction
of patients between the given splits for perfusion figures and
0.2. The only interesting aspect is that it refers to very old
patients. Rule 3 combines absence and borderline perfusion
defects with low support and then it is not medically use-
ful. Rule 4 is the best rule found by the decision tree since
it involves a perfusion defect on adult patients and has re-
markable high confidence. As a note, a very similar rule was
found by association rules. In short, discovered classification
rules were very few, had split points that affected medical
interpretation and did not include most risk factors.

In the last set of experiments we used items (binary vari-
ables) as independent variables like association rules to ob-
tain similar rules with a tree height limited to 3. That is, we
used the variable LAD>= 50 as the dependent variable and
binned numerical variables (perfusion measurements, AGE
and CHOL) and categorical variables as independent vari-
ables. Most of the rules were much closer to the prediction
requirements. The tree had 10 nodes out of which 3 in-
volved rules predicting diseased arteries and 3 involved rules

Predicting healthy arteries:
IF ( SA <=0.37 AP <= 0.66 Age <= 78)
THEN not(LAD >= 50) 1s=76% cf=0.58
IF ( SA > 0.37 Age <=53 AS > 0.67)
THEN not(LAD >= 50) 1s=0.3% cf=1.00
Predicting diseased arteries:
IF ( SA <=0.37 AP > 0.66)
THEN LAD >= 50 1s=10% cf=0.80
IF ( SA <=0.37 AP <=0.66 Age > 78)
THEN LAD >= 50 1s=4% cf=0.74
IF ( SA > 0.37 Age <= 53 AS <= 0.67)
THEN LAD >= 50 1s=1% cf=0.85
IF ( SA > 0.37 Age > 53)
THEN LAD >= 50 1s=8% cf=0.98

Figure 3: Decision tree rules with numeric dimen-
sions and automatic splits.

Predicting healthy arteries:
IF (not([0.2 <= AP < 1.1])not([0.2 <= IL < 1.1)
THEN not([LAD >= 50]) 1s=54% cf=0.63
IF (not([0.2 <= AP < 1.1])[0.2 <= IL < 1.1 HYPLPD = n])
THEN not([LAD >= 50]) 1s=5.5% cf=0.64
IF ( 0.2 <= AP < 1.1]not([60 <= Age < 100])not([0.2 <= IL < 1.1]))
THEN not([LAD >= 50]) 1s=3.8% cf=0.64
Predicting diseased arteries:
IF (not([0.2 <= AP < 1.1])[0.2 <= IL < 1.1 HYPLPD = y])
THEN LAD >= 50 1s=7.6% cf=0.60
IF ( 0.2 <= AP < 1.1]not([60 <= Age < 100])[0.2 <= IL < 1.1)
THEN LAD >= 50 1s=7% cf=0.73
IF (([0.2 <= AP < 1.1])[60 <= Age < 100)
THEN LAD >= 50 1s=20% cf=0.86

Figure 4: Decision tree rules with manually binned
variables.

predicting no disease. Figure 4 shows the discovered rules
classified in two groups. We discuss rules predicting healthy
arteries. Rule 1 has low confidence factor, relates absence
of two perfusion defects (something not interesting in this
case) and has low confidence. Therefore, it is not useful.
Rule 2 and 3 might be useful because they involve a risk
factor combined with perfusion defects, but they have low
confidence and combine a perfusion defect with an absence
of perfusion defect (something not medically meaningful).
We now discuss rules predicting diseased arteries. Rule 1 is
not useful because it involves a perfusion with no defect and
its confidence is low. Rule 2 might be useful and was not
found with constrained association rules. However, we stress
this rule was not found because AGE did not have negation.
Rule 3 is the only rule found by the decision tree that is one
of the many rules found with constrained association rules
with LAD>= 50.

4.5 Discussion

Our experiments provide some evidence that decision trees
are not as powerful as association rules to exploit a set
of numeric attributes manually binned and categorical at-
tributes and several related target attributes. Decision trees
do not work well with combinations of several target vari-
ables (arteries), which requires defining one class attribute
for each values combination. Decision trees fail to identify
many medically relevant combinations of independent nu-
meric variable ranges and categorical values (i.e. perfusion
measurements and risk factors). When given the ability to
build height-unrestricted trees decision trees tend to find
complex and long rules, making rule applicability and in-
terpretation difficult. Also, in such case decision trees find
few predictive rules with reasonably sized (> 1%) sets of
patients; this is a well-known drawback known as data set
fragmentation [18]. To complicate matters, rules sometimes
repeat the same attribute several times creating a long se-
quence of splits that needs to be simplified. However, it



could be argued that we could build many decision trees
with different independent attributes containing all differ-
ent combinations of risk factors and perfusion variables for
each target artery, following a similar approach to the con-
straints we introduced, but that would be error-prone, diffi-
cult to interpret and slow given the high number of attribute
combinations. Another alternative is to create a family of
small trees, where each tree has a weight, but each small
tree becomes similar to a small set of association rules. We
believe, for the purpose of predicting disease with several
related target attributes, association rules are more effec-
tive. However, our constraints for association rules may
be adapted to decision trees, but that is subject of future
work. Decision trees do have advantages over association
rules. A decision tree partitions the data set, whereas asso-
ciation rules on the same target attribute may refer to over-
lapping subsets; sometimes this makes result interpretation
difficult. A decision tree represents a predictive model of the
data set, whereas association rules are disconnected among
themselves. In fact, the large number of discovered associa-
tion rules may require rule summarization. A decision tree
is guaranteed to have at least 50% prediction accuracy and
generally above 80% accuracy for binary target variables,
whereas association rules specifically require trial and error
runs to find a good or acceptable threshold.

S. RELATED WORK

Important related work on using data mining and ma-
chine learning techniques in medical data includes the fol-
lowing. Some particular issues in medical data [29] include
distributed and uncoordinated data collection, strong pri-
vacy concerns, diverse data types (image, numeric, categor-
ical, missing information), complex hierarchies behind at-
tributes and a comprehensive knowledge base. A well-known
program to help heart disease diagnosis based on Bayesian
networks is described in [15, 23, 22]. Association rules have
been used to help infection detection and monitoring [7, 8],
to understand what drugs are co-prescribed with antacids
[10], to discover frequent patterns in gene data [5, 11], to
understand interaction between proteins [27] and to detect
common risk factors in pediatric diseases [13]. Fuzzy sets
have been used to extend association rules [12]. In [26] we
explore the idea of constraining association rules in binary
data for the first time and report preliminary findings from
a data mining perspective. Finally, [25] studies the impact
of each constraint on the number of discovered rules and al-
gorithm running time and also proposes a summarization of
a large number of rules having the same consequent.

Association rules were proposed in the seminal paper [1].
Quantitative association rules are proposed in [31]; such
technique automatically bins attributes, but such rules have
not been shown to be more accurate than decision trees.
Both [31] and [21] use different approaches to automatically
bin numeric attributes. Instead, in our approach it was pre-
ferred to use well-known medical cutoffs for binning numeric
attributes, to improve result interpretation and validation.
Our search constraints share some similarities with [4, 24,
32]. In [32] the authors propose algorithms that can incor-
porate constraints to include or exclude certain items in the
association generation phase; they focus only in two types of
constraints: items constrained by a certain hierarchy [30] or
associations which include certain items. This approach is
limited for our purposes since we do not use hierarchies and

excluding/including items is not enough to mine medically
relevant rules. A work which studies constraining associa-
tion rules in more depth is [24], where constraints are item
boolean expressions involving two variables. It is well-known
that simple constraints on support can be used for pruning
the search space in Phase 1 [34]. Association rules and pre-
diction rules from decision trees are contrasted in [16]. The
lift measure for association rules was introduced in [6]. Rule
covers [19, 20] and basis [33, 3, 28, 9] are alternatives to get
condensed representations of association rules.

6. CONCLUSIONS

In this work constrained association rules were used to
predict multiple related target attributes, for heart disease
diagnosis. The goal was to find association rules predicting
healthy arteries or diseased arteries, given patient risk fac-
tors and medical measurements. This work presented three
search constraints that had the following objectives: pro-
ducing only medically useful rules, reducing the number of
discovered rules and improving running time. First, data set
attributes are constrained to belong to user-specified groups
to eliminate uninteresting value combinations and to reduce
the combinatorial explosion of rules. Second, attributes are
constrained to appear either in the antecedent or in the con-
sequent to discover only predictive rules. Third, rules are
constrained to have a threshold on the number of attributes
to produce fewer and simpler rules. Experiments with a
medical data set compare predictive constrained association
rules with rules induced by decision trees, using one of the
best currently available decision tree algorithms. Rules are
analyzed in two groups: those that predict healthy arteries
and those that predict diseased arteries. Decision trees are
built both on raw numeric and categorical attributes (origi-
nal medical dataset) as well as using transformed attributes
(binned numeric features and binary coded categorical fea-
tures). Experimental results provide evidence that decision
trees are less effective than constrained association rules to
predict disease with several related target attributes, due to
low confidence factors (i.e. low reliability), slight overfitting,
rule complexity for unrestricted trees (i.e. long rules) and
data set fragmentation (i.e. small data subsets). Therefore,
constrained association rules can be an alternative to other
statistical and machine learning techniques applied in medi-
cal problems where there is a requirement to predict several
target attributes based on subsets of independent numeric
and categorical attributes.

Our work suggests several directions to improve decision
trees and association rules. We want to adapt search con-
straints to decision trees to predict several related target
attributes. A hybrid set of attributes may be better, where
some attributes may be automatically binned by the deci-
sion tree, while other attributes may be manually binned by
the user. A family of small decision trees may be an alter-
native to using a large number of association rules. Decision
trees may be used to pre-process a data set to partition it
into focused subsets, where association rules may be applied
in a second phase.
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