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Abstract—Integrating data mining algorithms with a relational
DBMS is an important problem for database programmers. We
introduce three SQL implementations of the popular K-means
clustering algorithm to integrate it with a relational DBMS: (1) A
straightforward translation of K-means computations into SQL.
(2) An optimized version based on improved data organization,
efficient indexing, sufficient statistics and rewritten queries. (3)
An incremental version that uses the optimized version as a
building block with fast convergence and automated reseeding.
We experimentally show the proposed K-means implementations
work correctly and can cluster large data sets. We identify
which K-means computations are more critical for performance.
The optimized and incremental K-means implementations exhibit
linear scalability. We compare K-means implementations in
SQL and C++ with respect to speed and scalability and we
also study the time to export data sets outside of the DBMS.
Experiments show SQL overhead is significant for small data
sets, but relatively low for large data sets, whereas export times
become a bottleneck for C++.

Index terms: Clustering, K-means, SQL, relational DBMS

I. INTRODUCTION

The integration of data mining algorithms with a relational
Data Base Management System (DBMS) is an important and
challenging problem [23]. In this article, we focus on integrat-
ing the K-means [22] clustering algorithm with a relational
DBMS using SQL, that is nowadays the standard language in
relational databases. Clustering algorithms [6], [4] partition a
data set into several groups such that points in the same group
are close (similar) to each other and points across groups are
far (different) from each other [4]. There is work on improving
speed and quality of solutions of K-means [2], [9], [21], [7],
but the problem of integrating it into a relational database has
received little attention.

Having a clustering algorithm implemented in SQL pro-
vides many advantages. SQL is available in any relational
DBMS. SQL isolates the application programmer from internal
mechanisms of the DBMS. Many data sets are stored in a
relational database. Trying different subsets of data points and
dimensions is more flexible, faster, and generally easier, to do
inside a DBMS with SQL queries than outside with alternative
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tools. Managing large data sets without DBMS support can be
a daunting task. Space management, fault tolerance, secure
access, concurrency control, and so on, are automatically
taken care of by the DBMS for the most part. Although it
is possible to efficiently cluster a very large data set outside a
relational database the time to export it to a workstation can
be significant. Data mining has evolved to a point where a
data mining algorithm is just one step inside a bigger process.
Most of the times clustering results need to be related back
to other tables in a data warehouse to get reports or they can
be used as input for other data mining tasks. Therefore, being
able to cluster a data set stored inside a relational database
can solve these issues. Nevertheless, implementing a clustering
algorithm in SQL presents important drawbacks. SQL is
not as efficient and flexible as a high level programming
language like C++. SQL has serious limitations to perform
complex mathematical operations because, in general, SQL
does not provide arrays and functions to manipulate matrices.
Therefore, many computations can become cumbersome, if not
impossible, to express in SQL. SQL queries incur higher over-
head than directly accessing the file system with a high-level
programming language like C. Many optimizations related to
memory and disk access can only be controlled by the query
optimizer, and not by the database application programmer.
We will show most of the disadvantages listed above can be
mitigated with a careful implementation of K-means.

The article is organized as follows. Section II introduces
definitions and an overview of K-means. Section III proposes
three alternatives to implement K-means in SQL. Section IV
contains experiments to test correctness and to evaluate perfor-
mance with real and synthetic data sets. Section V discusses
related work. Section VI provides general conclusions and
directions for future work.

II. DEFINITIONS

The input for K-means [2], [13], [22] is a data set Y
containing n points with d dimensions, Y = {y1, y2, . . . , yn},
and k, the desired number of clusters, where each yi is a
d × 1 column vector. K-means finds a set of k centroids
that minimizes the sum of squared distances from points to
centroids. The output are three matrices W,C,R, containing
k weights (fractions of n), k means (centroids) and k variances
(squared distances) respectively corresponding to each cluster
and a partition of Y into k subsets. Matrices C and R are d×k
and W is k×1. Throughout this work three subscripts are used
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TABLE I
MATRICES

Matrix size contents
Y d × n data set
W k × 1 cluster weights
C d × k means
R d × k avg squared distances

TABLE II
SUBSCRIPTS

Index range used for
i 1 . . . n points
j 1 . . . k clusters
l 1 . . . d dimensions

to index matrices: i = 1, . . . , n, j = 1, . . . , k, l = 1, . . . , d.
The matrices and the subscripts to index them are summarized
in Table I and Table II. To refer to one column of C or R we
use the j subscript (e.g. Cj , Rj); Cj can be understood as a d-
dimensional vector containing the centroid of the jth cluster
having the respective squared radiuses per dimension given
by Rj . For transposition we will use the T superscript. For
instance Cj refers to the jth centroid in column form and CT

j

is the jth centroid in row form. Let X1, X2, . . . , Xk be the k
subsets of Y induced by clusters s.t. Xj ∩Xj′ = ∅, j 6= j′. K-
means uses Euclidean distance to find the nearest centroid to
each input point. The squared Euclidean distance from point
yi to Cj is defined as

d(yi, Cj) = (yi − Cj)
T (yi − Cj) =

d∑

l=1

(yli − Clj)
2. (1)

The K-means algorithm can be considered a constrained
version of the EM algorithm to fit a finite mixture of Gaussian
distributions [2], [5] assuming spherical Gaussians, a hard par-
tition and equal weight clusters. Therefore, to make exposition
clear K-means is described under the EM framework.

K-means can be described at a high level as follows.
Centroids Cj are generally initialized with k points randomly
selected from Y . The algorithm iterates executing the E and
the M steps starting from some initial solution until cluster
centroids become stable. The E step determines the nearest
cluster for each point and adds the point to it. That is, the E
step determines cluster membership and partitions Y into k
subsets. The M step updates all centroids Cj by averaging
points belonging to the same cluster. Then the k cluster
weights Wj and the k diagonal variance matrices Rj are
updated based on the new Cj centroids. The quality of a
clustering solution is measured by the average quantization
error q(C) (also known as squared assignment distance [13]).
The goal of K-means is minimizing q(C), defined as

q(C) =
1

n

n∑

i=1

d(yi, Cj), (2)

where yi ∈ Xj . This quantity measures the average squared
distance from each point to the cluster where it was assigned
according to the partition into k subsets. K-means stops

when q(C) changes by a marginal fraction (ε) in consecutive
iterations. K-means is theoretically guaranteed to converge
decreasing q(C) at each iteration [13], but it is common to
set a maximum number of iterations to avoid long runs.

III. IMPLEMENTING K-MEANS IN SQL

This section presents our main contributions. Refer to Table
I and Table II to understand matrices Y,W,C,R and the three
subscripts i, j, k used to access their entries. We explain how
to implement K-means in a relational DBMS by automatically
generating SQL code given an input table Y with d selected
numerical columns and k, the desired number of clusters
as input as defined in Section II. The SQL code generator
dynamically creates SQL statements monitoring the difference
of quality of the solution in consecutive iterations to stop. SQL
has different extensions by particular DBMS vendors, but we
have used standard SQL so that our proposal can be used
in any relational database. We point out where our proposed
SQL implementation may differ. There are three main schemes
presented in here. The first one presents a straightforward
translation of K-means computations into SQL. We refer to
this scheme as the Standard K-means implementation. The
second scheme presents a more complex K-means implemen-
tation incorporating several optimizations that dramatically
improve performance. We call this scheme the Optimized K-
means implementation. The third scheme uses Optimized K-
means as a building block to perform an incremental clustering
approach to decrease iterations when the input data set is large.
This approach is called Incremental K-means.

A. General Assumptions

There are important assumptions behind our proposal from
a performance point of view. The first assumption involves
having a hash-based mechanism to join tables. Two tables
having n rows each and the same primary key can be joined in
time O(n). One row can be searched in time O(1) based on the
primary key. Therefore, if a different DBMS does not provide
hash-based indexing, joining tables may take longer than
O(n). However, the proposed scheme should still provide the
most efficient implementation even in such cases. In general it
is assumed that n is large, whereas d and k are comparatively
small.

B. K-means Basic Framework

The basic scheme to implement K-means in SQL, having
Y and k as input (see Section II) is:

• Setup: Create, index and populate tables; initialize C
with k points randomly selected from Y .

• Repeat E and M steps until K-means converges, when
|q[I−1](C) − q[I](C)| ≤ ε.
E step: Compute k distances per point yi; find nearest
centroid Cj to each point yi; update sufficient statistics
(Optimized K-means).
M step: Update W,C; update R; update model table to
track K-means progress.
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C. Standard K-means
Standard K-means was proposed in [16]. In this section we

summarize its most important features in order to introduce
Optimized K-means.

Setup: Create, index and populate tables: In the following
paragraphs we discuss table definitions, indexing and several
guidelines to write efficient SQL code to implement K-
means. In general we omit Data Definition Language (DDL)
statements and deletion statements to make exposition more
concise. Thus most of the SQL code presented involves
Data Manipulation Language (DML) statements. The columns
making up the primary key of a table are underlined. Tables
are indexed on their primary key for efficient join access.
Subscripts i, j, l (refer to Table II) are defined as integer
columns and the d numerical dimensions of points of Y ,
distances, and matrix entries of W,C,R are defined as FLOAT
columns in SQL. Before each INSERT statement it is assumed
there is a ”DELETE FROM ... ALL;” statement that leaves the
table empty before insertion.

As introduced in Section II the input data set has d di-
mensions. In database terms this means there exists a table Y
with several numerical columns out of which d columns are
picked for clustering analysis. In practice the input table may
have many more than d columns. Without loss of generality
we assume its definition is Y (Y1, Y2, .., Yd). The SQL imple-
mentation needs to build its own reduced version projecting
the desired d columns. This motivates defining the following
”horizontal” table with d + 1 columns: Y H(i, Y1, Y2, ..., Yd)
having i as primary key. The first column is the i subscript
for each point and then Y H has the list of d dimensions. This
table saves Input/Output access (I/O) since it may have fewer
columns than Y and it is scanned several times during the
algorithm progress. In general it is not guaranteed i (point
id) exists because the primary key of Y may consist of
more than one column, or it may not exist at all because
Y is the result of aggregations. In an implementation in an
imperative programming language like C++ or Java the point
identifier is immaterial since Y is accessed sequentially, but in
a relational database it is essential. Therefore it is necessary
to automatically create i guaranteeing a unique identifier for
each point yi. The following statement computes a cumulative
sum on one scan over Y to get i ∈ {1 . . . n} and projects the
desired d columns.

INSERT INTO Y H
SELECT sum(1) OVER(rows unbounded preceding) AS i

,Y1, Y2, . . . , Yd

FROM Y ;

The function ”sum()” with the ”OVER” clause computes a
cumulative sum that is increased by 1 for each point. This
function is part of the ANSI OLAP standard. The OVER
clause specifies a growing window of rows to compute each
sum. The point identifier i can be generated with some other
SQL function that returns a unique identifier for each point.
Getting a unique identifier using a random number is a bad
idea because it may get repeated, especially for very large
data sets. As seen in Section II clustering results are stored
in matrices W,C,R. This fact motivates having one table for

each of them storing one matrix entry per row to allow queries
access each matrix entry by subscripts l and j. Then the tables
are as follows: W (j, w), C(l, j, val), R(l, j, val), having k,
dk and dk rows respectively.

Matrices W,C,R are small compared to Y and can po-
tentially be accessed sequentially without an index. Since K-
means uses C to compute cluster membership in the E step
only table C requires an index for efficient access. But to have
a uniform definition both C and R are indexed by l, j (primary
key). On the other hand, W is indexed only with the subscript
j for cluster number.

The table Y H defined above is useful to seed K-means, but
it is not adequate to compute distances using the SQL ”sum()”
aggregate function. Therefore, it has to be transformed into an
unpivoted table having d rows for each input point, with one
row per dimension. This leads to table Y V with definition
Y V (i, l, val). Then table Y V is populated with d statements
as follows:

INSERT INTO Y V SELECT i, 1, Y1 FROM Y H ;
. . .
INSERT INTO Y V SELECT i, d, Yd FROM Y H ;

Finally, we define a table called model to track K-means
progress with the difference of Equation 2 in consecutive
iterations to test convergence, iterations so far, and matrices
sizes such as n (to avoid repeatedly scanning Y ), d (number
of dimensions) and k (number of clusters). Date/time are
recorded after each K-means iteration to keep a log.

Setup: Initialization: Most K-means variants use k points
randomly selected from Y to seed C. Since W and R are
output they do not require initialization. In this case table Y H
is adequate for this purpose to seed a ”horizontal” version of
C. Table CH(j, Y1, . . . , Yd) stores the k random points ran-
domly selected from Y H . Random points can be selected with
random integers between 1 and n using i in the ”WHERE”
clause. Any other mechanism that allows selecting k different
points in time O(k) is acceptable (e.g. a ”SAMPLE” clause).
Once CH is populated it can be used to initialize C with dk
statements as follows (J and L represent variables in the SQL
code generator, J = 1 . . . k and L = 1 . . . d).

INSERT INTO C SELECT 1, 1, Y1

FROM CH WHERE j = 1;
...
INSERT INTO C SELECT L, J, YL

FROM CH WHERE j = J ;
...
INSERT INTO C SELECT d, k, Yd

FROM CH WHERE j = k;

D. Optimized K-means

The Standard K-means implementation [16] is a naı̈ve
translation of K-means equations/computations into SQL. We
propose several optimizations to improve speed without chang-
ing K-means behavior. Our optimizations go from physical
storage and indexing to exploiting sufficient statistics. We will
experimentally show Standard K-means is significantly slower
than the following implementation.
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Synchronized scans: The first optimization is the ability to
evaluate a set of queries submitting them as a single request
making a single scan on a large table. This Teradata query
optimization is called ”synchronized scan”. The SQL syntax
just requires to have another SQL statement after the statement
terminator ”;” instead of an end-of-line. In particular, a set
of INSERT/SELECT statements can be submitted as a single
request separating them with ”;” and having an end-of-line
after the last ”;”. This optimization cannot be applied to DDL
statements such as ”CREATE TABLE”. This optimization may
be available with a different syntax in another RDBMS or may
be a system-specified parameter.

This strategy is applied when the following two conditions
hold: (1) One query does not depend on the results from
another query to proceed. (2) When the set of queries access
the same underlying large table in the FROM clause. The net
outcome is that the number of scans on large tables with n or
more rows is reduced to only one scan producing a significant
performance improvement. This strategy is applied to create
Y V , which requires d insertion statements selecting rows from
Y H . Each of these statements has exactly the same structure
varying the dimension subscript l. The d insert statements
are submitted as a single request to get synchronized scans.
Alternatively, they can be assembled together with the UNION
set operator. In this manner Y H is scanned once instead of
d times. Table CH requires k sampling statements with one
point from YH each. Then the k sampling statements are
submitted as a single request requiring only one scan over
Y H . Table CH has k rows and C has dk rows. As seen
before initializing C requires dk insert statements selecting
one dimension at the time. These statements are also ”synchro-
nized” to decrease overhead. In the M step another important
observation is that W and C can be computed concurrently
submitting both insertions concurrently because they do not
depend on each other. Then both insertions are followed by
the UPDATE for W and computing R. Table R cannot be
updated concurrently with C because it depends on C. The
following set of SQL statement performs a synchronized scan
on Y H assuming d = 2. Notice ”;” appears at the beginning
of the line followed by the SQL statement.

INSERT INTO Y V SELECT i, 1, Y1 FROM Y H
;INSERT INTO Y V SELECT i, 2, Y2 FROM Y H ;

Setup: Physical organization and indexing of large tables:
We study how to define and index tables to provide efficient
access and improve join performance. Tables Y H(i, Y1, .., Yd)
and Y NN(i, j) have n rows, have i as its primary key and
both need efficient hash-join processing. Therefore, they are
indexed on their primary key i. When one row of Y H is
accessed all d columns are used. Therefore, it is not necessary
to define indices on them. Table Y V (i, l, val) has dn rows
and also requires efficient joins with C (to compute distances)
and with Y NN (to updateW,C,R). When K-means computes
distances, squared differences (yli−Clj)

2 are grouped by i and
j, being i the most important performance factor. To accelerate
processing all d rows for each point i are physically stored on
the same disk block and Y V has an extra index on i that
allows searching all dimensions for one point in one I/O. The

table block size for Y V is automatically computed to allow
storage of all rows for point i on the same logical disk block.
The SQL to compute distances is explained below.

E step: Optimized Euclidean distance computation: For
K-means the most intensive step is distance computation,
which has time complexity O(dkn). This step requires both
significant CPU use and I/O. We cannot reduce the number
of arithmetic operations required since that is intrinsic to K-
means itself (although under certain constraints computations
may be accelerated), but we can optimize distance computation
to decrease I/O. Distance computation in Standard K-means
[16] requires joining one table with dn rows and another table
with dk rows to produce a large intermediate table with dkn
rows (call it Y dkn). Once this table is computed the DBMS
summarizes rows into dk groups. The critical aspect is being
able to compute the k distances per point avoiding this huge
intermediate table Y dkn. A second aspect is determining the
nearest cluster given k distances for i ∈ 1 . . . n. Determining
the nearest cluster requires a scan on Y D, reading kn rows,
to get the minimum distance per point, and then a join to
determine the subscript of the closest cluster. This requires
joining a table with kn rows with another table with n rows.

To accelerate join computation we propose to compute the
k distances ”in parallel” storing them as k columns of Y D
instead of k rows. Then the new definition for table Y D
is Y D(i, d1, d2, . . . , dk) with primary key i, where dj =
d(yi, Cj), the distance from point i to the jth centroid. This
reduces the number of output rows from k to 1 and. This
decreases I/O since disk space is reduced (less space per row,
index on n rows instead of kn rows) and the k distances per
point can be obtained in a single row insertion instead of k
insertions. This new scheme requires changing the represen-
tation of matrix C to have all k values per dimension in one
row or equivalent, containing one cluster centroid per column,
to properly compute distances. This leads to a join producing
a table with only n rows instead of kn rows, and creating an
intermediate table with dn rows instead of dkn rows. Thus
C is stored in a table defined as C(l, C1, C2, . . . , Ck), with
primary key l and indexed by l. At the beginning of each E
step column C is copied from a table WCR to table C. Table
WCR is related to sufficient statistics concepts that will be
introduced later. The SQL to compute the k distances is as
follows:

INSERT INTO Y D
SELECT i ,sum((Y V .val-C.C1)**2) AS d1

. . .
,sum((Y V .val-C.Ck)**2) AS dk

FROM Y V,C WHERE Y V.l = C.l GROUP BY i;

Each dimension of point yi in Y V is paired with the corre-
sponding Cj dimension. This join is efficiently handled by the
query optimizer because Y V is large and C is small. An al-
ternative implementation with User-Defined Functions (UDF),
not explored here, would require to have a different distance
UDF for different dimensionality d, or a function allowing a
variable number of arguments (e.g. the distance between yi and
Cj would be distance(y1i, C1j , y2i, C2j , . . . , ydi, Cdj). This is
because UDFs can only take simple data types (floating point
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numbers in this case) and not arrays. Efficiency is gained by
storing matrix C in cache memory. The join operation can be
avoided by storing the entire C matrix as a single row creating
a temporary table with one row and dk columns, using the
appropriate l, j subscripts appended in column names. But a
solution based on joins is more elegant and simpler and time
complexity is the same.

E step: Finding nearest centroid without join: The issue
about storing the set of k distances on one row is that the
”min()” aggregate function is no longer useful. We could
transform Y D into a table with kn rows to use a similar
approach to Standard K-means [16], but that transformation
and the subsequent join would be slow. Instead, we propose
to determine the nearest cluster using a ”CASE” statement.
This approach is equivalent based on the fact that we can use
each ”when” alternative to compare each distance with the
rest. The SQL statement to get the subscript of the closest
centroid is:

INSERT INTO Y NN SELECT i,
CASE WHEN d1 ≤ d2 .. AND d1 ≤ dk THEN 1

WHEN d2 ≤ d3 .. AND d2 ≤ dk THEN 2
. . .
ELSE k END

FROM Y D;

With this new SELECT statement the join operation is
eliminated and the search for the closest centroid for one point
is done in main memory. The nearest centroid is determined
in one scan on Y D. Then I/O is reduced from (2kn + n)
I/Os in Standard K-means to n I/Os in Optimized K-means.
In Standard K-means [16] kn I/Os are needed to determine the
minimum distance for each point scanning Y D (kn rows) and
grouping by i to produce YMIND (n rows). Then another
kn I/Os are needed to find the subscript of the closest cluster
joining Y D and YMIND. Finally, n I/Os are needed to
insert result rows into Y NN . Observe that the jth WHEN
predicate has k − j terms. That is, as the search for the
minimum distance continues the number of inequalities to
evaluate decreases. The CASE statement has time complexity
O(k2) instead of O(k) which is the usual time to determine
the nearest centroid. Therefore, we slightly affect K-means
performance from a theoretical point of view. But disk I/O is
the main performance factor and the ”CASE” statement works
fast in memory. If k is more than the maximum number of
columns allowed in the DBMS, Y D and C can be vertically
partitioned to overcome this limitation. This code could be
simplified with a function ”argmin()” that returns the subscript
(j) of the smallest argument. The problem is this function
would require a variable number of arguments.

Incorporating sufficient statistics: We study how to improve
K-means speed using sufficient statistics. Sufficient statistics
are an essential ingredient to accelerate data mining algorithms
[2], [8], [28], [15]. We proceed to explore how to incorporate
them into a SQL-based approach. The sufficient statistics for
K-means are simple. Recall from Section II Xj represents
the set of points in cluster j. An individual point yi is
treated as a column vector or equivalently, as a d× 1 matrix.
We introduce three new matrices N,M,Q to store sufficient

statistics. Matrix N is k × 1, matrices M and Q are d × k.
Observe their sizes are analogous to W,C,R sizes. Nj stores
the number of points in cluster j. Mj stores the d sums of
point dimension values in cluster j. Qj stores the d sums of
squared dimension values in cluster j. In mathematical terms,
Qj represents a diagonal matrix analogous to Rj . That is,
elements off the diagonal (cross-products) are assumed to be
zero. Therefore, for practical purposes Qj elements off the
diagonal are not used in the SQL code.

Nj = |Xj |, (3)

Mj =
∑

yi∈Xj

yi, (4)

Qj =
∑

yi∈Xj

yiy
T
i , (5)

Based on these equations W,C,R are computed as:

Wj =
Nj∑k

J=1NJ

(6)

Cj =
Mj

Nj

(7)

Rj =
Qj

Nj

− CjC
T
j (8)

E step: updating N,M,Q: From a database point of view
sufficient statistics allow making one scan over the partition
Xj given by Y NN grouped by j. The important point is
that the same statement can be used to update N,M,Q if
they are stored in the same table. That is, keeping a denor-
malized scheme. Therefore, instead of having three separate
tables like Standard K-means [16], N,M,Q are stored on the
same table. That leads to the denormalized table definition
NMQ(l, j, N,M,Q) with primary key (l, j) and an additional
index on (l). The SQL to update sufficient statistics based on
equations 3, 4 and 5 is:

INSERT INTO NMQ SELECT
l, j,sum(1.0) AS N

,sum(Y V .val) AS M
,sum(Y V .val*Y V .val) AS Q

FROM Y V, Y NN WHERE Y V.i = Y NN.i
GROUP BY l, j;

Since M and Q are independent from each other, they can
be updated in the same statement. A minor issue is the fact
that Nj is repeated d times in each cluster in a redundant
fashion because table NMQ is denormalized.

M step: updating W,C,R: If we keep sufficient statistics
in one table that leads to also keeping matrices W,C,R in
one table. Therefore, we introduce the denormalized table
definition WCR(l, j,W,C,R) with primary key (l, j) and an
additional index on (l). This table definition substitutes the
table definition for Standard K-means introduced above. By
using table NMQ the SQL code for the M step gets simplified
and becomes faster to update WCR.
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UPDATE WCR SET W = 0;
UPDATE WCR SET
W = N

,C=CASE WHEN N > 0 THEN M/N ELSE C END
,R=CASE WHEN N > 0 THEN Q/N − (M/N) ∗ ∗2

ELSE R END
WHERE NMQ.l = WCR.l AND NMQ.j = WCR.j;
UPDATE WCR SET W = W /model.n;

An INSERT/SELECT statement, although equivalent and
more efficient (doing dk instead of 2dk I/Os), would eliminate
clusters with zero weight. The main advantages about using
sufficient statistics compared Standard K-means, is that M and
Q do not depend on each other and together with N they are
enough to update C,R (eliminating the need to scan Y V ).
Therefore, the dependence between C and R is removed and
both can be updated at the same time. Summarizing, Standard
K-means requires one scan over Y NN to get W and two joins
between Y NN and Y V to get C and R requiring in total
three scans over Y NN and two scans over Y V . This requires
reading (3n + 2dn) rows. On the other hand, Optimized K-
means, based on sufficient statistics, requires only one join
and one scan over Y NN and one scan over Y V . This
requires reading only (n+ dn) rows. This fact speeds up the
process considerably. All aspects related to performance will
be studied in more depth in the experimental section where we
benchmark queries and show the improvement obtained with
our proposed optimizations.

Setup: Initialization: Table WCR is initialized with dk
rows having columns W,R set to zero and column C ini-
tialized with k random points taken from CH . Table CH is
initialized as described in Section III-C with k points randomly
selected from Y H . Then CH is copied to column C in WCR.
At the beginning of each E step WCR.C is copied to table
C so that table C is current. The SQL to initialize WCR is:

INSERT INTO WCR /* cluster 1 */
SELECT 1, 1, 0, Y1, 0 FROM CH WHERE j = 1
..
UNION
SELECT d, 1, 0, Yd, 0 FROM CH WHERE j = 1;

. . . /* clusters 2,3, and so on */
INSERT INTO WCR /* cluster k */

SELECT 1, k, 0, Y1, 0 FROM CH WHERE j = k
. . .
UNION
SELECT d, k, 0, Yd, 0 FROM CH WHERE j = k;

Example: We illustrate Optimized K-means main tables
with a small clustering problem. Figure 1 shows an example
with n = 5, d = 3 and k = 2. In other words, the data set
has 5 points with 3 dimensions. The two clusters can be easily
observed in table Y H . The primary key columns of each table
are underlined. The subscripts to access matrices will vary as
follows: i = 1 . . . 5, l = 1 . . . 3, j = 1 . . . 2. We show the input
data set Y H that gets transformed (pivoted) into Y V . We show
distances (Y D), nearest centroids (Y NN ), sufficient statistics
(NMQ) and clustering results (WCR) after Optimized K-
means has converged.

Y H
i Y1 Y2 Y3

1 1 2 3
2 1 2 3
3 9 8 7
4 9 8 7
5 9 8 7

Y V
i l val
1 1 1
. . .
3 1 9
3 2 8
. . .

Y D
i d1 d2

1 0 116
2 0 116
3 116 0
4 116 0
5 116 0

Y NN
i j
1 1
2 1
3 2
4 2
5 2

NMQ
l j N M Q

1 1 2 2 2
2 1 2 4 8
3 1 2 6 18
1 2 3 27 243
2 2 3 24 192
3 2 3 21 147

WCR
l j W C R

1 1 0.4 1 0
2 1 0.4 2 0
3 1 0.4 3 0
1 2 0.6 9 0
2 2 0.6 8 0
3 2 0.6 7 0

Fig. 1. Example with d = 3, k = 2, n = 5.

E. Incremental K-means

For a very large data set the number of iterations required
by K-means may turn clustering into a difficult task, even
for the Optimized K-means version. A related issue is that
since clustering is a hard optimization problem (non-convex
and NP-complete [2]) it is customary to make several runs
to find a high quality or acceptable solution. This may be
prohibitive for massive data sets, where it may be preferable
to get an acceptable solution faster. In this section we take a
further step by implementing a K-means variant with faster
convergence and automated centroid reseeding. We call this
variant Incremental K-means, given the incremental learning
nature of the underlying algorithm. For a very large data set
Incremental K-means becomes faster by reducing the number
of iterations. However, it has one incremental iteration with
high overhead. Incremental K-means may take slightly more
time than Optimized K-means, but it will find better clusters;
this aspect will be studied in the experimental section.

Incremental approach: Incremental K-means has two main
features. The first feature allows learning the clusters in Y in
an incremental fashion by taking disjoint samples. The second
feature helps K-means move away from sub-optimal solutions
by reseeding low quality clusters when centroids are updated.

We proceed to explain incremental clustering. The basic
idea is performing clustering in an incremental fashion by
exploiting sufficient statistics and periodic M steps as the
input data set is analyzed. Since an incremental approach
may be sensitive to the order of points and it may not end
in a stable solution, additional iterations on the entire data
set are mandatory to guarantee convergence. The Incremental
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K-means’ initial iteration incrementally cluster the data set in
chunks and subsequent iterations are the same as Optimized K-
means. In other words, the basic difference between Incremen-
tal and Optimized K-means is the initial incremental iteration.
Therefore, we focus on the incremental iteration. We introduce
a parameter to control how frequently M steps are executed
called ψ. An incremental iteration performs ψ incremental E
steps and ψ M steps over n/ψ points each time, incrementally
updating sufficient statistics N,M,Q after each set of points
and recomputing W,C,R at each M step. N,M,Q serve as
a memory of previous results that is tuned with each new E
step. W,C,R provide a current estimation of clusters. For a
large data set it is expected each sample of n/ψ points will
produce similar clusters to another sample thereby producing
a convergence speedup. The parameter ψ controls how fast
K-means learns and thus it is important to set it properly;
ψ = 1 reduces Incremental K-means to a full iteration of
Optimized K-means; ψ = n transforms Incremental K-means
into an on-line algorithm that updates clusters after each point,
adding significant SQL overhead; ψ = 2 would take two
incremental steps with n/2 points each with low overhead,
but a slow learning rate. For the remainder of the article
ψ = log2(n). Some other functions of n may work well (e.g.
ψ =

√
n), but log2(n) balances overhead and convergence

acceleration. At each M step low weight clusters are reseeded
to a location near heavy clusters to escape bad locally optimal
solutions. Reseeding is controlled by ω, a threshold for low-
weight clusters. This is based on the fact that many times K-
means best solutions tend to have clusters of similar weights.
In general, ω < 0.5.

Incremental K-means Basic Algorithm: Incremental K-
means can be summarized as follows:

• Setup: Create, index and populate tables. Create Y H
with a secondary index to efficiently select rows at each
incremental E step.

• Incremental iteration. Take ψ disjoint subsets of Y :
– Incremental E step: Select next set of n/ψ rows;

compute k distances per yi; determine nearest cen-
troid j to each point yi; incrementally update suffi-
cient statistics N,M,Q.

– Incremental M step: Recompute W,C,R based on
N,M,Q using Optimized K-means M step; reseed
low-weight clusters such that Wj < ω/k.

• Repeat full E and M steps from Optimized K-means on
Y H (i.e. using all n points) until convergence.

Setup: create table Y H: We start by introducing
a modified version of Y H . Table Y H , defined as
Y H(i, Estep, Y1, . . . , Yd), is partitioned on the incremental E
step for efficient selection of subsets of rows. Table Y H has
two indexes: one on its primary key and the second on the E
step. The index on the E step allows efficient row selection
on a equality condition. At each incremental E step only a
subset of n/ψ rows are inserted into Y V . Then at the end of
each incremental E step sufficient statistics are incrementally
updated with an SQL UPDATE statement. In the incremental
M step W,C,R are recomputed using the same SQL statement
for Optimized K-means introduced in Section III-D.

First of all the algorithm needs to extract ψ disjoint subsets
of Y . Since the work done by K-means is proportional to the
size of Y we modify Y H to allow selection of n/ψ rows
at the time. It is better that the subsets have rows selected
in a random order so that each of them is ”a representative
sample” of Y (assuming n is large). The definition for Y H
is Y H(i, Estep, Y1, . . . , Yd) with primary key i. For efficient
selection of point subsets Y H is indexed on (Estep).

INSERT INTO Y H
SELECT

sum(1) over(rows unbounded preceding) AS i
,i mod cast(log(n)/log(2) AS int)+1 AS Estep
,Y1,..,Yd

FROM Y ,(SELECT count(*) AS n FROM Y )Y N

Incremental E step: update N,M,Q: The indices in con-
junction allow efficient selection of rows at each E incremental
step. All rows from Y are ”shuffled” to ψ different subsets by
means of the mod (modulo) operator. Each subset is disjoint
from the rest and their union equals Y . That is, each incremen-
tal step works on a disjoint sample, guaranteeing every point
is used once. Table Y H helps reusing Optimized K-means
queries by re-populating Y V at each E step. The following
code is executed at the beginning of each incremental E step,
where s = 1 . . . ψ:

INSERT INTO Y V SELECT i, 1, Y1

FROM Y H WHERE Estep=s;
..
INSERT INTO Y V SELECT i, d, Yd

FROM Y H WHERE Estep=s;

The crucial fact about these changes is that most code for
Optimized K-means can be reused for Incremental K-means.
This includes computing distances, nearest centroids and the M
step. The SQL code that suffers changes is the code to update
sufficient statistics. In this case sufficient statistics N,M,Q
must be incrementally updated with the points from the s step.

First of all, sufficient statistics N,M,Q are initialized
to zero at the beginning of the incremental iteration. Then
when nearest centroids have been determined, N,M,Q are
incremented with the partial sufficient statistics from E step s.

/* at the beginning of incremental iteration */
UPDATE NMQ SET N = 0,M = 0, Q = 0;
/* after each incremental E step */
UPDATE NMQ FROM (

SELECT l, j
,sum(1.0) AS N
,sum(Y V .val) AS M
,sum(Y V .val*Y V .val) AS Q

FROM Y V, Y NN WHERE Y V.i=Y NN.i
GROUP BY l, j)NMQ Estep

SET N = NMQ.N+NMQ Estep.N
,M = NMQ.M+NMQ Estep.M
,Q = NMQ.Q+NMQ Estep.Q

WHERE NMQ.l= NMQ Estep.l
AND NMQ.j=NMQ Estep.j;
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Incremental M step: Automated reseeding: We now explain
reseeding of low weight clusters and resetting their sufficient
statistics. This is key to reaching higher quality solutions.
If this feature is not desired the default value for ω (called
model.omega below) is set to zero and then the SQL code
has no effect. Automated reseeding can also be applied in
Optimized K-means at the end of a few initial iterations,
running additional iterations without reseeding to guarantee
the algorithm stops at a stable solution.

UPDATE WCR
FROM

(SELECT j,W ,rank(W+0.000001*j) AS wrank
FROM W )Wrank1

,(SELECT j,W ,rank(W+0.000001*j) AS wrank
FROM W )Wrank2

,(SELECT l, j, C,R FROM WCR)WCR2
SET C=WCR2.C+0.5*sqrt(WCR2.R), W=0, R=0
WHERE WCR.W < model.omega/model.k

and WCR.j=Wrank1.j
and (model.k-wrank1.wrank+1)=Wrank2.Wrank
and WCR2.j = Wrank2.j AND WCR2.l = WCR.l;

UPDATE NMQ SET N = 0, M = 0, Q = 0
WHERE WCR.W = 0 AND NMQ.l = WCR.l

AND NMQ.j = WCR.j;

The first and second subqueries rank clusters in descending
order of weight; the cluster with maximum weight has rank
1 and the cluster with minimum weight has rank k. In SQL
the ”rank()” function assigns the same rank to clusters having
the same weight making a tie-break procedure mandatory. The
small fraction of j added to W (second term) in the ”rank()”
call is used to break such ties. In this manner, both queries
produce k distinct rank numbers going from 1 to k. The
first subquery is used to select low-weight clusters and the
second subquery is used to select high-weight clusters. The
third subquery selects C and R entries to perform reseeding.
The SET clause simply takes a new seed that is half a standard
deviation away from a heavy cluster. In other words, a low
weight cluster is replaced by a new centroid that is close to
the centroid of a cluster with many points. The ”WHERE”
clause simply selects low-weight clusters to be updated. The
remaining conditions link the jth cluster to reseed with the
corresponding high weight cluster. The last clause on the
dimension subscript l is used to join the clustering model
table WCR with sufficient statistics table NMQ on the
same dimensions. Non-unique ranks make this 4-way join fail
because two or more rows can be updated given the selection
conditions. Some important facts about this SQL statement
include not having to scan Y (not even to sample rows),
reseeding only clusters whose weight falls below ω/k, and
working only with tables WCR (small) and W (very small).

F. On the use of SQL to program a data mining algorithm

We present an abstract description of our approach as a
guideline to implement other data mining algorithms in SQL.
Guidelines are given in two groups: one group for expressing

matrix computations in SQL and the other one to improve
query evaluation time.

Matrix computations are expressed as SQL queries, with
no data structures required (e.g. lists or arrays). Matrices are
manipulated as tables and matrix entries as columns, where a
matrix entry is accessed using subscript combinations as their
primary key. Subscripts are used to join tables and to compute
groups for aggregation (e.g. ”sum()” for distance or ”min()”
for nearest centroid). SQL statements are dynamically gener-
ated given different data sets and problem sizes; they depend
on d and k, but not on n. Most matrix tables store one entry
per row, but in some cases one row can contain several matrix
entries (d or k), as was the case for distances for Optimized
K-means or the horizontal version of C. Equations that involve
sums are expressed as queries with aggregate functions passing
arithmetic expressions as arguments grouping by subscript
combinations (i, j, k). Computations that involve expressions
with different matrices require joining matrix tables on the
same subscript; for instance, Y V and C are joined on l and
Y V and Y NN are joined on i. Existing aggregate functions
require the data set to be in pivoted form having one dimension
value per row. A looping programming construct, generally not
available in SQL, is needed to stop the algorithm. In our case,
the SQL code generator monitored the quality of the solution
given by Eq. 2.

We discuss some performance recommendations. All di-
mension values for one point are stored on the same disk block
for efficient access since equations generally require accessing
all dimensions for one point at the same time. Denormalization
helps updating several matrices in the same query, provided
they share the same primary key and there are no dependencies
among them; this was the case for N,M,Q and W,C,R.

IV. EXPERIMENTAL EVALUATION

This section contains an extensive experimental evaluation.
The database server was an NCR parallel Symmetric Multi-
Processing system with 4 nodes, having one CPU each running
at 800 MHz, and 40 AMPs (Access Module Processors)
running the Teradata V2R4 DBMS. The system had 20 TB
(terabytes) on disk. The SQL code generator was programmed
in the Java language, which connected to the DBMS through
the JDBC interface.

Experiments are divided in three parts. The first part
presents experiments with real data sets to show our K-means
implementations work correctly. The second part compares
running time of each implementation with large data sets. The
third part compares SQL with C++. Times are based on the
average of 10 runs.

A. Correctness and Quality of Solutions

We picked three real data sets to assess correctness of our
K-means implementations. The basket data set consisted of
baskets from a retailer summarizing total amount purchased,
total number of items, total number of departments visited,
total discount and total gross margin. The sizes for basket
were d = 5 and n = 100k. The coil data set was obtained
from the UCI Machine Learning Repository and contained
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TABLE III
COMPARISON WITH REAL DATA SETS

Data set Avg Std KM Opt KM Incr KM
coil iter 12 13 8
n = 200 secs 27 52 74

q() 9.06 8.99 8.66
basket iter 38 38 26
n = 100k secs 2176 112 129

q() 0.61 0.61 0.60
UScensus iter 14 15 5
n = 25k secs 508 28 21

q() 2.24 2.28 2.10

several measurements for river pollution. In this case d = 16
and n = 200. The UScensus data set was obtained from
the UCI Machine Learning Repository and contained several
categorical and numerical attributes. We selected 8 numerical
attributes. Summarizing, this data set had d = 8 and n =
25, 499. Each data set was normalized to have zero mean and
unitary variance so that dimensions were on the same scale.
Therefore, each data set represents Y and k = 8.

Table III compares the three implementations with the three
real data sets explained above. Parameters were ε = 0.001
(tolerance threshold for q()), and k = 8. For Incremental K-
means ω = 0.1. The table shows the average of five runs
for each implementation until they converged with the same
tolerance threshold. The best run is not shown, but trends
are similar. Incremental K-means finds solutions of slightly
better quality. Standard and Optimized K-means find solutions
of similar quality. Standard K-means is the fastest for the
smallest data set given the simplicity of its SQL. Compared
to Optimized K-means Incremental K-means is slower for
basket, but faster for UScensus; there is no significant
difference in performance. This is explained by the overhead
of the SQL queries required during the first iteration. For larger
data sets the overhead for Incremental K-means will be less
important as we shall later see.

We now turn our attention to experiments with synthetic
data sets. With real data sets it is not known how many
clusters there are and what their optimal values are. That is
an open problem in Statistics. Instead, we test our K-means
implementations with synthetic data sets having well-separated
Gaussians. We generated data sets with d = 8, n = 100k
varying k with clusters of equal weight and means in [0,10].
We ran each implementation 10 times giving the corresponding
k as input. Clusters found by K-means were paired with their
closest synthetic cluster. Then a discovered cluster was con-
sidered correct if its weight and centroid dimensions differed
by no more than 15% (reasonably accurate) from its closest
synthetic cluster. It is expected Standard and Optimized K-
means should produce similar results because they do not
incorporate any changes to reseed clusters.

Table IV shows average and best run for each K-means
implementation for each k. Both Standard and Optimized K-
means find the best solution for k = 4. As k increases the
clustering problem becomes harder. For k = 8 and k = 16
both implementations find about 50% of the embedded clus-
ters. In all cases the best solution has a lower quantization error
than the average. A visual inspection of results showed some

embedded clusters were grouped together in pairs producing
a ”heavy” cluster, while some other clusters had low weight.
These problems are well recognized to appear with K-means
[2], [5]. These results suggest that reseeding is necessary to
find higher quality solutions. The last portion of the table
shows the superiority of Incremental K-means (with ω = 0.5)
that found better solutions in all cases but the simpler case with
k = 4, where the three variants found the same best solution.
From both sets of experiments we conclude the proposed K-
means implementations work correctly. Another method we
used for testing correctness, not shown here, is initializing
the SQL-based approach and a C++ implementation with
identical C matrices (seed centroids). The C++ seed centroids
are stored in a text file that is imported into the DBMS so
that they can be reused by the SQL implementation. Both
implementations correctly converged to the same solution for
W,C,R. A theoretical proof of correctness falls outside the
scope of this article.

B. Benchmarking K-means Queries

In this section we study performance for each query required
by K-means, comparing Standard K-means and Optimized K-
means with a challenging synthetic data set. The Incremental
K-means version is excluded because its second and subse-
quent iterations are the same as Optimized K-means and also
because its first iteration is equivalent to running Optimized
K-means log2(n) times with data sets of size n/log2(n).
Instead, we later compare the total time of the first iteration
of Incremental K-means against the other versions.

The purpose of these experiments is to identify which K-
means computations are critical as well as the improvement
achieved by our proposed optimizations. The data set had a
mixture of 10 embedded Gaussians with all dimensions in the
same scale. This data set had d = 16 and n = 1, 000, 000.
Its size and dimensionality will help understand K-means
performance under demanding conditions.

Table V provides an interesting summary comparing Stan-
dard and Optimized K-means from a database point of view
evaluating each query individually. The table shows for each
K-means computation which tables are involved, what their
specific definition is, how they are indexed and how long
the query took to produce results. Table creation is shown
for completeness but its impact on performance is marginal
because it is done only once per run, whereas the rest of
operations are repeated for each iteration.

We can draw the following observations from the table. First
of all, distance computation is the most intensive operation.
For Standard K-means distance computation accounted for
90% of time during one iteration. In contrast, for Optimized
K-means distance computation went down to about 65% of
total time. For Optimized K-means we study two alternatives
to compute distance. In the first alternative Y D is indexed
on i and the k distances are stored on the same disk block.
It is remarkable execution time goes down to roughly one
third. The explanation is the overhead to join rows decreases
significantly. For the second alternative all k distances are
stored together in one row (as opposed to same block) and
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TABLE IV
QUALITY OF RESULTS WITH SYNTHETIC DATA. DEFAULTS: d = 8, n = 100k

Scheme k Avg Avg # of Best Max # of Avg # of Time
q() clusters q() clusters iterations secs

Std KM 4 17.83 1.7 0.08 4 4 165
Std KM 8 8.38 3.3 5.99 5 5 321
Std KM 16 7.69 6.0 3.95 8 5 659
Opt KM 4 17.25 1.5 0.08 4 4 17
Opt KM 8 7.76 3.8 4.42 5 5 31
Opt KM 16 7.12 5.4 5.73 7 5 74
Incr KM 4 0.08 4.0 0.08 4 2 44
Incr KM 8 0.11 8.0 0.11 8 2 68
Incr KM 16 0.07 14.0 0.07 14 2 111

TABLE V
BENCHMARKING QUERIES. DEFAULTS: d = 16, k = 8, n = 1, 000, 000

Scheme K-means Database Input Output Time
computation operation tables tables secs

Std KM Setup, initialize create Y all tables 72
Std KM E step: distance join Y V, C Y D 546
Std KM E step: nearest centroid join Y D,Y MIND Y NN 19
Std KM M step: update W scan Y NN W 1
Std KM M step: update C join Y NN, Y V C 42
Std KM M step: update R join Y NN, Y V, C R 19
Std KM M step: update model scan R model 1
Opt KM Setup, initialize create Y all tables 71
Opt KM E step: distance join Y V, WCR Y D 197
Opt KM E step: distance fast join Y V, C Y D 66
Opt KM E step: nearest centroid scan Y D Y NN 3
Opt KM E step: update N,M, Q join Y NN, Y V NMQ 22
Opt KM M step: update W,C, R scan NMQ WCR 1
Opt KM M step: copy WCR.C to C scan WCR C 3
Opt KM M step: update model scan WCR model 1

the index column remains i only. This further change reduces
the time to almost one tenth, compared to Standard K-means.
Since the second alternative is the one that produced best
performance it is the one we used by default for the remaining
performance experiments. Then we can see updating clustering
results W,C,R are the next intensive operation. Compared
to distance computation this operation is less important for
Standard K-means, but it is critical for Optimized K-means.
In rough terms, the combination of sufficient statistics and
the denormalized table definition reduce computation time of
W,C,R to almost one third. The time to update W,C,R based
on N,M,Q is small and it is basically overhead since these
tables are small. The third critical operation is finding the
nearest centroid. Again, Optimized K-means finds the nearest
centroids in a fraction of the time Standard K-means does. This
makes it evident that avoiding a join between two large tables
significantly improves performance even though Optimized K-
means does more work in memory to find the nearest centroid.
The last operation worth mentioning is copying the WCR.C
column to C. This operation is only overhead since it has to
work with one matrix entry at the time.

C. Running Time Varying Problem Sizes

Figure 2 shows scalability graphs. We conducted our tests
with synthetic data sets having defaults d = 8, k = 8, n =
1000k (with means in [0,10] and unitary variance) which
represent typical problem sizes in a real database environ-
ment. Since the number of iterations K-means takes may
vary depending on initialization we compared the time for

one iteration. This provides a fair comparison. The iteration
measured for Incremental K-means is for the first iteration;
recall subsequent iterations are equal to those of Optimized
K-means. This measurement includes the time to create and
index Y H and the times to run ψ times the E and M steps
with Y chunks of size n/log2(n). The first graph shows
performance varying d, the second graph shows scalability at
different k values and the third graph shows scalability with
the most demanding parameter: n. These graphs clearly show
several differences among our implementations. Optimized K-
means is always the fastest. Compared to Standard K-means
the difference in performance becomes significant as d, k, n
increase. Incremental K-means is the slowest at small values
of d and k. This is explained by the overhead to run many more
SQL queries. This overhead causes Incremental K-means to be
about 5 times slower than Optimized K-means for d and k.
However, the overhead of Incremental K-means is better than
the overhead of Standard K-means, where there is a cross
point around d = 8 and k = 8. We were surprised to see that
beyond this point Incremental K-means is faster than Standard
K-means. The last graph shows the overhead of Incremental
K-means becomes less important as n grows; the difference
in performance versus Optimized K-means is not significant
for the largest n. This is explained by ψ = log2(n), which
grows much slower than n. Standard K-means presents scal-
ability problems with increasing dimensionality and number
of clusters. Its performance graphs exhibit nonlinear behavior,
but it does not seem to be quadratic. These experiments show
evaluation time is dominated by distance computation that re-
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quires joining Y V and C and aggregating squared differences.
Standard K-means suffers specially with increasing k where
the curve indicates fast time growth. On a positive side the
curvature of the line for n is almost linear which indicates
scalability for large data sets is better. On the other hand, the
Optimized K-means version exhibits linear scalability on d, k
and n. The corresponding graphs for each of them are straight
lines. Scalability for Incremental K-means is linear for n, and
it is almost linear for d and k. This indicates overhead does
affect scalability. For the largest d, k, n values Optimized K-
means is ten times faster than Standard K-means along each
variable. We ran experiments doubling pair combinations of d,
k and n. For d = 8, k = 8, n = 1, 000, 000 Standard K-means
took 249 seconds and Optimized K-means took 52 seconds.
In contrast, for d = 16, k = 16, n = 1, 000, 000 Standard K-
means took 1819 seconds and Optimized K-means took 149
seconds. Also, for d = 8, k = 16, n = 2, 000, 000 Standard
K-means took 2053 seconds and Optimized K-means took
170 seconds. From a scalability perspective, doubling d and k
increased Standard K-means time 7 times (from 249 to 1819)
and increased Optimized K-means time almost 3 times (from
52 to 149). Doubling k and n increased Standard K-means
time 8 times (from 249 to 2053) and increased Optimized K-
means time slightly more than 3 times (from 52 to 170).

D. Comparing SQL and C++

We compare SQL and C++ to understand how much
performance is sacrificed and how much overhead there is
in SQL computations. We also analyze the time to export
data sets outside the DBMS to understand when it is worth
it to cluster data sets outside the DBMS and when it is
not, from a performance point of view. We concentrated on
studying performance for one K-means iteration on computers
of similar characteristics. The time to export data sets is
analyzed separately. In all our following experiments we used
data sets with d = 8 and k = 8 embedded clusters, which
represent typical problem sizes. K-means was run with k = 8
and we only varied n, the data set size.

We ran Teradata V2R5 on a one-node server with one CPU
at 1.2 GHz, running under Unix (in a proprietary Unix version
called MP-RAS) and 10 AMPs running in parallel, where each
AMP represents a thread allowing parallel processing. The
Teradata server had 256MB of main memory and 1 TB of disk
space. For the C++ implementation we used a workstation with
one CPU running at 1.2 GHz, 256 MB of main memory and
40 GB of disk space. The C++ implementation worked with
standard sequential processing, reading one point at a time,
with no concurrent processing or any database optimizations.
For SQL we used Optimized K-means, as described in Section
III-D. For C++ we implemented a program also based on
sufficient statistics that clustered the data set stored in a text
file exported from the DBMS.

We now compare performance trends for small and large
data sets. The left graph in Figure 3 compares SQL with
C++ with small data sets; the time to export the data set
outside the DBMS is excluded. In this case both SQL and
C++ show linear scalability. SQL is an order of magnitude

TABLE VI
COMPARING SQL, C++ AND ODBC. TIMES IN SECONDS

n × 1000 SQL C++ ODBC
10 11 1 17
20 12 2 34
30 13 2 52
40 14 3 69
50 15 4 85

100 20 8 168
200 30 16 338
400 49 32 676
600 64 48 1010
800 68 64 1353

1000 77 80 1684

slower than C++ for n = 10k, but the gap narrows for
n = 100k, where SQL takes only 1.5 times more time than
C++. This shows SQL overhead is significant on small data
sets, but becomes less important as n grows. The right graph
in Figure 3 compares both implementations with large data
sets. In this case SQL starts showing advantages over C++.
First of all, C++ behaves linearly, but SQL shows slower time
growth as n increases. In this case Optimized K-means is
taking advantage of database optimizations including parallel
processing, interleaved processing with I/O operations and the
fact that rows are read in blocks, and not one by one. For
n = 1000k SQL is slightly faster than C++ and the trend
indicates that SQL will be faster than C++ as n grows.

We compare the time to export data sets and the time per
K-means iteration We emphasize that the export operation is
performed once for one data set, whereas K-means iterations
are repeated many times. The standard interface between a
relational DBMS and a workstation is ODBC (Open Database
Connectivity), which allows submitting queries and exporting
tables. We used ODBC 3.3 to export the data set as a text
file. We do not include comparisons with faster proprietary
interfaces like Call-Level Interface (CLI) that are not available
in a different DBMS. Table VI shows times for one iteration
for SQL and C++ as well as the time to export the data set
using ODBC. For small data sets, since C++ is much faster
than SQL, it is worth it to cluster data sets outside the DBMS,
even considering the time to export the data set. But as n grows
export times become much bigger, compared to the time per
iteration in either C++ or SQL. When n = 200k the time to
export a data set is an order of magnitude bigger than one
SQL iteration, whereas for n = 1000k export time becomes
20 times bigger. These results show that even though it may be
worth to cluster small data sets outside the DBMS, clustering
large data sets may not be a good idea because, having SQL
and C++ similar performance, the time to export the data set
becomes a bottleneck.

For the experiments discussed above we used computers
with similar hardware characteristics to make a fair com-
parison. SQL was slightly better than C++ for large data
sets and C++ was the fastest implementation for small data
sets. But in a typical environment the DBMS server will be
much faster than a workstation and will store fairly large data
sets. Therefore, for the sake of completeness we compare
performance between the workstation and a typical DBMS
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Fig. 2. Time per iteration varying d, k, n. Defaults: d = 8, k = 8, n = 1, 000, 000.
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Fig. 3. Comparing SQL with C++. Time per iteration varying n. Defaults: d = 8, k = 8.

TABLE VII
COMPARING SQL ON AN SMP COMPUTER WITH C++ ON A

WORKSTATION (*: ESTIMATED). TIMES IN SECONDS

n × 1M SQL C++ ODBC
1 52 80 1691
2 106 159 3369
4 226 317 6739
8 463 635 13500*

16 944 1271 27000*

server with Symmetric Multi-Processing capabilities (parallel
DBMS). In the following experiments the DBMS server is the
same one we had used before to test scalability with d, k and
n (4 CPUs at 800 MHz, 40 AMPs), and the workstation is as
described above (1 CPU at 1.2 GHz). This comparison is not
fair, but it shows a typical scenario for a data mining user.

Table VII shows the times per K-means iteration for data
sets with d = 8, k = 8 varying n from 1 million (M) to 16M
rows. The last column shows the time to export the data set,
where n = 8M and n = 16M are estimated given the long
export times and its linear growth. In every case SQL is the
best choice considering performance alone. If we take into
account export time SQL becomes a clear choice. For very
large n it is unreasonable to cluster the data set outside the
DBMS because the time to export it approaches one day.

Limitations: The main limitation of our implementations
is that the data set needs to be scanned several times. This
situation is particularly worse for Standard K-means that scans

n-row tables eight times. Standard K-means has no practical
limitations on n, d or k, but given its bad scalability it will
be limited by available CPU power. Optimized K-means has
no limitations with respect to n and d, but k may impose
some practical limitations given by the maximum number of
columns allowed in a single table and for the maximum length
of an SQL query. As explained before, the CASE statement
to find the nearest cluster may present problems because of
query length. Both limitations can be solved by partitioning
Y D and the CASE code for Y NN in vertical partitions of
adequate size. In general, n represents the most important
variable. Therefore, Optimized K-means and Incremental K-
means should be the preferred implementations.

V. RELATED WORK

Research on implementing data mining algorithms in SQL
or extending SQL for data mining purposes includes the
following. Association rules mining is explored in [23] and
later in [12]. General data mining primitives are proposed in
[3], including an operation to pivot a table and sampling. SQL
extensions to define complex aggregate functions having tables
as parameters are proposed in [25]; these extensions are used
to tackle the problem of mining association rules. The MSQL
language [11] provides extensions to query a set of discovered
association rules. On the other hand, [14] proposes the MINE
RULE operator, which can express a broad class of tasks
for association rule mining. Primitives to mine decision trees
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are introduced in [8], [24]. Programming the EM clustering
algorithm in SQL is explored in [17]. A short version of our
article appeared in [16], where Standard K-means and some
optimizations were introduced. SQL extensions to perform
spreadsheet-like operations with array capabilities are intro-
duced in [26]. MSQL is a comprehensive language for data
mining purposes that is part of the DBMiner system [10].

We focused on writing efficient SQL code to implement
K-means instead of proposing yet another ”fast” clustering
algorithm for large data sets [1], [2], [28], [18], [15]. Imple-
menting these algorithms requires a high level programming
language to manage memory and perform complex mathe-
matical operations. The way we exploit sufficient statistics
is similar to [2], [28], which used them to improve speed.
There are some similarities between our reseeding strategy
and the ones used in [7], [2]. The important point is that
ours is simple and easy to express in SQL and it does not
require scanning the input data set. This is not the first work to
explore the implementation of a clustering algorithm in SQL.
Our K-means proposal shares some similarities with the EM
algorithm implemented in SQL [17]. The EM implementation
was later reused to cluster gene data [20]. We explain differ-
ences between the EM and K-means implementations in SQL.
EM is a method of maximum likelihood estimation [27]. K-
means is an algorithm strictly based on distance computation,
whereas EM is based on probability computation. This results
in a simpler SQL implementation of a clustering algorithm
with wider applicability. We explored the use of sufficient
statistics in SQL, which are crucial to improve performance,
which were not used in [17]. The clustering model is stored in
a single denormalized table, as opposed to separate normalized
tables. Several aspects related to table definition, physical
organization, indexing and query optimization, not addressed
before, are now studied in detail. Last but not least, this
is the first proposal to study the implementation of a fast
convergence clustering algorithm in SQL, using an incremental
approach. A fast K-means prototype to cluster transaction
data sets using disk-based matrices is presented in [19]. The
disk-based implementation and the SQL-based implementation
represent complementary solutions to implement K-means in
a relational DBMS, but we believe the SQL-based solution
will become more valuable as disk density and CPU speed
increase and hardware costs decrease.

VI. CONCLUSIONS

This article presented three implementations of K-means
clustering in SQL to integrate it with a relational DBMS.
The proposed implementations allow clustering large data
sets stored inside a relational DBMS eliminating the need
to export data. Only standard SQL was used; no special
extensions for data mining were needed. We concentrated
on defining suitable tables, indexing them and optimizing
queries for clustering purposes. The first implementation is
a straightforward translation of K-means computations into
SQL, which serves as a framework to build a second optimized
version with superior performance. The optimized version is
then used as a building block to introduce an incremental K-
means implementation with fast convergence and automated

reseeding. The first implementation is called Standard K-
means, the second one is called Optimized K-means and the
third one is called Incremental K-means. Experiments evaluate
correctness and performance with real and synthetic data sets.
We showed Incremental K-means converges in fewer iterations
than Standard and Optimized K-means. A set of experiments
benchmarked queries individually. The most critical operation
is distance computation followed by updating clustering results
in each iteration. These two aspects are used as guidelines
for optimization. Optimized K-means computes all Euclidean
distances for one point in one I/O, exploits sufficient statistics
and stores the clustering model in a single table. Experiments
evaluate performance with large data sets focusing on elapsed
time per iteration. Standard K-means presents scalability prob-
lems with increasing number of clusters or number of points.
Its performance graphs exhibit nonlinear behavior. Optimized
K-means is significantly faster, exhibiting linear scalability.
Incremental K-means shows linear scalability with respect to
data set size, almost linear scalability with respect to dimen-
sionality and number of clusters, but exhibits high overhead
with small data sets. We compared the performance of SQL
with C++ on similar computers. SQL turned out to have a
similar efficiency compared to C++ on large data sets, but it
was an order of magnitude slower on small data sets. We also
compared export times and times per iteration. Exporting a
large data set becomes a bottleneck to run clustering outside
the DBMS, making SQL a more efficient choice. Given the
popularity of K-means several aspects have wide applicability
for other distance-based clustering algorithms found in the data
mining literature.

There are many issues that deserve further research. Even
though we proposed an efficient way to compute Euclidean
distance there may exist more optimizations. Clustering very
high dimensional data where clusters exist only on projections
of the data set is another interesting problem, especially for
transaction data. Large data sets could be clustered in a single
scan using SQL combining the ideas proposed here with
User-Defined Functions and more efficient indexing. Certain
computations may warrant defining SQL primitives inside the
DBMS to allow general applicability. Such constructs would
include Euclidean distance computation, pivoting a table to
have one dimension value per row and another one to find the
nearest cluster subscript given several distances.
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