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Abstract—Association rules represent a promising technique to
improve heart disease prediction. Unfortunately, when association
rules are applied on a medical data set they produce an extremely
large number of rules. Most of such rules are medically irrelevant
and the time required to find them can be impractical. A more
important issue is that, in general, association rules are mined on
the entire data set without validation on an independent sample.
To solve these limitations, we introduce an algorithm that uses
search constraints to reduce the number of rules, searches for
association rules on a training set and finally validates them on
an independent test set. The medical significance of discovered
rules is evaluated with support, confidence and lift. Association
rules are applied on a real data set containing medical records of
patients with heart disease. In medical terms, association rules
relate heart perfusion measurements and risk factors to the
degree of disease in four specific arteries. Search constraints and
test set validation significantly reduce the number of association
rules and produce a set of rules with high predictive accuracy.
We exhibit important rules with high confidence, high lift, or
both, that remain valid on the test set on several runs. These
rules represent valuable medical knowledge.

I. INTRODUCTION

Association rules represent a data mining technique that
has great potential in the medical domain to improve disease
prediction. The use of association rules on medical data
records with heart perfusion measurements is explored for the
first time in [9]. Discovering association rules on segmented
images is studied in [25]. Neural networks are used to predict
heart response based on exercise stress and heart muscle
thickening images [4]. A basic set of constraints is introduced
in [26], [27] and preliminary results stress the importance of
search constraints. Given the remarkable similarity between
confidence and confidence factors, association rule confidence
is used to validate confidence factors of production rules in
an expert system [14]. Validated discovered rules have been
added to an expert system knowledge base [10].

In this research work association rules are mined on a
medical data set to improve heart disease diagnosis. Each
rule represents a simple predictive pattern that describes a
subset of the data set projected on a subset of attributes.
From a medical perspective, association rules relate combi-
nations of binary target attributes (absence/existence of artery
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disease) and subsets of independent attributes (risk factors
and heart muscle health measurements). Association rules
have important advantages over traditional supervised machine
learning or statistical algorithms (e.g. decision trees [8], [30],
logistic regression [18], support vector machines [18]): they
have a straightforward interpretation based on the probability
of occurrence of a pattern and the conditional probability
between two patterns (medical measurements and risk factors
relationship to specific artery narrowing); they can link combi-
nations of predicted attributes (predict co-existence of disease
in two or more arteries); they can handle several predicted
attributes simultaneously without the need of having separate
data subsets or separate runs (predicting disease of all arteries
with a single data set); they can find patterns that exist in
small subsets of attributes (which is particularly challenging
for data sets that are small but also high dimensional); finally,
each rule can refer to overlapping subsets of the data set
with respect to other rules (avoiding data set fragmentation
when possible). In contrast, for our medical data set supervised
or predictive algorithms would require a large set of models
(e.g. many decision trees or regression models), extra data
preparation and data selection steps (to handle infrequent cases
or to create adequate target attributes) and complex feature
selection or stepwise procedures (to find small subsets of
attributes related to a specific degree of disease). Nevertheless,
we discovered two main issues when using association rules
on a medical data set. First, the number of discovered rules
becomes extremely large at low support thresholds and most
rules are medically irrelevant. Second, previous approaches
[2], [32] focus on mining association rules on the entire data
set, without validation on an independent data set. Another rea-
son supporting a validation procedure is the fact that collecting
new medical records with similar characteristics is difficult,
due to privacy regulations and management complexity of
medical data [31]. With those issues in mind, we define
search constraints [19], [27] to reduce the number of rules
and introduce a rule learning algorithm that searches for
constrained association rules on a training sample and validates
them on an independent (disjoint) test sample. This approach
helps finding rules with high predictive accuracy and reduces
the number of unreliable or medically irrelevant rules. Our
work advances previous research on incorporating constraints
for association rules including [19], [24], [29], [34].
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A. Contributions and Article Outline

We present an algorithm that incorporates search constraints
to find medically relevant association rules and validates them
with the well-known train and test approach [18], [23] to get
rules with high predictive accuracy. Search constraints include
maximum association size, item filtering dependent on predic-
tive goal (absence or existence of disease), attribute grouping
(discard irrelevant combinations) and antecedent/consequent
rule filtering (find predictive rules). Support, confidence and
lift are the metrics used to evaluate the medical significance
and reliability of association rules. Experiments study the
importance of each constraint individually. We show there is
a high proportion of rules that cannot be generalized after
validation on the test set. Our proposed algorithm produces a
set of rules that remain valid in several training/test cycles.

The organization of the article is the following. Section II
introduces definitions. Section III explains a transformation
process from medical record to transaction format, introduces
search constraints to find predictive rules and proposes a
train and test algorithm to find and validate rules. Section IV
presents experiments with a real data set containing medical
records of patients with heart disease. Section V explains
related work. Section VI concludes the article.

II. DEFINITIONS

We use the standard definition of association rules [1],
[25], [27]. Let D be a set of n transactions such that (s.t.)
D = {T1, T2, . . . , Tn}, where Ti ⊆ I and I is a set of items,
I = {i1, i2, . . . , im}. A subset of I containing k items is
called a k-itemset. Let X and Y be two itemsets s.t. X ⊂ I,
Y ⊂ I and X ∩ Y = ∅. An association rule is an implication
denoted by X ⇒ Y , where X is called the antecedent and Y
is called the consequent. In our work, patient records consist
of numeric and categorical values, that are transformed into
transactions, where each item corresponds to one numeric
range or one categorical value. This transformation process
will be discussed in Section III-A.

We proceed to define association rule metrics. Given an
itemset X , support s(X) is defined as the fraction of trans-
actions Ti ∈ D such that X ⊆ Ti. Consider P (X) the
probability of appearance of X in D and P (Y |X) the condi-
tional probability of appearance of Y given X . P (X) can be
estimated as P (X) = s(X). The support of a rule X ⇒ Y
is defined as s(X ⇒ Y ) = s(X ∪ Y ). An association rule
X ⇒ Y has a measure of reliability called confidence, defined
as c(X ⇒ Y ) = s(X ⇒ Y )/s(X). Confidence can be used
to estimate P (Y |X): P (Y |X) = P (X ∪Y )/P (X) = c(X ⇒
Y ). A probabilistic interpretation of support and confidence
is discussed in [18]. We use a third metric called lift [2],
defined as l(X ⇒ Y ) = P (X ∪ Y )/(P (X)P (Y )) = c(X ⇒
Y )/s(Y ). Lift quantifies the relationship between X and Y .
In general, a lift value greater than 1 provides strong evidence
that X and Y depend on each other. A lift value below 1 states
X depends on the absence of Y or viceversa. A lift value close
to 1 indicates X and Y are independent.

The problem of mining association rules is defined as
finding the set of all rules {X ⇒ Y } such that s(X ⇒ Y ) ≥ ψ

and c(X ⇒ Y ) ≥ α, given a support threshold ψ and a
confidence threshold α. A k-itemset X such that s(X) ≥ ψ
is called frequent.

III. USING THE TRAIN AND TEST APPROACH WITH
CONSTRAINED ASSOCIATION RULES

This section presents an algorithm to find predictive associ-
ation rules in a medical data set. The algorithm has three major
steps. First, a medical data set with categorical and numeric
attributes is transformed into a transaction data set, as defined
in Section II. Second, four constraints are incorporated into
the search process to find predictive association rules with
medically relevant attribute combinations. Third, a train and
test approach is used to validate association rules.

A. Medical Data Set Transformation

Consider a medical data set containing n patient records
S = {s1, s2, . . . sn} with categorical, numeric, time and image
attributes. All attributes are uniformly treated as categorical
or numeric to make the problem simpler. That is, if S has
attributes A1, A2, . . . Ap then Al is either a categorical or
numeric type. In order to use association rules S is transformed
into a transaction data set D = {T1, T2, . . . , Tn}. Numeric at-
tributes are binned (discretized) and each bin becomes an item.
Categorical attributes are transformed into items by assigning
an item to each categorical value. When an attribute is negated,
additional items are created for each negated categorical value
or each negated numeric range. Summarizing, each transaction
Ti is a set of items that indicate the presence (or absence under
negation) of one categorical value or one numeric interval for
one patient record si.

B. Constraints for Association Rules

This section introduces search constraints to find only pre-
dictive association rules and to reduce the number of patterns.
Let I = {i1, i2, . . . im} be the set of items to be processed,
obtained by the transformation process from the attributes
A = {A1, . . . , Ap}. Let attribute : I → A be a function
that returns the attribute corresponding to one item.

The problem of discovering association rules is decomposed
into two basic sub-problems [1]: (1) finding all frequent k-
itemsets X such that support s(X) ≥ ψ and (2) finding
all rules X ⇒ Y such that c(X ⇒ Y ) ≥ α. This is
motivated by the fact that the first sub-problem is generally
more difficult. But in the experimental section we shall see
that the second sub-problem is actually harder for a medical
data set if constraints are not used. In our algorithm we call
the first sub-problem Phase 1 and the second one Phase 2.
We define four constraints, three of which are used in Phase
1 and one on Phase 2. Our work extends previous research
on constraining association rules [19], [24], [29], [34], where
most constraints work on Phase 1.

Constraints for frequent itemset search on Phase 1: We
define an item filtering constraint based on the predictive goal
P . For heart disease prediction there will be a set of items
for predicting existence of disease (P=’Y’) and another set



3

of items to predict absence of disease (P=’N’). Some items
will be used for both predictive goals. This constraint will
eliminate any combination containing the filtered items. In our
case, item filtering is applied before itemset generation during
preprocessing, instead of applying it during the search phase
[33]. Item filtering is a succinct constraint [19], [29]. This
constraint is manually defined by the medical doctor (domain
expert) to include interesting items given the prediction goal,
but at the same time eliminating many item combinations that
are not currently being analyzed. It should be clarified that
some filtered items may be potentially valuable to understand
unknown relationships among risk factors/perfusion and ar-
teries. That is, any rule with high reliability metrics has the
potential of being medically significant.

The second constraint is called the rule size constraint,
which is given by a maximum size κ. Frequent itemsets are
generated up to size κ, eliminating complete branches of the
search tree having frequent itemsets of size κ+ 1, κ+ 2 and
so on. This constraint is simple, yet it produces simpler and
fewer rules. Most approaches find all rules above thresholds in
an exhaustive fashion [1], [16], but in the case of medical data
such approach is not practical. In general, search constraints
should be used as early as possible to improve efficiency [24].
The rule size constraint is applied during itemset generation
in Phase 1, but it could be applied in Phase 2.

We now introduce the third and fourth constraints. Input at-
tributes are extended with two constraints: the group constraint
and the antecedent-consequent constraint. We explain the
group constraint that is used on Phase 1. The group constraint
is used to avoid combinations of perfusion measurements and
trivial combinations of risk factors. Let G = {g1, g2, . . . gp}
be a set of p group constraints, one for each attribute Aj ;
gj is a positive integer if Aj is constrained to belong to
some group or 0 if Aj is not group-constrained. We define
the function group : A → G as group(Aj) = gj . Since
each attribute belongs to one group then the group numbers
induce a partition on the attributes. If gj > 0 then there should
be two or more attributes with the same group value of gj .
Otherwise that would be equivalent to having gj = 0. Itemset
X is said to be group-interesting if for every pair {ij , ij′}
it holds that group(attribute(ij)) 6= group(attribute(ij′)).
The group constraint can be considered anti-monotonic [19],
meaning that if an itemset is not interesting then any superset
will not be interesting either. Our group constraint differs from
item constraints [29] in the sense that it induces a partition on
attributes and their corresponding items.

Constraint for filtering rules on Phase 2: There is only
one constraint used in Phase 2, applied to rules but not to
associations, called the antecedent-consequent (AC) constraint.
Intuitively, we can think of it as a template of predictive rules.
We define a set of AC constraints on {A1, . . . , Ap} by C =
{c1, . . . cp}. The constraint cj takes one out of three possible
values: cj = 1 if attribute Aj can only appear in the antecedent
of a rule, cj = 2 if Aj can only appear in the consequent and
cj = 0 if it can appear in either place. We define the function
antecedent/consequent ac : A → C as ac(Aj) = cj . This
constraint is specified over attributes, but not on items like
[24], [29]. Let X be a k-itemset; X is said to be antecedent-

compliant if ∀ij ∈ X : ac(attribute(ij)) 6= 2; X is said to
be consequent-compliant if ∀ij ∈ X : ac(attribute(ij)) 6= 1.
The ac constraint cannot be applied in Phase 1 because it is
neither succinct nor anti-monotonic [24].

C. Training and Test Data Sets

In machine learning it is customary to collect disjoint
(independent) samples from a base data set to build and
tune predictive (supervised) models [23]. The most common
approach is called ”train and test”. The basic idea is to build a
predictive model with a training sample and then validate the
model using an independent test sample. This process has the
goals of reducing model overfit, providing a realistic estimate
of model accuracy and improving generalization when the
model is used on new data.

We apply this idea by partitioning D into two disjoint
subsets. We call the first subset the training set Dtrain and
the second subset the test set Dtest. We introduce a training
fraction τ , to control the size of the training set. Therefore,

|Dtrain| = τn,

D = Dtrain ∪Dtest

and
Dtrain ∩Dtest = ∅.

Given the small size of our medical data set we cannot
apply a more reliable train/validate/test approach that requires
three independent samples [18]. We extend the definition of
association rules, given in Section II, to have two sets of
metrics per rule based on a training and a test set. That is,
each rule has six metrics in total. In general, metrics on the
training set are used only for search purposes and metrics on
the test set are used to validate rules and are taken as the actual
rule metrics.

We can informally think of the set of all association rules
as a ”global” predictive model. We compute two sets of rules,
Rtrain on Dtrain and Rtest ⊆ Rtrain such that Rtest also
has metrics above ψ, α, λ on Dtest. The computation of Rtest

is as follows. Each association has two sets of metrics, one
for Dtrain and one for Dtest. We search association rules
based on Dtrain to get Rtrain based on thresholds ψ, α, λ.
We set Rtest = Rtrain. We then compute support, confidence
and lift for each rule in Rtest based on Dtest. Rules whose
test metrics on Dtest are below ψ, α or λ are filtered out
from Rtest. This process is repeated a number of times (t)
to achieve basic cross-validation and to eliminate rules that
cannot be generalized.

D. Algorithm to find predictive rules

The constraints from Section III-B and the train-
ing/validation approach from Section III-C are assembled
together in one algorithm that goes from transforming medical
records to repeating validation on several independent test
samples to get a set of accurate predictive association rules.
The algorithm is shown in Fig. 1.
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Input: S, P , ψ, α, λ.
Parameters: τ , t (changing infrequently)
Output: RN , RY

1) Data transformation:
Transform S = {s1, s2, . . . sn} into D = {T1, . . . , Tn}.

2) FOR I = 1 TO t DO
• Partition D into Dtrain and Dtest, based on τ .
• Phase 1:

Filter items depending on predictive goal P (’Y’ or
’N’) before generating 1-itemsets. Search for frequent k-
itemsets on Dtrain for k ∈ {1, . . . , κ}, using ψ and the
group() constraint.

• Phase 2:
Generate rules using the ac() constraint, minimum confi-
dence α and minimum lift λ. Let the rule set be Rtrain.

• Phase 3:
Validate rules Rtrain on Dtest. Set Rtest = Rtrain.
For each frequent itemset X compute test support
s(X,Dtest). For each rule X ⇒ Y ∈ Rtest compute test
support s(X ⇒ Y ), compute test confidence c(X ⇒ Y )
and test lift l(X ⇒ Y ) on Dtest. Eliminate rules from
Rtest s.t. s(X ⇒ Y ) < ψ, or c(X ⇒ Y ) < α,
or l(X ⇒ Y ) < λ. Finally, set RI = Rtest.

END
3) Get intersection of t rule sets and compute average rule

metrics with Eq. 1, Eq. 2 and Eq. 3:
If P=’Y’ then RY = R1 ∩R2 ∩ . . . ∩Rt

else
If P=’N’ then RN = R1 ∩ R2 ∩ . . . ∩ Rt

Fig. 1. Algorithm to find association rules with a train/test approach.

This is a summary of the input and output of the algorithm.
The main input parameters are the predictive goal P (P=’Y’
for existence of disease and P=’N’ for absence of disease),
κ (maximum rules size), t (number of times to train/test), as
well as the ψ, α, λ thresholds. In general the training sample
fraction τ = 50%. The output is a set of rules (RY or RN )
that are valid on all t test sets.

We run the transformation process once. Transformation
requires the user to specify numeric cutoffs and negation.
The transformation process binning numeric attributes and
incorporating negation, creates the input data set for Phase
1, where each medical record si is transformed into Ti.
Thereafter, medical records are manipulated as itemsets as
defined in Section II.

Building the training and test samples is repeated several
times. The constrained association rule algorithm produces
different sets of rules with different training/test samples,
where each set of rules has several different rules and common
rules have slightly lower or higher metrics. We want to find
rules that are valid on both Dtrain and Dtest in general. This
motivates repeating the training/test process t times to achieve
basic cross-validation and computing averages for rule metrics.
Association rules do not represent a model. Therefore, they
do not have a goodness of fit statistic; this is because each
association rule simply represents an individual pattern.

Phase 1 eliminates many items depending on the predictive
task, uses the group() constraint to discard irrelevant item
combinations and generates all associations up to size κ.
Items are filtered depending on the prediction goal (P=’N’
for absence or P=’Y’ for existence of disease). Phase 2 filters
predictive rules with the ac() constraint. Phase 3 eliminates
unreliable and particular (not general) rules by computing

metrics on Dtest, producing a subset of rules RI that remains
valid on the test data set I . The process to create train/test
samples and to discover/validate association rules is repeated
t times, with t being a user-specified parameter. This process
generates t independent training sets and t independent test
sets. These t sets will produce different sets of rules that will
have rules in common, but also different rules.

At the end the algorithm computes a rule set (RY for
existence of disease, or RN for absence of disease) that is
the intersection of the t rule sets, further eliminating rules
that may be particular to one run or rules that are not valid
in general. Recall RY corresponds to P=’Y’ and RN refers
to rules when P=’N’. The metrics of each rule are computed
as averages of the test metrics on the t test sets. Let DI be
the I th test set. Let X ⇒ Y be a valid rule appearing on all
t sets. Then

s(X ⇒ Y ) =
1

t

t∑

I=1

s(X ⇒ Y,DI), (1)

c(X ⇒ Y ) =
1

t

t∑

I=1

c(X ⇒ Y,DI), (2)

l(X ⇒ Y ) =
1

t

t∑

I=1

l(X ⇒ Y,DI). (3)

IV. EXPERIMENTS

Our experiments were conducted on a computer with an
800 MHz CPU, 256 MB of memory and 40 GB on disk. Our
algorithm was programmed in the C++ language.

A. Medical Data Set Description

We used a medical data set, obtained from a hospital.
The data set contains 655 patient records with 113 attributes,
combining numeric, categorical and image data. There are
risk factor attributes such as age, race, gender and smoking
habits. There are measurements on the patient such as weight,
heart rate, blood pressure and information regarding the pre-
existence of other diseases like diabetes. Diagnostic proce-
dures made by a clinician are also included. The data set has
an important set of measurements that estimate the degree of
disease in certain regions of the heart, how healthy certain
regions remain, and quality numbers that summarize the pa-
tient’s heart effort under stress and relaxed conditions. Finally,
the remaining attributes store imaging (perfusion) information
from nine regions of the myocardium (heart muscle). Table I
shows the 25 attributes we selected for our experiments, that
were the most important. Therefore, p = 25 and n = 655.

The attributes not used in our experiments involved heart
image data for the patient performing exercise or resting and
attributes whose value distribution was skewed. To give an
example, race was not used because 82% of patients had
white race and more than 10% had missing race information.
The selected attributes shown in Table I provide an accurate
profile of each patient based on perfusion measurements for
specific regions of the heart, known risk factors for heart
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TABLE I
MEDICAL DATA SET ATTRIBUTES (CONSTRAINTS: 0=OFF,1=ON)

Attribute Medical meaning Neg Constraints
name itemFilter group ac
AGE Patient age 0 0 0 1
LM Left Main 1 1 0 2
LAD Left Anter Desc 1 1 0 2
LCX Left CircumfleX 1 1 0 2
RCA Right Coronary 1 1 0 2
AL Antero-Lateral 0 1 1 1
AS Antero-Septal 0 1 1 1
SA Septo-Anterior 0 1 1 1
SI Septo-Inferior 0 1 1 1
IS Infero-Septal 0 1 1 1
IL Infero-Lateral 0 1 1 1
LI Latero-Inferior 0 1 1 1
LA Latero-Anterior 0 1 1 1
AP Apical 0 1 1 1
SEX Gender 0 0 0 1
HTA Hypertension Y/N 0 1 0 1
DIAB Diabetes Y/N 0 1 0 1
HYPLPD Hyperloip Y/N 0 1 0 1
FHCAD Faml hist dis Y/N 0 1 0 1
SMOKE Smokes Y/N 0 1 0 1
CLAUDI Claudication Y/N 0 1 0 1
PANGIO Prev angina Y/N 0 1 0 1
PSTROKE Prior stroke Y/N 0 1 0 1
PCARSUR Prior surgery Y/N 0 1 0 1
CHOL Cholesterol 0 0 0 1

disease and the degree of disease in four arteries (percentage of
artery narrowing). Perfusion measurements are obtained with
a medical procedure that digitizes the flow pattern in the heart
of a colored substance swallowed by the patient.

Attributes in Table I are abbreviated as follows: arteries
use an acronym indicating their location in the heart whose
value represents artery narrowing (LM, LAD, LCX, RCA);
the nine heart muscle regions (AL, IS, SA, AP, AS, SI, LI,
IL, LA) are abbreviated with two letters that can be interpreted
as coordinates of their specific location on a 2D map of the
heart, whose attributes contain a perfusion measurement in [-
1,1]; a value close to 1 indicates a severe defect and a value
close to -1 indicates no defect; finally, risk factors (AGE,
CHOL, HTA, FHCAD, ...) are binary variables to allow their
easy manipulation as items. The last four columns in Table I
indicate how each constraint was set for each attribute, with
1 being ”on” and 0 being ”off”. Constraints are explained in
more detail below. Experiments have the goal of finding rules
with perfusion measurements and risk factors in the antecedent
and artery disease measurements in the consequent of a rule.

B. Parameter Settings

We explain settings for program parameters, that were based
both on medical opinion and experimental validation.

Transformation parameters: Refer to Table I to interpret
attribute names. The LAD, RCA, LCX and LM attributes
contain the percentage of vessel narrowing (or blockage)
compared to a healthy artery. Attributes LAD, LCX and RCA
were binned at 50% and 70%. In cardiology, 70% or higher
indicates significant coronary disease and 50% indicates bor-
derline disease. A value lower than 50% means the patient is
healthy. The most common cutoff value used by the cardiology
community to distinguish healthy from sick patients is 50%.

The LM artery is treated different because it poses higher
risk than the other three arteries. LM was binned at 30% and
50%. The reason behind it is that both the LAD and the LCX
arteries branch from the LM artery, and then a defect in LM
is more likely to cause a larger diseased heart region. That
is, narrowing (blockage) in the LM artery is likely to produce
more disease than blockages on the other arteries. That is why
its cutoff values are set 20% lower than the other vessels. The
9 heart regions (AL, IL, IS, AS, SI, SA, LI, LA, AP) were
partitioned into 2 ranges at a cutoff point of 0.2, meaning a
perfusion measurement greater or equal than 0.2 indicated a
severe defect. CHOL was partitioned with cutoff points 200
(warning) and 250 (high). These values correspond to known
medical settings. The training fraction was set at τ = 50%.
Every time the algorithm is run new samples are created.
Finally, only the four artery measurements had negation to find
rules referring to healthy patients and sick patients. The rest
of attributes did not require negation. Since most risk factors
were binary and perfusion measurements were divided into
two ranges, this eliminated the need to use negation on them.
Negation was not considered useful for age and cholesterol
level. After transforming S into D we ended with 68 items.
Therefore, n = 655 and m = 68 according to our definitions
from Section II.

Constraints: The first parameter is the maximum associa-
tion size κ. We used κ ∈ {2, . . . , 4}, to study the individual
impact of constraints. In the second set of experiments, to get
simple rules, κ = 4. A lower κ produces fewer and simpler
rules. A higher κ significantly increases the number of rules
and they become more complex.

The training sample fraction was τ = 50%. Association
rule mining had the following thresholds for metrics. The
minimum training support was fixed at ψ = 1% ≈ 3. That
is, rules involving two or one patient(s) were filtered out.
From a medical point of view, rules with high confidence
are desirable, but unfortunately, they are infrequent. Based
on previous experiments [26], [27] and the domain expert
opinion, the minimum confidence was set at α = 70%. Rules
with confidence lower than 70% are not medically reliable. In
general the lift threshold was λ = 1.

This paragraph explains attribute constraints. Table I sum-
marizes attribute constraints with ”1” indicating the constraint
was on and 0 indicating the constraint was off. Item filtering,
group constraints and antecedent/consequent constraints were
set as follows. AGE, SEX and CHOL did not have item
filtering meaning that any AGE and CHOL range or gender
could appear in any predictive rule. The remaining risk factors,
all perfusion measurements and arteries had item filtering. To
predict absence of disease (P=’N’) risk factors (’Y’), high
perfusion measurements and high artery blockage were filtered
out. To predict existence of disease (P=’Y’) risk factors(’N’),
low perfusion measurements and low artery blockage were
filtered out. AGE, arteries, SEX, SMOKE and CHOL were not
group-constrained. The 9 perfusion measurements of the heart
were constrained to be in the same group (group 1) to predict
absence or existence of disease. When predicting no disease
(P=’N’) HTA, DIAB, HYPLPD, FHCAD, CLAUDI were in
group 2 and PANGIO, PSTROKE, PCARSUR were in group
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TABLE II
ITEM FILTERING CONSTRAINT: NUMBER OF ASSOCIATIONS (0=OFF, 1=ON)

P=’N’ (absence) P=’Y’(existence)
itemFilter itemFilter

κ 0 1 0 1
2 2003 351 2051 451
3 30100 2373 32844 3014
4 258906 9930 309146 12073

TABLE III
GROUP CONSTRAINT: NUMBER OF ASSOCIATIONS (0=OFF,1=ON)

both P=’N’(absence) P=’Y’ (existence)
κ group=0 group= 1 group= 1
2 485 351 453
3 3940 2365 3095
4 19643 9818 11782

3; these attributes were not constrained to predict existence
of disease. Risk factors and perfusion measurements were
constrained to appear in the antecedent (ac(Al) = 1). Arteries
were constrained to appear in the consequent (ac(Al) = 2).

C. Number of Association Rules with and without Constraints

We study each constraint individually to measure its relative
importance with respect to number of patterns and time. Since
the number of patterns is large we turn all constraints on by
default, turning one off at a time to see the increase in output
size. We concentrate on studying the impact on the training
set Dtrain since it is the one used to build the predictive
association rules and it is the most time demanding. Each table
indicates when the constraint is turned on or off. Recall that
Dtrain is built as a random sample from D every time. Each
run generates a different set of rules. We repeated experiments
five times and averages are reported.

Table II summarizes the number of associations at different
itemset sizes turning item filtering on and off (i.e. itemFilter=0
and itemFilter=1 respectively). Recall from Section IV-B the
prediction of absence and existence of heart disease have dif-
ferent settings. We can see that there is an important reduction
in the number of patterns at κ = 2 and κ = 3, but there is
an outstanding reduction in size at κ = 4. It is clear more
than 200,000 patterns are impossible to interpret. We can see
that the reduction in size is similar for predicting absence or
existence of disease. We do not show the number of rules, but
without constraining there is a potential exponential number of
rules that can be derived from associations. These experimental
results indicated it was necessary to split experiments into
two sets, one for predicting absence of disease (P=’N’) and
another one to predict its existence (P=’Y’). Item filtering is
a simple, but important constraint.

We now proceed to study the impact of the group constraint.
Results are shown in Table III, where ”group=0” indicates the
constraint was off and ”group=1” indicates the constraint was
on. There is a different setting for this constraint depending
on the prediction goal. For absence of disease (P=’N’) there
are three groups. For existence of disease (P=’Y’) only heart
region perfusion measurements are group-constrained. For κ =
2 the reduction in size is marginal. At κ = 3 the reduction
in size becomes better, especially for predicting no disease.

TABLE IV
ANTECEDENT/CONSEQUENT CONSTRAINT: NUMBER OF ASSOCIATION

RULES (0=OFF,1=ON)

P=’N’ (absence) P=’Y’ (existence)
κ ac=0 ac= 1 ac=0 ac=1
2 144 24 52 7
3 2359 306 1222 110
4 16733 2218 9051 957

TABLE V
NUMBER OF ASSOCIATIONS AND RULES IN Dtrain AND Dtest VARYING κ

TO PREDICT EXISTENCE OF DISEASE (P =’Y’)

# of associations # of rules
κ ψ train test train test time
2 0.01 493 467 8 5 7
3 0.01 3286 2948 145 77 51
4 0.01 11610 9327 1222 342 228

Finally, for κ = 4 the reduction in size is about 50% in both
cases. At all itemset sizes, when the constraint is turned on,
the reduction in size is bigger for predicting no disease, which
is due to using three attribute groups instead of one.

Table IV shows the impact of applying the ac constraint.
If ”ac=0” the constraint was off; otherwise ”ac=1”. The ac
settings are the same for both prediction goals, with the only
difference that item filtering and group constraints are different
as explained in Section IV-B. The impact of this constraint
is significant. In every case there is an order of magnitude
reduction in size. Only in the case of trying to predict absence
of disease at κ = 4 the number of rules goes beyond 1000.
The number of rules shown when the constraint is on will not
be the actual number, because rules will be filtered validating
them on Dtest, as it will be explained below.

We conclude that item filtering and the an-
tecedent/consequent constraint are essential to get a
manageable number of rules. Given the number of rules and
running time it is necessary to have two sets of constraints
depending on the prediction goal. The group constraint has
an important impact, but not as significant.

D. Validating Rules based on Training and Test Sets

In this section we show the effect of filtering association
rules based on the test set. Recall that association rules are
tested for generality and validity by partitioning the input data
set into a training set and a test set. A rule to be valid must have
minimum metrics on both sets. We would like to understand to
what extent the number of rules is reduced by varying κ or ψ.
In the following experiments we focus on predicting existence
of disease (P=’Y’). Like in the previous section, we repeated
each experiment five times and averages are reported.

The first set of experiments shows the importance of filtering
rules on the test set varying κ. Table V summarizes results.
The reduction in the number of associations is small, with
a reduction of about 10-15%. The reduction becomes much
more important for the number of rules. For κ = 2 the
impact is small in most cases, which indicates most rules
can be generalized. For κ = 3 the reduction is more than
50% providing evidence that many rules are particular to the
training sample. At κ = 4 the number of rules in the test
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TABLE VI
NUMBER OF RULES IN Dtrain AND Dtest SETS VARYING MINIMUM

SUPPORT ψ TO PREDICT EXISTENCE OF DISEASE (P =’Y’)

κ ψ train test time
4 0.100 62 33 24
4 0.050 163 114 62
4 0.010 1222 342 228
4 0.005 2022 497 248

set is about 30% of the total, with a reduction of about 70%;
this provides evidence that most rules may be particular to the
training set. The trend indicates there will be a combinatorial
explosion of rules that are valid only on the training set. Time
grows fast as rule size κ grows. The difference in the relative
number of patterns for associations and rules can be explained
by the fact that associations are filtered on Dtrain and Dtest

based only on support, but rules require support, confidence
and lift to be greater or equal than the respective thresholds
in Dtrain and Dtest. Therefore, validation is stricter for rules
than for associations. The last column in Table V contains
elapsed times in seconds. These times include all steps in
the algorithm starting with transformation and repeating the
train/test cycle only once. As can be seen, time grows fast as
k increases even with all the number of patterns eliminated
by constraints and the validation phase.

The second set of experiments studies the growth of the
number of patterns varying ψ, which is the main parameter to
control the number of rules. Table VI contains a summary of
results. At high support levels the reduction in the number of
rules is about 40%. For low support levels the number of rules
goes down to less than 35%. This indicates that as support
is lowered more rules become particular to the training set
because they do not meet the minimum metrics in the test set.
The last column in Table VI contains total elapsed times in
seconds. Time growth is not as fast compared to varying κ
because constraints and test set validation significantly reduce
the number of patterns.

E. Predicting Heart Disease with Association Rules

This section presents medically significant rules, that predict
artery disease based on perfusion measurements and risk
factors. Rules are presented in two groups; (1) those that
express that if there is no risk factor and a low perfusion
measurement, then there is absence of heart disease; (2) those
that state that if there exists a risk factor or a high perfusion
measurement then there exists heart disease. We sought rules
involving at most κ = 4 attributes; the reason behind this
setting was that we wanted to get fewer and simpler rules. The
default program parameter settings are described in Section
IV-B. The rule metrics thresholds were ψ = 1%, α = 70%
and λ = 1. These metrics allowed getting rules appearing in at
least three patients, having reasonable sensitivity and filtering
out rules with unacceptable lift. We ran t = 5 train/test cycles
to get five independent sets of rules to compute the intersection
of rule sets, where each rule support, confidence and lift are
computed as averages of rule metrics from all test rule sets
(by Eq. 1, Eq. 2 and Eq. 3). Given the small size of our data

set, t = 5 seemed reasonable to validate rules. Refer to Table
I to understand the abbreviations of attribute names.

Medical doctors use sensitivity and specificity as two basic
statistics to validate results. Sensitivity is defined as the proba-
bility of correctly identifying sick patients, whereas specificity
is defined as the probability of correctly identifying healthy
individuals. In general, it is difficult to get high sensitivity
and high specificity with the same predictive model. That is,
increasing sensitivity decreases specificity and viceversa. In
general our experiments were optimized to increase sensitivity
and decrease specificity. That is, it was preferred to increase
the number of patients predicted to have heart disease at
the risk of including other patients with borderline heart
disease, that were perhaps healthy. Lift was used together with
confidence to understand sensitivity and specificity.

Rule summary: Table VII shows a summary of rules that
remain valid on all test sets. The most significant or interesting
rules are marked with a + symbol: rules with very high con-
fidence or high lift. The first general observation is there are
many more rules predicting absence of disease; unfortunately
most of such rules had low lift. These results state that finding
interesting rules to predict existence of disease are likely to
appear mainly at low support levels. There were more rules
predicting existence of disease with high lift (above 2). The
proportion of high confidence (≥ 90%) rules was much higher
for rules predicting absence of disease; in fact more than half
of the total number of rules. More than 60% of rules predicting
absence of disease had lift close to 1 (l < 1.2), stressing the
difficulty in isolating important risk factors or low perfusion
measurements in predicting a specific artery is healthy. There
were many more rules with high support or high confidence
predicting absence of disease compared to their counterpart.

Any rule with confidence greater or equal than 90%, with
high lift (above 1.5) or with two arteries in the consequent,
can enrich medical knowledge. In particular, rules with very
high confidence and high lift that are not currently part of an
expert system knowledge base or which do not correspond to
common diagnostic patterns represent valuable new medical
knowledge. Getting rules with combinations of arteries in
the consequent was one of the reasons to use association
rules. Unfortunately, there were no rules predicting existence
of disease having two arteries in the consequent, but there
were 23 for healthy arteries. This is an important finding
because even though it is possible to identify a link between
perfusion measurements/risk factors and one diseased artery
there was not a single rule predicting two diseased arteries.
Manual inspection revealed there were some rules predicting
existence of disease in two arteries on the training set, but
unfortunately none passed validation on all test sets. Simple
rules, which are preferred because they tend to be easier to
interpret by medical doctors and have higher support, were
scarce; there were only seven and four rules predicting absence
and existence of disease, respectively.

Predicting absence of heart disease: Fig. 2 shows some
selected rules with high quality metrics. For each numeric
attribute X we use the notation X [a, b), meaning that a ≤ X
and X < b; this provides a more concise notation. We have
a group of rules with 100% confidence; the important fact
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TABLE VII
SUMMARY OF RULES IN RN AND RY

Rule subset RN RY

# of rules % # of rules %
All 850 100 197 100
c = 1 (+) 241 28 10 5
c ≥ 0.9 (+) 519 61 39 20
l ≥ 2 (+) 0 0 20 10
l ≥ 1.5 76 9 180 91
l ≥ 1.2 346 40 197 100
s ≥ 0.3 60 7 0 0
s ≥ 0.2 135 16 2 1
s ≥ 0.1 351 41 35 18
Two items in conseq. (+) 23 3 0 0
Two items (+) 7 1 4 2

c = 1:
LI[-1,0.2) SMOKE=n CHOL[200,250) ⇒ LCX[0,50) s=0.03,c=1,l=1.62
HTA=n SMOKE=n CHOL[0,200) ⇒ LCX[0,50) s=0.02, c=1,l=1.62
AGE[40,60) IS[-1,0.2) CHOL[0,200) ⇒ LM[0,30) s=0.05,c=1,l=1.07
SEX=F HTA=n CHOL[0,200) ⇒ RCA[0,50) s=0.02,c=1,l=1.76

c ≥ 0.9:
AP[-1,0.2) CHOL[250,500) ⇒ LM[0,30) s=0.06,c=0.99,l=1.06
AGE[60,100) LA[-1,0.2) DIAB=n ⇒ LM[0,30) s=0.22,c=0.95,l=1.01
AS[-1,0.2) SEX=F FHCAD=n ⇒ LM[0,30) s=0.15,c=0.98,l=1.06
LI[-1,0.2) SMOKE=n PCARSUR=n ⇒ LM[0,30) s=0.06,c=0.99,l=1.06
AGE[0,40) AL[-1,0.2) DIAB=n ⇒ LAD[0,50) s=0.03,c=0.91,l=1.86
AGE[40,60) IL[-1,0.2) SEX=F ⇒ LCX[0,50) s=0.10,c=0.92,l=1.49
AGE[40,60) IL[-1,0.2) SMOKE=n ⇒ RCA[0,50) s=0.10,c=0.91,l=1.6
AGE[40,60) DIAB=n ⇒ LM[0,30) s=0.33,c=0.95,l=1.02

l ≥ 1.5:
AGE[0,40) AL[-1,0.2) ⇒ LAD[0,50) s=0.03,c=0.91,l=1.86
SEX=F HTA=n CHOL[0,200) ⇒ RCA[0,50) s=0.02,c=1.00,l=1.76
AGE[40,60) LI[-1,0.2) CHOL[200,250) ⇒ LCX[0,50) s=.02,c=.95,l=1.5

Two arteries in the consequent:
AGE[0,40) AL[-1,0.2) ⇒ LM[0,30) LAD[0,50) s=0.03,c=0.91,l=1.96
SEX=F CHOL[0,200) ⇒ LM[0,30) RCA[0,50) s=0.03,c=0.80,l=1.45
IL[-1,0.2) SEX=F ⇒ LM[0,30) LCX[0,50) s=0.18,c=0.77,l=1.31

Two items (simple):
CLAUDI=n ⇒ LM[0,30) s=0.71,c=0.94,l=1.01
AGE[40,60) ⇒ LM[0,30) s=0.37,c=0.95,l=1.01
AS[-1,0.2) ⇒ LM[0,30) s=0.73,c=0.94,l=1.01
CHOL[250,500) ⇒ LM[0,30) s=0.07,c=0.99,l=1.06

Fig. 2. Association rules predicting absence of heart disease (P=’N’).

was that there was only one rule for RCA involving only
risk factors and no perfusion and there was only one rule
for LCX with a low perfusion measurement. Rules for LM
are abundant combining low perfusion measurements in most
regions and risk factors equal to ”N”. When looking at the
set with confidence above 0.9 and below 1 there are a few
more LCX rules involving low perfusion measurements, but
only one RCA rule involves perfusion and risk factors. Then
we have the rule set with high lift (l ≥ 1.5) that involved
LAD, LCX and RCA alone in the consequent and 11 rules
combining LAD and LM. In general, the support for those
rules was low and confidence was below 90%.

Many rules predicting no disease represent valuable new
medical knowledge. In particular, rules with borderline risk
factors reveal interesting relationships among risk factors,
normal (low) perfusion measurements and healthy arteries.
Those rules with warning cholesterol level (200-250) show
relationships to the LCX and RCA arteries. A rule with high
cholesterol level (250-500) implies a still healthy LM artery.
Rules with adult age (40-60) imply a healthy RCA artery. A
rule about males shows a healthy LM artery, but its lift is low.

Rules with high support in [0.2,0.3] involved only the LM,
LCX and RCA arteries. The rules with s ≥ 0.4 involved
only LM. This confirms the higher likelihood of having a
healthy LM artery, given the fact that the other arteries branch

c = 1 and l >= 2:
IS[0.2,1.0) CLAUDI=y PSTROKE=y ⇒not RCA[0,50) s=0.02,c=1,l=2.3

c = 1 and l < 2:
SA[0.2,1.1) CHOL[200,250) ⇒ not LAD[0,50) s=.03,c=1,l=1.98
SA[0.2,1.1) SMOK=y CHOL[200,250)⇒not LAD[0,50) s=.02,c=1,l=1.9
SI[0.2,1.1) SEX=M CHOL[200,250) ⇒ not LAD[0,50) s=.02,c=1,l=1.9

c ≥ 0.9 and l ≥ 2:
SA[0.2,1.1) CHOL[200,250) ⇒ LAD[70,100) s=0.03,c=0.95,l=3
SI[0.2,1.1) SEX=M CHOL[200,250) ⇒LAD[70,100) s=0.01,c=.91,l=2.9
SA[0.2,1.1) PANGIO=y ⇒ LAD[70,100) s=0.02,c=0.91,l=2.9

c >= 0.9 and l < 2:
DIAB=y SMOKE=y 0.CHOL[0,200) ⇒not LAD[0,50) s=.02,c=.93,l=1.8
SA[0.2,1.1) CLAUDI=y PSTROK=y ⇒not LAD[0,50) s=.02,c=.95,l=1.8
IL[0.2,1.1) SEX=M CHOL[200,250) ⇒not LAD[0,50) s=.03,c=.93,l=1.8
AP[0.2,1.1) HYPLPD=y CHOL[0,200) ⇒not LAD[0,50) s=.02,c=.96
AGE[60,100) AP[0.2,1.1) SEX=F ⇒ not LAD[0,50) s=.05,c=.94,l=1.8

c < 0.9 and l >= 2:
AGE[60,100) SA[0.2,1.1) PANGIO=y ⇒LAD[70,100) s=.02,c=.88,l=2.8
AGE[40,60) SEX=M CHOL[250,500) ⇒not LCX[0,50) s=.02,c=.85,l=2
SA[0.2,1.1) CLAUDI=y ⇒ LAD[70,100) s=0.03,c=0.76,l=2.46
AGE[60,100) IL[0.2,1.1) CHOL[250,500) ⇒ RCA [70,100) s=.02,c=.89

Two items (simple):
AP[0.2,1.1) ⇒ not(LAD[0,50)) s=0.24,c=0.78,l=1.54
SA[0.2,1.1) ⇒ not(LAD[0,50)) s=0.17,c=0.80,l=1.58

Fig. 3. Association rules predicting existence of heart disease (P=’Y’).

from it. Another observation is that LM rules have higher
confidence than rules with any of the other arteries. The rules
with two items in the consequent are valuable since they were
one of the main reasons to use association rules to predict
multiple combinations of target variables. They involved all
combination between LM and the other three arteries, but there
was not any combination among the branching arteries. This
means it is unlikely two branching arteries are healthy in the
same person. Finally, we show some rules with only one item
in the antecedent; these rules have high confidence and high
support, but low lift.

Predicting existence of heart disease: Fig. 3 shows some
selected rules with high quality metrics. Rules with high
confidence and high lift are extremely valuable. For numeric
attributes X we use the notation X [a, b), meaning that a ≤ X
and X < b. Most rules with 100% confidence referred to
the LAD and and only one referred to the RCA artery. We
show the only rule that had c = 1 and l ≥ 2 involving the
RCA artery; this rule has significant medical value because it
combines two risk factors and a specific perfusion defect with
high quality metrics. The next group involves rules with c = 1
and l slightly below 2; all those rules involve the LAD artery
and none of the other arteries; most rules involved warning
cholesterol level and older patients (above 60). The next rule
group involves rules with c ≥ 0.9 and l ≥ 2; all seven rules
involved LAD with warning cholesterol levels; most involved
sex=M and perfusion defects in SA. The next rule group
involves rules with c ≥ 0.9 and l < 2; there were only 22
rules involving only LAD; curiously some rules had sex=F
and low cholesterol levels; HTA and PSTROKE come out
as important factors. Then we have 12 interesting rules with
lower confidence but high lift (c < 9 and l ≥ 2); these rules
involve only LAD and RCA, with older age, high cholesterol
and perfusion defects in SA and AP. It is interesting that in
rules with high confidence (c ≥ 0.9) or high lift (l ≥ 2) high
cholesterol levels, older age, hypertension (HTA) and smoking
appear as risk factors, but they do not appear combined without
a perfusion defect.

There were only two rules with support above 0.2 in-
volving the LAD artery. There were only three rules with
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only risk factors involving low cholesterol levels, sex=M or
DIAB/SMOKE; all these rules had LAD in the consequent. We
found a few rules combining smoking with high cholesterol, a
well-known risk combination that included perfusion defects.
Finally, there were only four simple rules with only two items
(one item in the antecedent) and we show two of them. These
rules have fairly high support, borderline confidence and small
lift. These rules confirm it is not possible to find a single
attribute predicting heart disease with high confidence and
high lift. Several rules predicting disease represent valuable
new medical knowledge. In particular, rules with highly nar-
rowed arteries (narrowing above 70%), with high cholesterol
levels (250-500), less significant risk factors (like DIAB or
FHCAD) or with sex=F show surprising relationships among
well-known risk factors.

V. RELATED WORK

We start by discussing research on data mining techniques
used with medical and biological data. Important issues [31]
when using machine learning or data mining techniques in
the medical domain, include fragmented data collection, strict
privacy regulations, rich data types (image, numeric, cate-
gorical, missing information), complex taxonomies classifying
attributes and an already rich and complex knowledge base.
The HDP system to aid diagnosis of heart disease is presented
in [15], [22], [21]. This body of work provides evidence
a computer program can improve differential diagnosis for
cardiovascular disease made by medical doctors. Bayesian
networks are combined with AI inference mechanisms [21].
More general research using association rules in the med-
ical community includes the following. Infection detection
and monitoring has been automated by association rules [5],
[6]. Association rules describe what drugs are frequently
co-prescribed with antacids [7]. Frequent patterns in gene
data have been discovered with association rules [3], [11].
Protein interaction within protein groups is an important topic
[28]. Common risk factors in pediatric diseases are another
important medical application [13]. Fuzzy sets have been
used to extend association rules [12]. To our knowledge,
reducing the number of association rules with constraints and
validating/filtering rules on an independent set, has not been
studied before in the medical domain.

Association rules were introduced in the well-known article
[1]. In [17] there is a study of I/O complexity of early associ-
ation rule algorithms as well as some statistical metrics. Both
[32] and [20] use different approaches to automatically bin
numeric attributes. Domain experts preferred to use standard
cutoff numbers for binning numeric attributes, to improve
result interpretation and validation with previous work. There
is previous work on using constraints to reduce the number
of rules. Our constraints exhibit similarities to those proposed
in [24], [33], [19]. Reference [33] proposes algorithms that
can incorporate constraints to include or exclude certain items
in the frequent itemset generation phase. Association rule
constraints are studied in depth in [24], where constraints are
defined as item boolean expressions between two variables.
Later, [19] extended that approach by allowing more general

expressions on items. It is well known that simple constraints
on support can be used for pruning the search space in Phase
1 [34]. Reference [29] studies several search constraints for
association rules.

VI. CONCLUSIONS

We used association rules to predict the degree of narrowing
in four arteries based on heart perfusion measurements and
risk factors. We studied two complementary tasks: predicting
absence and predicting existence of heart disease. We focused
on two main research issues. The first issue is the large number
of rules that are obtained by the standard association rule
algorithm. The second issue is the validation of rules on
an independent set, which is required to eliminate unreliable
rules or rules that cannot be generalized. Four constraints
were proposed in this work to reduce the number of rules:
item filtering, attribute grouping, maximum itemset size and
antecedent/consequent rule filtering. Contrasting with previous
work, our constraints are specified on raw attributes instead
of items, item filtering is applied earlier before generating
frequent itemsets and the group constraint induces a partition
on attributes allowing easier manipulation. In order to validate
rules we used the train and test approach that uses two disjoint
samples from a data set to search and validate rules. All
features are assembled together in one algorithm that combines
search constraints and train/test validation. The algorithm
performs several train and test cycles to achieve basic cross-
validation and reduce the number of rules with poor general-
ization potential. Experiments on a real data set studied the im-
pact of constraints and the elimination of unreliable rules with
validation on the test set. The reduction in output size provided
by constraints and validation is significant. In particular, the
reduction provided by item filtering and antecedent/consequent
rule filtering was about an order of magnitude. We presented
medically significant rules discovered on our medical data set
that remain valid in several independent train/test cycles. Rules
predicting absence of disease are abundant but have low lift
metrics and therefore poor predictive quality. The set of rules
predicting existence of disease is smaller and tend to have
higher lift, which is consistent with our medical goal. Rules
predicting heart disease provide accurate profiles of patients
with localized heart problems, specific risk factors and the
degree of disease in one artery.

There are many interesting aspects for future research.
Constraints for association search may be relaxed, given the
high number of rules that are filtered out in the validation
phase. Some statistic or quality metric is needed to compare
different sets of rules. We would like to know which attributes
make rules fail the validation phase and which attributes tend
to appear more frequently after validation. Support, confidence
and lift have different importance to filter rules on the test set;
we conjecture that confidence is the most important metric to
validate rules. Given the small size of our data set, we could
not apply more rigorous techniques like train/validate/test or
ten-fold cross-validation; such techniques may be applied on
larger data sets. Artery attributes may be helped with fuzzy
discretization in order to get rules with higher confidence
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or higher support. A hierarchy of perfusion measurements is
required to control the rule discovery process, in order to
increase or decrease sensitivity to detect sick patients with
high accuracy without significantly losing sensitivity.
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