
Consistent Aggregations in Databases with
Referential Integrity Errors

Carlos Ordonez
University of Houston

Houston, TX, USA

Javier García-García
UNAM University

Mexico City, Mexico

ABSTRACT
A data warehouse integrates tables coming from multiple
source databases, where each database has different tables,
columns with similar content across databases and different
referential integrity constraints, enforced to different compli-
ance levels. Some source databases may have more reliable
data than others, if referential integrity is more strictly en-
forced or their respective logical data model is more compre-
hensive. Thus, a query in an integrated database is likely to
refer to tables and columns with referential integrity errors.
In this work, we improve aggregations to handle referential
integrity errors on OLAP databases. Specifically, when two
tables are joined SQL ignores those tuples with invalid for-
eign key values, effectively discarding potentially valuable
information. We extend aggregations to return complete
answer sets in the sense that no tuple is excluded. Two fam-
ilies of extended aggregations are proposed: weighted refer-
ential aggregations and full referential aggregations, which
return an approximate answer set and perform a dynamic
repair, respectively. Finally, we introduce a simple method
to improve aggregation accuracy. Experiments analyze ap-
proximation accuracy and time performance of our extended
aggregations on a synthetic database, comparing them with
standard SQL aggregations on databases with varying ref-
erential error rates. The extra work to compute extended
aggregations is reasonable and approximate answer sets are
highly accurate, making our aggregations a good alternative
to standard aggregations in a data warehouse.

1. INTRODUCTION
There has been a growing interest on the problem of ob-

taining improved answer sets produced by queries in a set-
ting where a database violates integrity constraints or has
incomplete data. This is a common scenario in a data ware-
house, where multiple databases of different reliability and
similar contents are integrated. Database integration is by
itself a deep problem [18]. A natural solution to the problem
of getting consistent answer sets in incomplete and inconsis-
tent databases is to repair the database either by removing
inconsistent data or by fixing errors. The chief disadvantage
about such approach is that the database must be modified.
Removing data is the easiest, but generally not an accept-
able, solution. On the other hand, fixing errors is difficult
since it requires understanding inconsistencies across multi-

c© ACM, 2006 . This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Information Quality in Information
Systems Workshop 2006 (IQIS, SIGMOD 2006 Workshop).

ple tables, potentially going back to the source databases.
An overview of data cleaning can be found in [8, 16]. In
this work, we propose an alternative solution that does not
modify the database. We introduce two families of extended
aggregations that improve the answer set with additional
information without discarding tuples with invalid foreign
keys. The first family approximates consistent answer sets
without updating the tables used in the query and the sec-
ond one performs a dynamic repair on the answer set. Both
families of aggregations are suitable for OLAP databases.

On a related topic, there have been two main themes on
extending database models and defining new aggregate func-
tions: getting accurate answers taking a long computation
time or quickly returning approximate answers. A trade-off
is always present when accuracy and speed compete with
each other. To the best of our knowledge, this problem
has not been studied in the presence of inconsistency and
incompleteness on the foundation of the relational model:
referential integrity.

This is an outline of the rest of our article. Section 2
presents definitions. Section 3 explains how to compute ag-
gregations in the presence of referential integrity problems
and introduces two families of extended aggregations. Sec-
tion 4 presents experiments with synthetic databases. Sec-
tion 5 discusses related research comparing it to our ap-
proach. Section 6 concludes the article.

2. DEFINITIONS

2.1 Relational Database
A relational database is denoted by D(R, I), where R is

a set of N relations R = {R1, R2, . . . , RN}, Ri is a set of
tuples and I a set of referential integrity constraints. Ri is
relation of degree di, where each attribute comes from some
domain. We use simple primary keys (PKs) to make expo-
sition simpler. In other words, primary keys consist of one
attribute. One attribute is the primary key that we will also
call K. The size of Ri (i.e. its number of tuples) is denoted
by |Ri| and ni (to avoid confusion with N). Relations are
manipulated with the standard relational algebra operators
σ, Π,1 and aggregations, defined below.

2.2 Referential Integrity
A referential integrity constraint, belonging to I, between

two relations Ri and Rj is a statement of the form: Ri(K) →
Rj(K), where Ri is the referencing relation, Rj is the refer-
enced relation, K is a foreign key (FK) in Ri and K is the
primary key (PK) or a candidate key of Rj . In general, we

will refer to K as the primary key of Rj . To simplify ex-
position we assume the common attribute K has the same
name on both relations Ri and Rj . In a valid database state
with respect to I, the following two conditions hold for ev-
ery referential constraint: (1) Ri.K and Rj .K have the same
domains. (2) for every tuple in Ri there must exist a tuple
in Rj such that Ri.K = Rj .K. The primary key of a rela-
tion (Rj .K in this case) is not allowed to have nulls. But
in general, for practical reasons the foreign key Ri.K is al-
lowed to have nulls when its value is not available at the time
of insertion or when tuples from the referenced relation are
deleted and foreign keys are nullified [9].

We relax the concept of referential integrity. We assume
the database may be in an invalid state with respect to I.
That is, some referential integrity constraints may be vio-
lated in subsets of R. We refer to the valid state defined
above as a strict state. A database state where there ex-
ist referential errors is called relaxed state. In a relaxed
database Ri may contain tuples having Ri.K values that
do not exist in Rj .K or Ri.K may be null. To make our
definition more precise, if Ri.K in the referencing relation
is null in some tuple we will consider such tuple incorrect.
This is motivated by the fact that a null reference provides
no information and the 1 operator eliminates Ri tuples with
a null value on K. We denote a generic null value by η.

2.3 Aggregations
Let BFagg(A)(Ri) be the answer set returned by an ag-

gregation, where B is the grouping attribute, agg() is an
aggregate function and A is some attribute to compute ag-
gregations on. This notation can be easily generalized to
more than one grouping attribute and two or more aggre-
gate functions. There exist several different definitions for
aggregate functions [14], which have distinct semantics for
handling nulls, multi-sets (bags) and denormalization. From
now on, unless stated otherwise, when we refer to an aggre-
gate function agg(), it is taken from { count(), sum(), max(),
min(), avg() } based on the standard SQL definition [11].

Assume we have an OLAP (multidimensional) database
model in the form of a star schema for a data warehouse.
This model has two kinds of tables: a fact table T and mul-
tiple surrounding dimension tables D1, . . . , Dk, referenced
by foreign keys K1, . . . , Kk. We focus on star-joins to com-
pute aggregations. That is, computing joins between the
fact table and several dimension tables. Notice that the
more general snow-flake join can be reduced to a star join
and therefore we do not study it in our work. Going back to
our relational database definitions, T is referenced as Ri and
each dimension table is manipulated as Rj in a generic man-
ner. The fact table has two kinds of attributes: dimension
attributes (e.g. B), which reference the dimension tables
and measure attributes (e.g. A), to be aggregated grouping
by subsets of the dimension attributes. The following two
relations will be used throughout the article:

Ri(. . . , K, . . . A, . . . , B, . . .), Rj(K, . . . , C, . . .),

where Ri represents a referencing relation playing the role of
the fact table and Rj represents a referenced relation acting
as the dimension table. Attribute K is a foreign key in
Ri and the primary key in Rj , A is a measure attribute
and C is an attribute functionally dependent on Rj .K. We
are particularly interested in computing aggregations of the
form:

Rj .CFagg(Ri.A) (Ri 1K Rj)

or equivalently in SQL

SELECT Rj .C, agg(Ri.A)
FROM Ri JOIN Rj ON Ri.K = Rj .K
GROUP BY C

where agg() is an aggregate function, as defined above. The
aggregation over attribute A associated to a specific value v
of grouping attribute B will be denoted as

B=vFagg(A)(Ri) (1)

or in an equivalent manner in SQL as

SELECT agg(Ri.A)
FROM Ri

GROUP BY B
HAVING Ri.B = v

To close this section, we define the value contained in the
answer set of expressions like Equation 1, with one tuple and
one attribute, as follows:

V(B=vFagg(A)(Ri)).

In other words, V() is used to convert an atomic relation
with one tuple and one attribute into one value to make it
compatible for arithmetic and logical expressions. Notice
this value will be null when agg(Ri.A) is null (η).

2.4 Motivating Examples
Our examples throughout the article are based on a chain

of stores database with three relations:
sales(storeId, cityId, regionId, salesamt,year, . . .)
city(cityId, cityName, country, . . .)
region(regionId, regionName, . . .)

which are the result of integrating two databases from two
companies, Cx and Rx, that are in a process of database
integration. Cx had store information organized by city and
Rx had it organized by region. Also, suppose that within a
region there are several cities. Tables from both databases
share a common key, storeId without conflicts. The inte-
grated database in a relaxed state is shown in Figure 1,
where invalid references are highlighted.

Example 1 The attribute cityId in sales is a foreign key,
but also it plays the role of a dimension attribute. The at-
tribute salesamt is a measure attribute. The referential in-
tegrity constraint, sales(cityId) → city(cityId), should hold
between the two relations. Now observe the query in Figure
2. The unioned query computes the sales amounts grouped
by cityName and the total sales amount. But as we can see
from the second query in Figure 3 the answer set is incon-
sistent. That is, their total sum of sales amount is different:

V(Fsum(salesamt)(sales))

6= V(Fsum(salesamt)(sales 1cityId city))

In this example, consistency means a distributive function
[10] preserves partial results from subsets of a set [14]. In
this relaxed state the answer sets are inconsistent due to the
existence of referential integrity errors. The first unioned
query gives grouped aggregates, that considered as a whole,

sales
storeId cityId regionId salesamt×1K year . . .

1 LAX AM 540.30 2005 . . .
2 LAX AM 640.25 2006 . . .
3 HOU AM 434.36 2005 . . .
4 HOU AM 440.80 2006 . . .
5 MON AM 304.76 2006 . . .
6 MEX AM 483.24 2006 . . .
7 NXX AM 339.21 2005 . . .
8 CXY AM 534.71 2005 . . .
9 η AM 651.19 2006 . . .

10 SYD AP 458.82 2005 . . .
11 SYD AP 455.21 2006 . . .
12 MEL AP 385.27 2006 . . .
13 ROM EU 532.16 2005 . . .
14 ROM EU 583.95 2006 . . .
15 PAR EU 422.72 2005 . . .
16 PAR EU 451.82 2006 . . .
17 MAD EU 396.23 2006 . . .
18 FLR EU 271.29 2006 . . .
19 HAM EU 389.21 2005 . . .
20 HAM EU 400.52 2006 . . .

city
cityId cityName country . . .
FLR Florence IT . . .
HAM Hamburg GE . . .
HOU Houston US . . .
LAX Los Angeles US . . .
LON London UK . . .
MAD Madrid SP . . .
MEL Melbourne AU . . .
MEX Mexico MX . . .
MON Montreal CA . . .
PAR Paris FR . . .
ROM Rome IT . . .
SYD Sydney AU . . .

region
regionId regionName . . .

EU Europe . . .
AM Americas . . .
AP Asia-Pacific . . .

Figure 1: A store database in a relaxed state with invalid foreign keys highlighted.

are inconsistent with respect to the total given by the same
query. The answer set represents the original database, but
with the tuples with referential integrity errors deleted. Ob-
serve that invalid tuples are eliminated from the aggregate
function answer set.

Example 2 Notice that based on the data warehouse in-
tegrity constraints, the functional dependency: sales.cityId
→ sales.regionId, should hold. Suppose the information from
Rx is more reliable than information from Cx.

A query getting total sales by region and total overall sales
is shown in Figure 4. In this case, a consistent answer set is
obtained joining with the foreign key regionId, in contrast to
the inconsistency mentioned above in Example 1. If we know
the functional dependency sales.cityId → sales.regionId holds,
could we obtain an improved answer set when grouping by
attribute sales.cityId in the presence of invalid foreign key
values? This will be the goal of our approach.

3. AGGREGATIONS IN DATABASES WITH
REFERENTIAL INTEGRITY ERRORS

We present definitions for referential frequency, referential
weight and weighted referential partial probability. Based
on those definitions we introduce two families of SQL ex-
tended aggregations: weighted referential aggregations and
full referential aggrations.

3.1 Extended Aggregations
We start by defining referential frequency, referential weight,

referential partial probability and weighted referential partial
probability. For the following definitions, consider a relaxed
database where the referential integrity constraint
Ri(K) → Rj(K) could be violated.

The referential frequency of a correct referencing value in
a given foreign key refers to the number of tuples in the

SELECT cityName, sum(salesamt)

FROM sales

JOIN city ON sales.cityId=city.cityId

GROUP BY cityName

UNION

SELECT ‘-TOTAL’, sum(salesamt)

FROM sales

cityName sum()
Florence 271.29
Hamburg 789.73
Houston 875.16
Los Angeles 1180.55
Madrid 396.23
Melbourne 385.27
Mexico 483.24
Montreal 304.76
Paris 874.54
Rome 1116.11
Sydney 914.03
-TOTAL 9116.02

Figure 2: Inconsistent answer set (total is incorrect).

SELECT sum(salesamt)

FROM sales JOIN city

ON sales.cityId=city.cityId

sum()
7590.91

Figure 3: Total sales from valid references.

SELECT regionName, sum(salesamt)

FROM sales

JOIN region ON sales.regionId=region.regionId

GROUP BY regionName

UNION

SELECT ‘-TOTAL’, sum(salesamt)

FROM sales

regionName sum()
Europe 3447.90
Americas 4368.82
Asia-Pacific 1299.30
-TOTAL 9116.02

Figure 4: Consistent answer set.

referencing relation that hold this correct value. The refer-
ential frequency of a given foreign key refers to the number
of tuples with correct references in the foreign key.

Definition 1 (Referential frequency) We define the aggre-
gate function referential frequency over a foreign key K ref-
erencing Rj .K, FreffRj.K(K)(Ri) where subscript Rj .K is

the referenced key, as

FreffRj.K(K)(Ri) = Fcount(K)(Ri 1K Rj)

Let kc ∈ ΠK(Ri 1K Rj) be a correct reference. Using the
notation defined in Section 2.3 to reference one element of
the aggregate list, we compute V(K=kcFreffRj .K(K)(Ri)) as

follows

V(K=kcFreffRj.K(K)(Ri))= V(K=kcFcount(K)(Ri 1K Rj)

= |σK=kc (Ri 1K Rj)|

The next equation links the value of the referential fre-
quency of a given foreign key and its values.

V(FreffRj.K (K)(Ri))

= Σkc∈ΠK(Ri1KRj)(V(K=kcFreffRj.K (K)(Ri))).

Observe in a relaxed database, when Ri.K only has invalid
references, or Ri = ∅ then V(FreffRj.K(K)(Ri)) = 0.

Example 3 Consider the database in relaxed state of Figure
1. For value SYD we have

V(cityId=SY DFreffcity.cityId(cityId)(sales)) = 2,

which equals the number of tuples that have SY D, a valid
foreign key value. For the foreign key sales.cityId we have

V(Freffcity.cityId (cityId)(sales)) = 17,

which is the total number of tuples that hold correct refer-
ences in the foreign key sales.cityId.

The referential weight of a correct reference of a given
foreign key refers to the fraction of tuples that hold this
correct reference over the total number of tuples with correct

references. That is, we define referential weight in terms of
referential frequency as follows:

Definition 2 (Referential weight) We define the aggregate
function referential weight over a foreign key K as

FrefwRj .K(K)(Ri) where for each correct reference

kc ∈ ΠK(Ri 1K Rj) the aggregate value is computed as
follows

V(K=kcFrefwRj .K(K)(Ri)) =
V(K=kcFreffRj .K(K)(Ri))

V(FreffRj .K(K)(Ri))

The domain for the values of the elements of the referen-
tial weight is the rational numbers in [0,1]. We compute
V(FrefwRj .K(K)(Ri)) as follows

V(FrefwRj .K(K)(Ri))

= Σkc∈ΠK(Ri1KRj)(V(K=kcFrefwRj .K(K)(Ri)))

= 1

if there is at least one valid reference in Ri.K. When the
values of Ri.K are all invalid references, or Ri is empty then
V(FrefwRj .K(K)(Ri)) = 0.

The next definition is in the spirit of the definition of
partial probability in [15]. The idea behind the referential
partial probability is to associate to each correct (referenc-
ing) value in a given foreign key and to each unreferenced
value in the referenced key a probability. Each probability
corresponds to the probability that the associated value be
the correct reference in a tuple with an invalid value in the
foreign key. In [15] the authors define a partial probability
as a vector of probabilities. Each probability is associated to
a value. Each probability corresponds to a probability that
an attribute value be the corresponding value associated to
the probability in the partial probability vector. Formally
we have the following definition.

Definition 3 (Referential partial probability) The referen-
tial partial probability refppRj .K(Ri.K) defined over the

correct referencing values of a foreign key Ri.K and over
the unreferenced values in Rj .K with respect to Ri.K, is a
vector of probabilities where, if there are correct references
in Ri.K, we have 〈p1, p2, . . . , ps, . . . , pt〉,

s = |ΠK(Ri 1K Rj)|, t = |Rj |, where each pr is the prob-
ability that an invalid reference be the kr, r = 1, . . . , s correct
reference in Ri.K or the r = s+1 . . . t unreferenced value in
Rj .K For the cases where all references in Ri.K are invalid,
or Ri is empty, that is s = 0, the vector will only hold the
probabilities that correspond to the (unreferenced) values of
Rj .K. If |Rj | = 0, then the referential partial probability
is undefined. The element of the referential partial probabil-
ity vector that corresponds to a kr value will be denoted as
refppRj .K(Ri.K, kr).

Notice that for each referenced key, a set of partial prob-
ability vectors may be defined, one for each foreign key that
references it. Users with good database knowledge may as-
sign these probabilities. Nevertheless, a feasible way to as-
sign these probabilities when computing our proposed ag-
gregate functions is following the intuition that a high prob-
ability will correspond to a high frequency in the foreign key

and a low probability corresponds to a low frequency. With
these ideas in mind, we can see that the referential weight
may be used to define a referential partial probability vector.

Definition 4 (Weighted referential partial probability) We
define the weighted referential partial probability of a for-
eign key Ri.K referencing Rj .K, wrppRj .K(Ri.K), as the

referential partial probability where each one of its elements,
wrppRj .K(Ri.K, kr) is computed as follows:

Case 1. There is at least one valid reference in Ri.K
wrppRj .K(Ri.K, kr)

=

V(K=krFrefwRj .K(K)(Ri)),

if kr ∈ ΠK(Ri 1K Rj)

0 if kr ∈ ΠK(Rj) − ΠK(Ri 1K Rj)

Case 2. The values in Ri.K are all invalid references or
Ri.K is empty

wrppRj .K(Ri.K, kr) =
1

|Rj |
, kr ∈ ΠK(Rj)

Observe that we are assuming a uniform probability distri-
bution function in case 2, since we do not have more informa-
tion. Thus defined then wrppRj .K(Ri.K) has the following
property: Σk∈Rj .K(wrppRj .K(Ri.K, k)) = 1.

Example 4 Consider the relaxed database of Figure 1. The
weighted referential partial probability defined over the cor-
rect references of foreign key sales.cityId and over the un-
referenced values in city.cityId with respect to sales.cityId,
〈LAX,HOU,MON,MEX,SYD,MEL,ROM,PAR,MAD,
FLR,HAM,LON〉 is:

wrppcity.cityId(sales.cityId) =

〈
2

17
,

2

17
,

1

17
,

1

17
,

2

17
,

1

17
,

2

17
,

2

17
,

1

17
,

1

17
,

2

17
, 0〉

To simplify exposition and notation, from now on when
there exists at least one valid reference in the referencing
foreign key we will show only those values different from 0
from the weighted referential partial probability vector. We
will not refer to each value correspondence when it is obvious
from the context. Next, we propose two families of new
aggregate functions:

• weighted referential aggregations

• full referential aggregations

The general idea of our proposed weighted referential ag-
gregations is the following. First, each invalid reference will
be treated as an imprecise value. That is, a value we know it
belongs to a given set of values, in this case the set of refer-
enced values at the time the aggregate function is evaluated.
The values of the measure attribute of the invalid references
account for part of the corresponding value of each valid
reference, according to their probability in the weighted ref-
erential partial probability vector, in particular, according
to their referential weight value. We introduce a method to
improve the answer sets returned by the extended aggregate
functions by means of a reliable attribute.

The full referential aggregations are the counterpart of the
SQL grouped attribute aggregations computed over a joined

cityName sum() wr sum() fr sum()
Florence 271.29 361.00 1796.40
Hamburg 789.73 969.15 2314.84
Houston 875.16 1054.58 2400.27
Los Angeles 1180.55 1359.97 2705.66
Madrid 396.23 485.94 1921.34
Melbourne 385.27 474.98 1910.38
Mexico 483.24 572.95 2008.35
Montreal 304.76 394.47 1829.87
Paris 874.54 1053.96 2399.65
Rome 1116.11 1295.53 2641.22
Sydney 914.03 1093.45 2439.14

Table 1: Weighted referential and full referential
sum aggregations.

relation on foreign key-primary key attributes, from now on
SQL joined aggregations, with possible referential integrity
violations. All the values of the measure attribute of the in-
valid references account for part of the corresponding value
of each group the way it will be explained. Observe that full
referential aggregations may not be consistent with respect
to the total aggregate value, just like standard SQL joined
aggregations are not consistent either when computed over
a database in a relaxed state, as shown in Example 1. Nev-
ertheless, these values represent for each group a possible
correct aggregate value. That is, they represent a possible
world for each group as described in a different context in
[3] and [1]. The set of values in Example 1 correspond to the
case where repairing the database resulted in the elimination
of all the tuples with an invalid reference and none of them
ended being part of a group. The answer sets of full ref-
erential aggregations correspond to the case where for each
group, all invalid references were repaired and updated with
the corresponding reference of the group.

Example 5 Consider the aggregate function sum() over the
measure attribute salesamt grouped by cityName as in Figure
2. The answer set of the weighted referential sum aggrega-
tion, denoted as wr sum(), is shown in Table 1. The user
has a consistent answer set, where the value of the measure
attribute of the tuples with invalid references is distributed
among the correct references according to the weighted ref-
erential partial probability vector. On the other hand, the
full referential sum aggregation, denoted as fr sum() in the
same Table, gives an upper bound of possible sales amounts
for each group considering the invalid references, but it is
not a consistent answer set.

3.2 Weighted Referential Aggregations
We consider weighted referential aggregate functions that

correspond to the following aggregations: count(*), count()
and sum(). They will be denoted with the prefix wr and
the same name as their SQL counterparts. Due to the par-
ticular properties of aggregate functions min(), max() and
avg(), only in a few cases the weighted referential versions
are meaningful. Therefore, we omit their definition.

We will base our definitions in the weighted referential par-
tial probability, particularly the case where at least there is
one valid reference, but these definitions may be generalized
to consider other referential partial probability vectors.

3.2.1 Function Properties
Our extended aggregate functions must fulfill certain prop-

erties to be considered clean extensions of their counterpart
standard SQL aggregations. An ascending feature as de-
fined in [12] holds for the weighted referential aggregations
wr count(*) and wr count(). In [12], the authors define an
ascending aggregate function f as a function where if given

sets of records S and S
′

, being S
′

⊆ S then f(S
′

) ≤ f(S).
Descending functions are defined accordingly. That is, in
our context, as tuples are inserted or deleted, the referen-
tially weighted aggregations may increase (i.e. ascending) or
decrease (i.e. descending). For wr sum() aggregate function,
there are cases where inserting or deleting tuples implies an
increasing or decreasing aggregate as in many OLAP sce-
narios (Example 1). In these cases the aggregate function
wr sum() fulfills an ascending or descending feature. Ob-
serve that as the referential integrity errors are repaired with
correct references without varying the number of tuples, we
will expect that the element of the aggregate function list
of each group remains more or less constant. We will also
expect that the total value remains constant in this type of
repairing processes.

If the referential integrity errors are repaired or if there
are no referential errors. That is, if the integrity constraint
holds for all tuples, a safety feature holds for the weighted
referential aggregations, meaning that the answer sets will
not be different compared to the the ones from the standard
SQL aggregations.

For the distributive functions, wr count(*), wr count() and
wr sum(), a consistency property holds if there is at least
one correct reference, as we will see next. This property
corresponds to the summarizability feature described in [13].
That is, a distributive function over a set should preserve the
results over the subsets of its partitions.

Finally, since we are looking for feasible computations the
weighted referential aggregations will return the same an-
swer set as the standard SQL aggregations when there are
no valid references. Such answer set represents the ground
fact that we start with an empty relation or with a totally
erroneous foreign key. Notice we could have defined the
weighted referential aggregations considering the second case
in Definition 4. Although consistency would have been satis-
fied even for the facts described above, efficiency would have
been compromised since all the values in the referenced at-
tribute would appear in the answer set with a value that
corresponds to an equal probability. When in the definition
of the weighted referential aggregation the second case of
Definition 4 is considered, we will refer to these variants as
the completely consistent weighted referential aggregations.

3.2.2 Function Definitions
We will now define the weighted referential aggregations

considering the case there is at least one valid reference. We
start defining the weighted referential count(*) denoted as
wr count(*). First we define Fwr countRj.K (∗)(Ri), as

Fwr countRj.K(∗)(Ri) = Fcount(∗)(Ri)

Now we show how to compute each element of the aggregate
function list. For each correct reference kc of foreign key
Ri.K that references Rj .K, the aggregate value is computed
as follows:

V(K=kcFwr countRj.K(∗)(Ri))

= V(K=kcFreffRj .K(∗)(Ri))

+ (V(Fcount(∗)(Ri)) − V(FreffRj .K(∗)(Ri)))

∗ V(K=kcFrefwRj .K(K)(Ri))

See how the number of invalid references,
V(Fcount(∗)(Ri)) − V(FreffRj .K(∗)(Ri)),

account for part of the corresponding aggregate of the valid
references via the referential weight value -

V(K=kcFrefwRj .K(K)(Ri)). Observe that the elements of

the aggregate list are rational numbers in [1,∞). Thus de-
fined wr count(*) is consistent if at least there is one correct
reference since by Definitions 1 and 2 we have

Σkc∈Ri.K(|σ
K=kc

(Ri 1K Rj)|

+ (|Ri| − |Ri 1K Rj |) ∗
|σK=kc

(Ri1K Rj)|

|Ri1K Rj |
))

=Σkc∈Ri.K(|σ
K=kc

(Ri 1K Rj)|)

+ (|Ri| − |Ri 1K Rj |) ∗ Σkc∈Ri.K(
|σK=kc

(Ri1K Rj)|

|Ri1K Rj |
))

=|Ri 1K Rj | + (|Ri| − |Ri 1K Rj |)

=|Ri|

wr count(*) has the ascending property mentioned above
since its value increases as tuples are inserted. Also observe
that as the invalid references, in this case |Ri|− |Ri 1K Rj |,
decrease the total value remains constant. We can see it also
fulfills the safety property. That is, if there are no referential
integrity errors, the answer sets of both the SQL aggregate
function count(*) and the weighted referential count(*) are
the same.

In a similar fashion we define the weighted referential
count(), wr count() as

Fwr countRi.K(K)(Ri) = Fcount(K)(Ri),

whose aggregate value is computed as follows:

V(K=kcFwr countRj.K (K)(Ri))

= V(K=kcFreffRj.K(K)(Ri))

+ (V(Fcount(K)(Ri)) − V(FreffRj.K(∗)(Ri)))

∗ V(K=kcFrefwRj .K(K)(Ri))

The aggregation wr count() has the ascending, consistent
and safety properties. Likewise, we define wr sum() as

Fwr sumRi.K(A)(Ri) = Fsum(A)(Ri),

whose aggregate value is computed as follows:

V(K=kcFwr sumRj .K(A)(Ri))

= V(K=kcFsum(A)(Ri))

+ (V(Fsum(A)(Ri))

− Σkr∈ΠK(Ri1KRj)(V(K=krFsum(A)(Ri)))

∗ V(K=kcFrefwRj .K(K)(Ri)),

where the addition and subtraction operators behave like
the SQL sum() aggregation in the presence of η and the
multiplication operator returns η, when some operand is η.

/* SQL query calling extended aggregation */
SELECT cityName, sum(salesamt), wr_sum(salesamt)

FROM city JOIN sales

ON sales.cityId = city.cityId

GROUP BY cityName;

/* SQL statements evaluating extended aggregation */
CREATE TABLE wr_sumtemp AS

SELECT cityName, city.cityId AS fk,

count(*) AS cardinality,

count(sales.cityId) AS freq,

sum(sales.salesamt) AS sumagg

FROM city RIGHT OUTER JOIN sales

ON sales.cityId = city.cityId

GROUP BY cityName, city.cityId;

SELECT cityName,sum(sumagg), sum(wrsum)

FROM

(SELECT cityName

,((sumagg+(freq/

(SELECT sum(freq) FROM wr_sumtemp

WHERE fk IS NOT NULL))*

(CASE WHEN

(SELECT sumagg FROM wr_sumtemp WHERE fk is null)

is null

THEN 0 ELSE

(SELECT sumagg FROM wr_sumtemp WHERE fk is null)

END))

AS wrsum, sumagg

FROM wr_sumtemp

WHERE wr_sumtemp.fk is not null) AS foo

GROUP BY cityName;

Figure 5: Query calling wr sum() and SQL state-
ments evaluating the extended aggregation.

As stated above, as it is common in an OLAP scenario,
wr sum() makes sense when inserting or deleting tuples in
Ri causes the value of the corresponding elements of the
aggregate list to increase or decrease; wr sum() fulfills the
consistent and safety property. In Figure 5 we show a query
in SQL calling wr sum() and the equivalent SQL expressions
obtaining the same answer set, assuming there exists at least
one valid reference in foreign key cityId.

3.3 Method to Improve Weighted
Referential Aggregations

We can improve and refine the estimated answer sets of
the weighted referential aggregations if we have another
foreign key or another attribute with values of higher qual-
ity in the same relation (i.e. an attribute with zero or less
referential errors). This scenario is possible when two or
more databases are integrated and there are relations that
share a common primary key. A functional dependency
must be defined between the two attributes and the depen-
dency may be in either direction. Although the database is
not in 3NF, remember we are supposing a relaxed database
and our goal now is to keep all data, instead of repairing
it. Suppose we have two foreign keys Ri.Ka referencing
Rja .Ka and Ri.Kb referencing Rjb

.Kb and a measure at-
tribute Ri.A in a relaxed database. Also suppose the fol-
lowing functional dependency should hold between both at-
tributes: Ri.Ka → Ri.Kb. We can imagine this situation as
if a set of elements represented by values in attribute Ri.Ka,
e.g. cities, should be contained in an element represented by
a value of Ri.Kb, e.g. a region.

First, consider the case where the user knows that the
data quality of foreign key Ri.Kb is higher than the quality
of Ri.Ka. As before, the invalid references of foreign key
Ri.Ka are considered as imprecise values, but now we know
these values represent elements that should be contained in
an element represented by a value, say kb, of foreign key
Ri.Kb. That is, a subset of the correct references of Ri.Ka,
more precisely the following values

{k|k ∈ ΠKa(σKb=kb
(Ri 1Ka Rja)}

This fact reduces the set of values that the imprecise refer-
ence could stand for. Foreign key Ri.Kb defines a partition
of the values of Ri.Ka.

Example 6 Look at the example of the relaxed database in
Figure 1. Observe the tuple with value 9 in sales.storeId.
As discussed before, the weighted referential partial prob-
ability vector may be used to compute how much a value
that corresponds to an invalid reference accounts for in the
corresponding value of each valid reference. In this case,
the measure attribute sales.salesamt that corresponds to the
invalid reference η (null) in sales.cityId should participate
in each valid reference according to the weighted referential
partial probability vector. So far, this is our best estimate.
Now, since the user trusts the foreign key sales.regionId, the
invalid reference mentioned above has a high probability that
its ‘real’ value be a city in the Americas region.So the value
of the measure attribute sales.salesamt 651.19 should partic-
ipate only in each valid reference of the Americas region.

Let us analyze the case when the user trusts the foreign
key Ri.Ka. To fix a correct reference value instead of an
invalid reference in Ri.Kb, we only need to know the depen-
dent value, as specified by the functional dependency.

Ri.A values or tuples
CASE Ri.Ka Ri.Kb grouped by

1 ka ∈ ΠRi.Ka(Ri 1Ka Rja) kb ∈ ΠRi.Kb
(Ri 1Kb

Rjb
) ka

ka is valid kb is valid
2 ka ∈ ΠRi.Ka(σRi.Kb=kb

(Ri) kb ∈ ΠRi.Kb
(Ri 1Kb

Rjb
) k ∈ ΠRi.Ka(σRi.Kb=kb

(Ri 1Ka Rja))
−ΠRi.∗(Ri 1Ka Rja))
∃k ∈ ΠRi.Ka (σRi.Kb=kb

(Ri 1Ka Rja))
ka is invalid kb is valid.
∃ valid ref. in subset by kb

3 ka ∈ ΠRi.Ka(σRi.Kb=kb
(Ri) kb ∈ ΠRi.Kb

(Ri 1Kb
Rjb

) k ∈ ΠRi.Ka(Ri 1Ka Rja)
−ΠRi.∗(Ri 1Ka Rja))
@k ∈ ΠRi.Ka (σRi.Kb=kb

(Ri 1Ka Rja))
ka is invalid kb is valid.
@ valid ref. in subset by kb

4 ka ∈ ΠRi.Ka(Ri 1Ka Rja) kb ∈ ΠRi.Kb
(Ri ka

−ΠRi.∗(Ri 1Kb
Rjb

))
ka is valid kb is invalid

5 ka ∈ ΠRi.Ka(σRi.Kb=kb
(Ri) kb ∈ ΠRi.Kb

(Ri k ∈ ΠRi.Ka(Ri 1Ka Rja)
−ΠRi.∗(Ri 1Ka Rja)) −ΠRi.∗(Ri 1Kb

Rjb
))

ka is invalid kb is invalid

Table 2: Cases for foreign key to improve the weighted referential aggregations - Ri.Ka → Ri.Kb.

In both cases we have to consider a relaxed database.
That is, we expect referential errors even in the ‘trusted’ for-
eign key. Also, the functional dependency constraint may be
violated. A feasible approach towards getting better answer
sets in the line of the aggregate functions proposed so far is
the following.

Consider foreign keys Ri.Ka and Ri.Kb and the measure
attribute Ri.A and the functional dependency Ri.Ka →
Ri.Kb. We divide our exposition in two parts. First, we as-
sume we know the value correspondence in the functional de-
pendency. From the pairs of values that define the functional
dependency we can derive a partition of a set of correct refer-
ences of Ri.Ka. The set of valid references in Ri.Kb defines
a partition of the corresponding set of correct references in
Ri.Ka. Next, a set of tuples in Ri may be associated to each
correct reference, say kb in Ri.Kb. Observe that these tu-
ples may have invalid references in foreign key Ri.Ka. The
values of attribute Ri.A that correspond to these invalid tu-
ples or the number of these tuples, in case we are dealing
with the count() aggregations, will participate in each valid
reference of the group of values in Ri.Ka defined by kb in
Ri.Kb. This can be done computing the weighted referential
partial probability vector considering σRi.Kb=kb

(Ri) as the
referencing relation.

More precisely, suppose that for a given valid reference
kb in Ri.Kb, there exists a set of valid references, at least
one, in Ri.Ka that is determining the former one. For each
valid reference ka in Ri.Ka that corresponds to this valid
reference kb in Ri.Kb we have

wrppRja
.Ka(σRi.Kb=kb

(Ri).Ka, ka) =

V(K=ka
FreffRja

.K (K)(Ri))

Σks∈ΠRi.Ka
(σRi.Kb=kb

(Ri))
(V(K=ks

FreffRjb
.K (K)(Ri)))

Since ka ∈ ΠRi.Ka (σRi.Kb=kb
(Ri)) is a valid reference the

divisor expression does not evaluate to 0.

Example 7 Again, take for instance the relaxed database
in Figure 1. Due to the functional dependency

cityId → regionId, the valid references of foreign key regionId
({AM, AP,EU}) define the following partition of valid ref-
erences for foreign key cityId in table sales:

{{LAX, HOU, MON, MEX} , {SY D, MEL} ,

{ROM, PAR,MAD, FLR, HAM}}

We can define three weighted referential partial probabil-
ity vectors, considering the three relations, each one of them
with the tuples that have the values of each of the above sub-
sets in foreign key cityId. Taking relation sales in Figure 1
the corresponding vectors are:

〈
2

6
,
2

6
,
1

6
,
1

6
〉 〈

2

3
,
1

3
〉 〈

2

8
,
2

8
,
1

8
,
1

8
,
2

8
〉

Contrast these three vectors with the vector shown in Ex-
ample 4.

Table 2 shows the cases that should be considered de-
pending on the values of Ri.Ka and Ri.Kb in each tuple
and how should A value or tuple participate in an aggregate
function in order to improve the estimated aggregate an-
swer sets preserving the consistency, ascending/descending
and safety properties in the aggregate functions where these
properties apply. In Table 2 Ri.∗ represents the list of all
attributes in Ri.

So far we have assumed we know the correspondence be-
tween the values of Ri.Ka and Ri.Kb according to the func-
tional dependency Ri.Ka → Ri.Kb. But this is not a realis-
tic assumption since we are dealing with a relaxed database.
Assume there are violations to the functional dependency.
In order to reconstruct feasibly the functional dependency
so we can apply the strategy explained above, we can fol-
low the intuition that a dependency violation appears with
a much less frequency than a correct functional dependency.
On the other hand, a pair of values of Ri.Ka and Ri.Kb that
appear frequently associated in a number of tuples may be
considered as a correct pair of values according to the func-

cityName sum() wr sum() wr sum()
improved

Florence 271.29 361.00 271.29
Hamburg 789.73 969.15 789.73
Houston 875.16 1054.58 1383.53
Los Angeles 1180.55 1359.97 1688.92
Madrid 396.23 485.94 396.23
Melbourne 385.27 474.98 385.27
Mexico 483.24 572.95 737.43
Montreal 304.76 394.47 558.95
Paris 874.54 1053.96 874.54
Rome 1116.11 1295.53 1116.11
Sydney 914.03 1093.45 914.03

Table 3: Weighted referential aggregate sum im-
proved with trusted foreign key regionId.

tional dependency constraint. With these ideas in mind, we
can reconstruct the functional dependency by choosing for
each correct reference ka in Ri.Ka the correct reference kb

in Ri.Kb to which ka is associated the most. Ties are solved
simply choosing one value. According to Table 2, if there is
not a correct reference kb in Ri.Kb for ka, then the tuples
with a ka reference in Ri.Ka belong to case 4. If there are
tuples with a ka in Ri.Ka associated to a correct reference
kb in Ri.Kb but this pair of values was not the maximum
pair of values for value ka then these tuples will be treated
as belonging to cases 2 or 3 since the user trusts foreign key
Ri.Kb so we assume ka is an error. We show in Table 3
how the estimated aggregations given in Figure 1 may be
improved by means of foreign key regionId.

Now, if the trusted foreign key is Ri.Ka, we proceed in a
similar fashion. A correct reference of foreign key Ka deter-
mines only one value of Kb. If a pair of correct values ka,
kb have not the maximum frequency, reference in attribute
Kb will be considered an invalid value.

3.4 Full Referential Aggregations
The answer sets of our full referential aggregations repre-

sent for each element in the aggregate list, a potential repair
which consists in updating each invalid reference with the
value of the correct reference that represents each group.
The answer sets from a standard SQL joined aggregation
represent a potential repair of the database for each group
that consists in deleting all the tuples with invalid references.

We will consider full referential aggregations that corre-
spond to the aggregate functions count(*), count(), sum(),
max(), min(), and avg() and will be denoted as their coun-
terparts but with the prefix fr. The properties that the
full referential aggregations fulfill are the safety property de-
scribed before and a plausibleness property for each group,
meaning that the answer set represents a potential repair
for each group, that consists in assigning to all the invalid
references, the reference that represents each group.

For ascending aggregate functions, that is fr count(*),
fr count() and fr max(), each element of the aggregate lists
is an upper bound of its group meaning that all the in-
valid references were updated with the reference represented
by the element in question. For the descending function
fr min(), on the other hand, represents a lower bound. Also
when the fr sum() aggregate function behaves as an ascend-
ing/descending function, each element of the aggregate list

is an upper/lower bound respectively.
The definition of full referential aggregations fr count(*),

fr count(), fr sum() is quite similar to the definition of our
weighted referential aggregations. The only difference is a
different computation for elements in the aggregate lists,
which are computed without the refw factor. We define
the full referential aggregation for any aggregation agg() as

Ffr aggRj .K()(Ri)

= FaggRj .K(fr agg())(KFfr aggRj .K()(Ri))

where fr agg() stands for the aggregate column in

KFfr aggRj.K ()(Ri). This definition also holds for the next

aggregate functions.
We now define fr max() (fr min() is defined accordingly).

For each correct reference kc of foreign key Ri.K that refer-
ences Rj .K the aggregate value is computed as follows:

V(K=kcFfr maxRj.K (A)(Ri))

= max(V(K=kcFmax(A)(Ri)),

V(Fmax(A)(Ri − ΠRi.∗(Ri 1K Rj)))

where Ri.∗ stands for the list of attributes in Ri and function
max() behaves as the SQL-max() aggregate in the presence
of η. Observe fr max() has the consistency property.

Full referential aggregate avg(), fr avg() is defined as fol-

lows. In general, in SQL, avg() is not the same as sum(A)
count(K)

.

The function avg() computes the average of each row that
qualifies. That is, in this case, rows that have a value in the
A attribute different from η. The number of rows that qual-
ify for the avg() function, not necessary matches the rows
that qualify for count(K). A valid reference in attribute K
associated with a η in A adds one to count(K) but not to
the number of rows that qualify for avg(A). Observe that if
both attributes are η, then both functions will not consider
the tuple.

We now proceed with the definition of the elements of the
aggregate list. For each correct reference kc of foreign key
Ri.K that references Rj .K the aggregate value is computed
as follows:

V(K=kcFfr sumRj .K (A)(Ri))

(|σK=kc∧notnull(A)(Ri)| + |σnotnull(A)(Ri−

ΠRi.∗(Ri 1K Rj))|)

where if the dividend expression is η and/or the divisor ex-
pression gives 0, then the quotient gives η. Finally, notice
the full referential aggregations may also be improved fol-
lowing the same ideas presented in the last section.

4. EXPERIMENTAL EVALUATION
We conducted our experiments on a database server with

one CPU running at 1 GHz with 256 MB of main memory
and 108 GB on disk. Evaluation of aggregations were carried
out on the public domain DBMS PostgreSQL.

4.1 TPC-H Database
Our synthetic databases were generated by the TPC-H

DBGEN program [17], with scaling factors 1 and 2. We did
not define any referential integrity constraint to allow refer-
ential errors. We inserted referential integrity errors in the

referencing fact table (lineitem) with different rates of errors
(0.1%, 0.2%,. . . , 1%, 2%,. . . , 10%). The invalid values were
inserted following several different probability distribution
functions (pdfs) including uniform, geometric and normal,
and in two foreign keys (l orderkey, and l suppkey).

The results we present in this section, use a default scale
factor 1. The referencing table, lineitem and the referenced
tables, orders, and supplier have the following cardinalities:
6M, 1.5M and 10k tuples, respectively. The invalid values
were randomly inserted according to three different pdfs,
that follow the parameters shown in Table 4. The minimum
number of errors generated was approximately 6, 000 and
the maximum 600, 000.

4.2 Approximation Accuracy
In order to evaluate the approximation accuracy for the

weighted referential aggregations, we conducted the follow-
ing experiment. We inserted referential integrity errors in
the foreign key l suppkey of referencing fact table lineitem
with a 10% error rate. This was done following the three
pdfs introduced above. Before doing so, we stored the valid
references on another table in order to “repair” the invalid
references when needed. We simulated a process of gradually
repairing the database and within this process we also com-
puted our proposed aggregate functions. Remember that
in our framework, we are not interested in how repairs are
done, but in getting an approximation of a complete answer
set. We then evaluated the weighted referential aggregations
and their corresponding standard SQL joined aggregations.
Next, we repaired a 2% random subset of the original invalid
references; our weighted referential aggregations and stan-
dard SQL joined aggregations were computed again. We re-
peated this process until the fact table was totally repaired.
In each iteration we kept the aggregate values for each differ-
ent group in order to compare such values with the“correct”
ones on the final repaired table.

4.3 Time Performance
The queries used to compute the weighted referential and

full referential aggregations first compute an auxiliary table.
In SQL, this table is computed with a left outer join between
the referencing table grouped by the foreign key and the ref-
erenced table and computes several aggregations depending
on the function answer set that is needed. For example, for
the wr sum() exended aggregation it computes both count()
and sum() for each group and the corresponding values for
the invalid references. The next step is to compute the ag-
gregate values of the invalid references, taken such references
as a single group. The tuples in this group can be identi-
fied because the attribute that corresponds to the referenced
primary key is η. Therefore, this group of invalid references
can be constructed. These computations are done over the
auxiliary table. The size of this table is the number of dif-
ferent values that are in the foreign key. Finally, the answer
set is grouped by the grouping attribute.

We study the time performance of extended aggregations
in Figure 6. for the aggregate functions wr sum() and fr sum().
Our experimental results evaluate performance of extended
aggregation against standard SQL joined aggregations with
foreign keys l orderkey and l suppkey of relation lineitem,
with different rates of errors inserted as described before.

As we can see, there are even instances where our pro-
posed aggregations perform better than the standard SQL

PDF Probability function Parameters

Uniform 1
h

h = 6000

Geometric (1 − p)n−1p p = 1/2

Normal 1√
2πσ2

exp
(

− (x−µ)2

2σ2

)

µ = 3000

σ2 = 1000

Table 4: PDFs used to insert invalid values.

joined aggregations. This is because: (1) an early aggrega-
tion grouping is computed before executing the join opera-
tion (push“group by”before join) and the remaining compu-
tations are done on the auxiliary table described earlier. For
the sum() aggregations, performance depends on the size of
the referenced table, as can be seen in Figure 6.

Summarizing, the performance of our extended aggrega-
tions computation depends on the size of the referencing ta-
ble, the number of invalid values and the number of distinct
values in the foreign key attribute.

5. RELATED WORK
Research on managing and querying incomplete data has

received significant attention. In [6] the authors define a
set of extended aggregate operations that can be applied to
an attribute containing partial values. These partial values,
which generalize the applicable null values [7], correspond to
a finite set of possible values for an attribute in which only
one of these values is the true one. The authors develop al-
gorithms for several aggregate functions that deliver sets of
partial values. In our work, we explore the idea of assuming
that an incorrect reference represents imprecise data. The
source of this value is an element of the set of valid references
of the foreign key. This assumption, although strong, hap-
pens to be useful when we know the tuple holding the incor-
rect reference comes from a certain source database. Getting
consistent answer sets from a query on an isolated database,
where some integrity constraints are not satisfied is studied
in [5]; the authors focus on time complexity and identify the
set of inclusion dependencies under which getting a consis-
tent answer set is decidable. In contrast, in our work we
focus on aggregations on integrated databases, where ref-
erential integrity constraints are not satisfied. In [4] the
authors identify two complementary frameworks to define
views over integrated databases and they propose techniques
to answer SPJ queries on integrated databases where there
are missing foreign key values; the authors show that the
problem of getting consistent answer sets is significantly dif-
ficult (non-polynomial time). Following a somewhat similar
approach, in [2] the authors study scalar aggregation queries
in databases that violate a given set of functional dependen-
cies. They examine the problem of computing the range
of all possible answer sets for aggregation queries, which
results in a big search space. This approach has the bene-
fit that, although the possible answer sets are incompletely
represented by a range of values, the computations can be
done in reasonable (polynomial) time. The authors do not
address the specific problem of computing potential answer
sets from aggregations in the presence of invalid foreign keys.

Uncertainty and imprecision have also been handled with
extended data models that capture more information about
the expected or probable behavior of data. By defining an
imprecise probability data model [15], the authors can han-

Figure 6: Comparing time performance of aggregations.

dle imprecise and uncertain data. They develop a general-
ized aggregation operator capable of determining a proba-
bility distribution for attributes with imprecise or uncertain
values. They extend their method to cover aggregations in-
volving several attributes. In our work we consider each
invalid reference as a place holder (tag) where a crisp [15]
but uncertain value should be stored. Also, associated to
the values of the referenced primary key with respect to a
given foreign key, there is a vector that holds for each value
of the primary key, the probability that this value appears in
a given tuple in the foreign key of the referencing relation.
Power users may assign these probabilities, but we give a
feasible method, exploiting the weighted referential partial
probability vector, to compute such probabilities.

Reference [3] presents an extended OLAP data model to
represent both uncertain and imprecise data. They intro-
duced aggregation queries and the requirements that guided
their semantics in order to handle ambiguous data. Cer-
tain knowledge about the data is needed to determine the
probability that a fact has a precise value in an underlying
possible world. We want to stress the fact that the authors
do not discuss functionality when referential integrity errors
occur. Such omission is important because in a data ware-
house scenario, where accurate answer sets to aggregation
queries are required, tables are likely to have referential in-
tegrity errors. Although in the approaches mentioned above
consistent information with respect to the database and its
assumptions is obtained, our proposal gives the user a data
model and aggregate functions that handle erroneous data
generated by integrity constraint violations and specifically
by referential integrity errors.

6. CONCLUSIONS
We studied how to improve aggregations to return en-

hanced answers sets in the presence of referential integrity
errors. Referential integrity errors are treated as imprecise
data that stand for precise values, determined by a for-
eign key. We proposed two families of extended aggregate
functions: weighted referential aggregations and full refer-

ential aggregations. Our extended aggregate functions are
the counterparts of standard SQL aggregations. Weighted
referential aggregations exploit a partial probability vector
associated with the foreign key. Our proposal also includes
a method to improve answer sets taking advantage of other
related attributes via a functional dependency. Specifically,
we analyze the case when such attributes are also foreign
keys. Full referential aggregations present a potential repair
scenario where each aggregated group receives all the values
corresponding to existing referential integrity errors. These
aggregations are helpful when the user needs to include for
each aggregation group all tuples with invalid references or
even tuples with invalid references that may probably belong
to each group. Our extended aggregations exhibit important
properties, which are required to consider them valid exten-
sions of standard SQL aggregations. The weighted referen-
tial aggregation for row counts is consistent, ascending, and
safe. The weighted sum aggregation is safe and consistent
and when it behaves as an increasing or decreasing function,
then it is ascending or descending, respectively. Full referen-
tial aggregations are safe and plausible. The latter property
means the answer set represents a potential repair for each
group, that consists in assigning to all invalid references,
the reference that represents each group. Our experiments
prove the answer sets returned by our extended aggregations
are fairly accurate approximations and they also show the
overhead due to additional computations is reasonable.

There are several issues for future work. Some of our
ideas can be extended to general SPJ queries. We need to
study query optimization of extended aggregations in more
depth since sometimes they are slower than standard SQL
joined aggregations. We need to consider other probabil-
ity distribution functions for the partial probability vector,
especially skewed distributions. We are exploring how to
link partial probability vectors from two different attributes
considering correlations. Unfortunately, weighted referential
aggregations return answer sets that rarely correspond to ac-
tual answer sets given by potential repairs. Therefore, we
want to improve the definition of weighted referential aggre-

gations to consider common repairs. We remain interested
in the efficient computation of aggregations that return the
most probable repaired answer sets.

Acknowledgments
The second author was sponsored by Macroproyecto de Tec-
noloǵıas de la Información y la Computación from UNAM
University. The second author would like to thank Hanna
Oktaba and Sergio Rajsbaum, from UNAM University, for
many interesting dicussions on this work.

7. REFERENCES
[1] S. Abiteboul, P. Kanellakis, and G. Grahne. On the

representation and querying of sets of possible worlds.
In ACM SIGMOD Conference, pages 34–48, 1987.

[2] M. Arenas, L. Bertossi, J. Chomicki, X. He,
V. Raghavan, and J. Spinrad. Scalar aggregation in
inconsistent databases. Theor. Comput. Sci.,
296(3):405–434, 2003.

[3] D. Burdick, P.M. Deshpande, T.S. Jayram,
R. Ramakrishnan, and S. Vaithyanathan. OLAP over
uncertain and imprecise data. In VLDB Conference,
pages 970–981, 2005.

[4] A. Cali, D. Calvanese, G. De Giacomo, and
M. Lenzerini. Data integration under integrity
constraints. Inf. Syst., 29(2):147–163, 2004.

[5] A. Cali, D. Lembo, and R. Rosati. On the decidability
and complexity of query answering over inconsistent
and incomplete databases. In ACM PODS, pages
260–271, 2003.

[6] A. L. P. Chen, J. S. Chiu, and F. S. C. Tseng.
Evaluating aggregate operations over imprecise data.
IEEE TKDE, 8(2):273–284, 1996.

[7] E.F. Codd. The Relational Model for Database
Management-Version 2. Addison-Wesley, 1st edition,
1990.

[8] T. Dasu, T. Johnson, S. Muthukrishnan, and
V. Shkapenyuk. Mining database structure; or, how to
build a data quality browser. In ACM SIGMOD
Conference, pages 240–251, 2002.

[9] R. Elmasri and S. B. Navathe. Fundamentals of
Database Systems. Addison/Wesley, Redwood City,
California, 3rd edition, 2000.

[10] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data cube: A relational aggregation operator
generalizing group-by, cross-tab and sub-total. In
ICDE Conference, pages 152–159, 1996.

[11] ISO-ANSI. Database Language SQL-Part2:
SQL/Foundation. ANSI, ISO 9075-2 edition, 1999.

[12] A. J. Knobbe, A. Siebes, and B. Marseille. Involving
aggregate functions in multi-relational search. In
PKDD02, pages 145–168, 2002.

[13] H. J. Lenz and A. Shoshani. Summarizability in
OLAP and statistical data bases. In SSDBM, pages
132–143, 1997.

[14] H. J. Lenz and B. Thalheim. OLAP databases and
aggregation functions. In SSDM, pages 91–100, 2001.

[15] S. McClean, B. Scotney, and M. Shapcott.
Aggregation of imprecise and uncertain information in
databases. IEEE TKDE, 13(6):902–912, 2001.

[16] E. Rahm and D. Hong-Hai. Data cleaning: Problems
and current approaches. IEEE Bulletin of the
Technical Committee on Data Engineering, 23(4),
2000.

[17] TPC. TPC-H Benchmark. Transaction Processing
Performance Council, http://www.tpc.org/tpch, 2005.

[18] J. Widom. Research poblems in data warehousing. In
ACM CIKM Conference, pages 25–30, 1995.

