
Metadata Management for Federated Databases

Carlos Ordonez
University of Houston

Houston, TX, USA

Zhibo Chen
University of Houston

Houston, TX, USA

Javier García-García
UNAM University

Mexico City, Mexico

ABSTRACT
A federated database consists of several loosely integrated
databases, where each database may contain hundreds of
tables and thousands of columns, interrelated by complex
foreign key relationships. In general, there exists a lot of
semistructured data elements outside the database repre-
sented by documents (files), created and updated by mul-
tiple users and programs. Documents have references to
multiple databases and subsets of their tables and columns.
Manually tracking which specific tables and columns are re-
ferred to by a document, accessed by a specific program
or user is a daunting task. With such a goal in mind, we
present a system that builds metadata models for a feder-
ated database using a relational database as a central ob-
ject type and metadata repository. Metadata includes table
and columns coming from logical data models corresponding
to each database, as well as documents representing exter-
nal semistructured data sources. SQL statements assemble
metadata and data types to create objects and relationships
as relational tables for easy querying. We discuss potential
applications in federated scientific databases.

1. INTRODUCTION
Metadata management in relational databases is impor-

tant to understand how tables and columns are exploited
by users. In this work, we focus on metadata management
for a federated database environment. In general, a signif-
icant portion of metadata (knowledge about the database)
is stored outside the database, and has generally an un-
structured [3] or semistructured form [5]. We will use the
term semistructured to refer to both forms. Such meta-
data elements include table and column names from the
logical data model (LDM), application programs, specifica-
tion documents, diagrams, spreadsheet files, images, web
pages and so on. In metadata management the overall goal
is to capture information about relationships among com-
ponents in each database, as well as linking them to end
users and application programs. In our proposal, we com-
bine object-oriented technology and relational databases to
integrate and manage metadata. Traditionally, it has been a
common practice for scientists to work in isolation on their
experiments, creating private data repositories. Nowadays,
with the growing usage of the Internet and faster comput-
ers, more scientists are interested in taking advantage of

c© ACM, 2007 . This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in CIMS 2007 (CIKM 2007 workshop).
http://doi.acm.org/10.1145/1317353.1317361

technology to make their data sets and documents widely
available. Scientists exchange and share data sets and doc-
uments with other scientists to compare results or enhance
their experiments. This scenario creates many challenges in
managing interrelated structured and semistructured data.
Many proposals have tackled the problem from the informa-
tion retrieval perspective. In our work, we propose to solve
this problem with relational database technology.

We believe using a relational database as a central meta-
data repository for structured and semistructured informa-
tion is the right approach. The database serves three goals:
(1) it acts a metadata repository that stores both structured
and semistructured information in tabular form; (2) it cen-
tralizes metadata management for multiple databases; (3) it
stores object type definitions and valid (allowed) relation-
ships among them. Managing a large metadata database
is difficult when there exist multiple databases and com-
plex relationships among thousands of objects of different
types. Some interesting and challenging aspects include the
following. Metadata from different source databases needs
to be loaded, transformed and integrated. Semistructured
data must be cleaned and transformed into a tabular form,
appropriate to be imported into a relational database. For
documents this implies extracting keywords. Table struc-
ture for similar information elements may be different across
databases. Database content may be incomplete and incon-
sistent, especially for semistructured data. Data types for
objects and relationships must be stored in tabular form,
whereas a tree data structure would be a better fit. The
model must allow the definition of complex relationships
among objects including tables, columns, users, programs
and documents. In this article we present a proposal to
solve these problems.

This work contains three main contributions. First, we
motivate and explain how to integrate metadata from feder-
ated databases and related semistructured data sources. We
also introduce a simple approach to transform unstructured
data into a tabular form to be imported into the database.
Second, we explain how to use a relational database to store
object data types, valid relationships among objects and
metadata from semistructured and structured data sources.
Third, since metadata and data type information are stored
in relational tables then SQL becomes the alternative to de-
fine, build and link objects. We explain how to write SQL
queries for such purpose.

The article is organized as follows. Section 2 introduces
basic concepts on semistructured and structured data and
on metadata and object oriented models. Section 3 explains



Figure 1: Federated database environment.

how to use a relational database as a metadata repository
and how to assemble objects and relationships to build meta-
data models linking semistructured and structured data.
Section 4 discusses closely related research. Section 5 con-
tains the conclusions and directions for future work.

2. PRELIMINARIES
Structured data sources are represented by all databases

in the federated database. Information elements in databases
are basically table and column names, to be manipulated as
metadata. Semistructured data sources are represented by
documents. Documents are files of several kinds including
digital documents, word processing files, spreadsheets, text
files, web pages and email communications. To make ex-
position simpler we do not make a distinction between the
logical data model (LDM), represented by an ER [4] dia-
gram and the physical data model (PDM), represented by
actual tables and columns in a DBMS. The diagram in Fig-
ure 1 shows a federated database environment with both
semistructured and structured data sources.

We use an object-oriented (OO) model to represent meta-
data elements [2] and a relational database [4] as a metadata
repository. The object-oriented model imposes a correct
structure definition of objects and a specification of valid re-
lationships among them. We now introduce basic object ori-
ented terminology. The basic modeling elements are objects,
containers and relationships and each of these elements has a
data type. Containers are used to place objects into mean-
ingful groups. We consider two basic data types to build
and link objects: an object type and a relationship type.
An object type defines an object structure (properties), and
containment relationships with other objects (objects part
of other objects). A relationship type defines a pair of object
types that can be linked (related) to each other. We focus

Figure 2: Data sources flow.

on binary relationships; higher cardinality relationships are
expressed as a collection of binary relationships. Each object
type, each existing object and each relationship constitute
a link. This implies a hierarchical (tree structured) object
organization. Object data types are organized into type li-
braries. All databases, tables, columns, users, programs and
documents are manipulated as objects.

3. RELATIONAL METADATA MODELS
This section presents our main contributions. We start

by presenting research issues. We then discuss our sys-
tem architecture. We explain how to import unstructured
data sources. We explain how to assemble object and re-
lationships. We finally discuss application with scientific
databases.

3.1 Research issues
We have identified four main challenges:

1. Automating the transformation of unstructured and
semistructured data into a tabular form. This includes
preprocessing documents to extract keywords.

2. Dealing with inconsistency and incompleteness in meta-
data. This is more difficult in semistructured data
sources.

3. Managing data types, especially for relationships among
objects.

4. Creating links among objects through relationships.
The fundamental issue is managing relationships among
structured and semistructured objects.

3.2 System Architecture
Structured and semistructured data sources feed a cen-

tral metadata repository. All logical data models from the
databases represent structured sources. Documents repre-
sent semistructured sources. Users and programs update
documents. For all purposes object information is imported
into the database using text files, as explained below. The
basic system architecture to build a metadata management
model is shown in Figure 2.



Semistructured data sources include ER diagrams, word
processor documents, spreadsheets, application names, doc-
umentation about programs, and so on. Such information
must be converted to tabular form using CSV text files. The
database is understood as a collection of interrelated tables
containing information in the form of objects, relationships
and meta-data defining objects structure. The basic mech-
anism to store and retrieve information in the relational
database is the SQL language [4].

3.3 Importing Data Sources with CSV Files
This section explains how to import data from diverse

sources into a relational database using CSV text files. Data
elements come from semistructured sources [8, 5] including
Entity-Relationship model diagrams, word processor docu-
ments, spreadshseet files, e-mail messages and so on. In
general most tools provide mechanisms to convert any type
of file to a CSV file or something that is quite similar. If not
available it is easy to export information to a spreadsheet or
text editor and then export the information as CSV files.

CSV files Overview
We use Comma Separated Values (CSV) text files as the ba-
sic mechanism to import data into the relational database.
CSV files have several remarkable advantages. CSV files
are a de-facto standard for many computer tools. CSV files
are self-describing because both data element names and
data instances are stored together, making them a simpler
alternative to XML. CSV files can be easily imported into
relational tables. They do not require complex data for-
matting with specific positions and fixed lengths. They are
self-contained (no extra files needed). They do not waste
space as formatted files do. A person can easily manipulate
them in any spreadsheet program, editor or word processor.
They are portable between UNIX and Windows platforms.
They can easily manage missing information because they
do not need a special symbol to mark missing values; two
consecutive value separators indicate a missing value. Most
non-database tools can generate them. Many times they are
the only way to export/import data. A CSV file can be un-
derstood as a table that can be imported into a relational
database. Each column contains homogeneous information.
Each row contains elements of different data types. Any
type of information can be manipulated with CSV files. The
only constraint is that each element must be a number or
a string. This makes them adequate to manipulate docu-
ments, data models, spreadsheets, e-mail messages and so
on. Nevertheless, CSV files are not the ultimate answer to
data exchange. Some important issues include the follow-
ing. In general they are isolated (i.e. not related/linked to
other CSV files). There may be different number of values
per line, although in many cases it is equal. Each element
in the list (in one line) does not necessarily have the same
type as the corresponding elements in other lines. A string
can contain a comma inside. That is, it may contain the
value separator. A string may or may not be delimited by
double quotes (”). The type of each value is determined on
an individual value basis. Compared to XML [13] CSV files
are simpler, but of course, they provide a more primitive
structure (tabular versus hierarchical).

CSV files are well understood, but give a brief technical
description. The CSV file is a text file without any special
control characters but end of line and end of file. Each line

has a list of values separated by commas and ends with end
of line. Comma and end of line are the only permitted value
separators. Each value can be treated as a number or a
string. Strings are sequences of symbols that may or may
not be delimited by quotes. We assume CSV files contain a
header line with column names.

Defining a table and inserting rows
Our system takes CSV files as input and automatically cre-
ates the definition for a table to store imported data. This
creation takes care of determining the best data type for
each column, computing lengths for strings of text, and au-
tomatically creating column names when not available. But
in general each csv file is assumed to have a header with
column names. The column data type is determined by a
voting algorithm that scans each line in the CSV file and
consider three basic data types: integers, floating point num-
bers and strings. Missing values are ignored for determining
data types. To avoid missing rows we follow a pessimistic
approach: (1) a column where most values are numbers but
has strings it is taken as string. (2) if a column with integers
has at least one floating point] number the data type is float-
ing point. The maximum counter determines the column
type. If the column is a string the size is determined by the
longest string found in that column. The maximum number
of values contained in any line determines the table num-
ber of columns. Since row uniqueness cannot be assumed a
surrogate primary key (an id) is automatically created. In
some cases, the first column is taken as the default primary
index to access the table.

Once a table structure has been defined we need to convert
CSV file text lines into SQL insert statements. The basic
idea is that each element in line becomes an argument to the
insert statement and the comma remains a separator. How-
ever, several details are important. Missing values are auto-
matically taken care of; there is no need to explicitly use null
values. String delimiters in the input are double quotes ”,
whereas SQL string delimiters are single quotes. All strings
must have delimiters to be used in SQL. There may be a
different number of elements per line and the program must
make sure each insert statement has exactly the same num-
ber and that such number matches the table definition. In
the exceptional case when there are string delimiters inside
a string they must be preceded by an escape sequence. In
this case the quote character ’ is repeated. Since we expect
to have no more than thousands of objects for knowledge
management SQL inserts provide reasonable performance.

3.4 Object Types and Relationship Types
The basic elements are objects, containers and relation-

ships and each of these elements has a data type. We use
the following rules to build and link objects. A pair {ob-
ject type,object name} must be unique across the model.
Therefore, it represents a primary key. An object can be
linked to another object if and only if there exists a pre-
defined relationship type that links both object types; this
leads to defining a table with five columns, where two ob-
ject types act as foreign keys. Objects are grouped into
containers, providing a hierarchical organization. Contain-
ers can contain any number of containers and they can be
recursively nested. Objects can contain objects, but they
cannot have containers. Objects can be linked by relation-
ships across container boundaries, but containers cannot be



Figure 3: Macro-relationships between semistruc-
tured and structured data sources.

linked to each other in any manner. The diagram in Figure 3
shows relationships between objects at a coarse granularity
level. The diagram in Figure 4 shows relationships between
objects at a fine granular level, linking atomic elements be-
tween semistructured and structured data sources.

We use a relational DBMS as a repository for object types,
sets of instantiated objects and valid relationships among
them. Each object has the following minimal set of prop-
erties: type, name and description. The object’s name and
type are used together as a primary key to identify objects.
The relationship primary key is given by the two objects it
relates and a data type of its own.

As mentioned above, an object is identified by its type
and its name. The same object name can have two or more
types. So a single name may effectively represent two or
more distinct objects. Special care must be taken in in-
terpreting object names. In general the object type must
also be considered together with the object name. A rela-
tionship between two objects is identified by the primary
keys corresponding to the objects and the relationship type.
Containers are object place holders and cannot be related
to each other like objects. Our proposal assumes containers
are defined by the end-user to appropriately group objects.

There are three tables to manage object type informa-
tion (metatypes). The first table stores detailed object type
information. The second table stores information for type
manipulation including a type library name, a description
and users maintaining it. The third table links an object
type with a type library and specifies a level for object nest-
ing. The three tables are referentially related by the library
and type names. This is a normalized schema that provides
flexibility to change object types from one library to another
as needed and simplifies SQL code generation. A summary

Figure 4: Micro-relationships between keywords and
tables/columns.

of these tables is shown in Table 1.
We use two generic tables (meta-tables) to store object

information. In general, information coming from different
sources is stored in denormalized tables that are structurally
similar to either of these tables. For each object there is a
set of properties stored as columns that is stored in a table
for objects having the same type. In general, such table con-
tains information only for one object type, but in some cases
this table contains object names and properties for two or
more types of objects storing some column values as null.
A “link” table stores multiples relationships in many pairs
of objects. The database has a collection of object instance
tables and a collection of object relationship tables. In gen-
eral, metadata objects coming from external sources come
unrelated and they must be manually linked by defining a
relationship. Relationships are specified inside the database
by treating two object types as foreign keys, linking two ob-
ject types with a relationship type and enforcing referential
integrity. The diagram in Figure 5 shows how object types
and relationships are combined to instantiate a new object.

3.5 SQL Metastatements
We use three template SQL statements (metastatements)

to create (instantiate) objects and link them with given rela-
tionships. The first SQL statement creates an object and its
properties. It assembles object name, type and properties
together. This query requires duplicate removal, one natu-
ral join and deleting rows with null values. This statement
can also be used when there is a need to modify a set of
nested objects of the same type or a relationship between
two sets of objects of respectively the same type. The sec-
ond SQL statement creates nested objects. That is, objects
contained inside other objects. Both the nesting level and



Table name Primary key Columns
typeLibrary library libraryDescription,libraryPerson,dateModified
typeInfo typeName,library creationDate,modifyDate
typeControl typeName ObjectOrRelationship,typeDescription, defaultLibrary,sourceFile,objectLevel

Table 1: Tables to manage object types.

Figure 5: Creating relationships.

object containment need to be specified. If there are n levels
of object nesting there will be n − 1 SQL statements spec-
ifying nesting between consecutive levels. The third SQL
statement creates a relationship between two objects and is
the most complex. The relationship goes in one direction
from a source object to a target object. Three data types
need to be specified: the type for the source object, the
type for the target object and the type for the relationship
itself. Also, we need to give the name of the source and
target objects giving a total of five attributes to identify a
relationship. This statement requires defining a table where
the relationship between both objects is implicitly assumed
when their names appear on the same row. These three SQL
statements cover every potential case encountered when cre-
ating metadata models.

The first type of SQL statement is the simplest. It is used
to export an object and its properties. This just requires
gathering the object name, type and properties and joining
them. The information of objectInfo is assembled together
with type information. This statement requires duplicate
row removal, one natural join and deleting rows with null
values. The generic SQL is as follows:

SELECT DISTINCT

objectType,objectName,property1,...,propertyN

FROM objectInfo,typeControl,typeInfo

WHERE typeDescription=’description’

AND typeControl.typeAbbreviation

=typeInfo.abbreviation

AND typeControl.defaultLibrary

=typeInfo.library

AND objectName IS NOT NULL;

The second type of SQL export statement involves nested
objects. That is, objects contained inside other objects. In
this case the SQL code is more complex because the nesting
level and object containment need to be specified. Because
of modeling tool constraints rows need to appear in a cer-
tain order to specify object nesting. This statement requires
duplicate row removal, joins, a set union, derived tables for
parent/child objects, child object statement appearing be-
fore than parent object statement and result ordering. The
objects are grouped by parent object. Notice a parent object
is parent of itself as well in order to have a uniform table
scheme. If there are n levels of object nesting there will be
n−1 SQL statements specifying nesting between consecutive
levels. The lowest level corresponds to the root and levels
must appear in order of depth in the tree. The generic SQL
is as follows:

SELECT

level,type,name

FROM(

SELECT DISTINCT

objectLevel,parentObjType

,parentObjName,childObjName

FROM relatedObjects,typeControl,typeInfo

WHERE typeDescription=’childObject’

AND typeControl.typeAbbreviation

=typeInfo.abbreviation

AND typeControl.defaultLibrary

=typeInfo.library

AND childObjName IS NOT NULL

AND parentObjName IS NOT NULL

UNION

SELECT DISTINCT

objectLevel,parentObjType

,parentObjName,parentObjName

FROM relatedObjects,typeControl,typeInfo

WHERE typeDescription=’parentObject’

AND typeControl.typeAbbreviation

=typeInfo.abbreviation

AND typeControl.defaultLibrary

=typeInfo.library

AND parentObjName IS NOT NULL

) tempTable(level,type,parentname,objname);

The third statement type is the most complex. It involves
creating a relationship between two objects. The relation-
ship goes in one direction from a source object to a target
object. Three data types need to be specified: the type for



the source object, the type for the target object and the
type for the relationship itself. Also, we need to give the
name of the source and target objects giving a total of five
attributes to identify a relationship. This statement requires
a relatedObjects table where the relationship between both
objects is implicitly assumed when their names appear on
the same row. This statement requires derived tables, dupli-
cate row removal in derived tables, a self-join, natural joins
and careful string manipulation. The most important differ-
ences with respect to the previous SQL statements are the
self-join which is required to manipulate relationships and
trimming spaces to make sure object names exactly match.
The generic SQL is as follows:

SELECT DISTINCT

source.ObjectType,source.ObjectName

,relationshipType

,target.ObjectType,target.ObjectName

FROM

(SELECT DISTINCT dataType1,trim(object1)

FROM relatedObjects,typeInfo,typeControl

WHERE typeDescription=’object1’

AND typeControl.typeName

=typeInfo.typeInfo.typeName

AND typeControl.defaultLibrary

=typeInfo.library

) source(ObjectType,ObjectName)

,(SELECT DISTINCT dataType2,trim(object2)

FROM relatedObjects,typeInfo,typeControl

WHERE typeDescription=’object2’

AND typeControl.typeName

=typeInfo.typeName

AND typeControl.defaultLibrary

=typeInfo.library

) target(ObjectType,ObjectName)

,relatedObjects,typeControl,typeInfo

WHERE

typeDescription=’relationship object1-object2’

AND relatedObjects.object1

=source.ObjectName

AND relatedObjects.object2

=target.ObjectName

AND typeControl.typeAbbreviation

=typeInfo.abbreviation

AND typeControl.defaultLibrary

=typeInfo.library;

3.6 Enforcing Strong Type Checking
Relationships are enforced by the relational database us-

ing predefined types linking two object types. Modeling
column names is difficult because they can be treated as
independent objects that can be related to any table or as
nested objects inside tables. In the first case the column
name appears once and in the second case it may be repli-
cated in different tables. Even though there is redundancy,
we support nesting column names inside table names be-
cause that is most similar to the relational database repre-
sentation. Therefore, to guarantee a unique object name the
table name is concatenated with the column name. When
creating relationships all source objects and all target ob-
jects must have the same data type, respectively; but source
and target objects can have different types. When creating
nested objects it is required to have separate SQL statements

to specify nesting and to specify object properties because
in general nested objects are of different types. The nesting
statement specifies the level, the object type and the object
name. The second statement complements the first state-
ment by defining the remaining object properties. Strong
type checking is essential to assure model correctness. Fur-
thermore, correct relationship creation and object nesting
are enforced through the use of type checking.

3.7 Defining Relationships
Tables in the same database are linked by foreign key re-

lationships. We define a relationship between two tables in
different databases if they have columns with similar con-
tent. We define a relationship between two columns in dif-
ferent tables, in different databases, if they have similar
content. Application programs and users have relationships
with multiple tables and columns. Such information comes
from semistructured data elements (documents) like word
processing files, spreadsheets, text files and so on. In gen-
eral, this is the most challenging step because it is a semi-
manual process and semistructured data is more inconsistent
and incomplete than data from a relational database.

3.8 Application with Scientific Databases
First, consider an application in medical databases. Sup-

pose doctors at several medical centers around the world
decided to collaborate on their research by sharing their find-
ings and data. Since these centers were independently oper-
ating before this collaboration, it is unlikely that they would
have identical database systems with compatible storage
methods. Instead, the combination of these centers would
resemble a federated database system. In this setting, the
proposed model would utilize the information stored within
semi-structured sources (documents, spreadsheets, text files,
etc) to create metadata that would be stored within a struc-
tured data central repository. Further processing would
create links between semistructured metadata and specific
tables/columns in the federated databases. The power of
discovering such links lies in its usefulness in assisting re-
searchers with locating potentially valuable data. It is in-
feasible that a researcher at Center A would know the details
of information stored at other centers. Currently, that re-
searcher would have to browse through a long list of all the
data included within those unfamiliar databases. One can
imagine how much time this must waste, especially in large
databases. On the other hand, suppose that the proposed
model was used and the centers had a repository with meta-
data linking documents to tables. These relationships would
allow scientists to determine which databases were used by
specific documents, or users. As such, researchers could now
simply lookup fellow doctors who are studying similar top-
ics and obtain knowledge regarding which databases and
tables were visited by that doctor. This would not only sig-
nificantly reduce the amount of time and effort wasted in
locating potential data, but also increase the odds of finding
valuable information. Tables 2 and 3 show example relation-
ships for the medical database.

As a second example, let us consider a federated database
to manage experiment data from researchers collaborating
on a common project. We make the following assump-
tions. Researchers work at different locations and are con-
nected by the Internet. Researchers have access to each
other’s databases and documents outside the database. The



DataType1 DataName1 Role EmpID DataType2 DataName2 Num of Rows
User Anderson Doctor 1267 Table Heart 655
User Johnson Nurse 1578 Table Thyroid 9873
User Pham Nurse 4523 Table Medication 567200
User Smith Doctor 5326 Table Heart 655
User Smith Doctor 5326 Table Treatment 7640

Table 2: Inferred macro-relationships between users and tables.

DataType1 DataName1 Size DataType2 DataName2 Type RelationshipType
Keyword Pressure 8 Column Heart.BP Float Keyword-Column
Keyword Diabetic 8 Column Heart.Diab Integer Keyword-Column
Keyword Dosage 6 Column Medication.Dosage Integer Keyword-Column
Keyword Cost 4 Column Medication.Cost Float Keyword-Column
Keyword Illness 7 Column Patient.Illness String Keyword-Column

Table 3: Direct micro-relationships between keywords and columns.

databases have some overlapping content, but they are not
integrated. There exists a large collection of documents
around each database which have experiment descriptions
with data extracted from the databases. Such data elements
include measurements, experiment parameters and hypothe-
ses. Now consider the following usages for a researcher ac-
cesing the centralized metadata repository. The user can
find all documents referring to the same table representing
some data set. The user can know equations used by other
researchers involving a certain column in a table. It is possi-
ble to investigate who used tables with similar content across
databases, enabling better interaction. The researcher can
list programs that process data sets exported out of the
database, and to understand which tasks are not commonly
performed inside the database system. Linked documents
can further help understanding how external programs pro-
cess such data sets.

4. RELATED WORK
In our approach we exploit principles from object ori-

ented databases [1], which are applied in relational database
systems [12, 4]. Integrating data coming from a variety
of sources is a well researched problem. There has been
work on translating schema information to integrate het-
erogeneous information [7], integrating unstructured [3] and
linking semistructured information [5] with databases.

Previous work on managing scientific data includes the fol-
lowing. A prototype system to manage large result files from
numerical simulations is presented in [11]. The proposed in-
terface was specifically designed for users with a scientific
background and not familiar with SQL. By using an intu-
itive searching and browsing mechanism the user can store,
search and retrieve large, distributed, files resulting from sci-
entific simulations. The interface construction is automated
and dynamic so that it requires little database/web devel-
opment experience to install and use. This is achieved by
allowing the user interface specification to be defined in an
XML file used to initialize the system and by providing a
program that can generate default XML specifications. An
architecture for creating a collaborative centralized infras-
tructure for sharing scientific data is proposed in [6]. The
architecture uses a search scheme that allows users to locate

data sets by exploiting metadata information.
Our proposal is related to previous work on measuring

and improving data quality in relational databases [9, 10].
In [10] referential integrity quality metrics are defined on a
centralized database [10]. On the other hand, [9] studies the
computation of consistent aggregations in the presence of
referential integrity errors.

5. CONCLUSIONS
Our proposal is about building metadata management

models for federated databases using a relational database
as a central metadata repository. We use an object-oriented
model to represent databases, tables, columns, documents,
users and programs as objects linked by relationships. SQL
is used to assemble objects and create relationships in object
pairs, based on carefully defined data types. Once the meta-
data database has been built it is easy to query which docu-
ments, programs and users have references to specific tables
and columns in multiple databases. Different databases can
be indirectly related through relationships with semistruc-
tured data sources. We presented potential applications
with scientific databases.

There are several issues for future work. We need to study
how to organize and automate semistructured information
more accurately. This requires preprocessing documents to
extract information in tabular form and solving inconsis-
tency issues. We need to study how to create data type
hierarchies for semistructured information. We need to con-
sider evolving logical data models where tables and columns
are constantly added or removed.

Acknowledgments
The third author is with Universidad Nacional Autónoma
de México (UNAM) and was sponsored by the UNAM IT
project ”Macroproyecto de Tecnoloǵıas para la Universidad
de la Información y la Computación”.

6. REFERENCES
[1] M. Atkison, F. Bancilhon, D.J. DeWitt, K. Dietrich,

D. Maier, and S. Zdonik. The object oriented database
system manifesto. In DOOD, pages 223–240, 1989.



[2] M. Blaha and W. Premerlani. Object-Oriented

Modeling and Design for Database Applications.
Prentice Hall, 1998.

[3] P. Buneman, S. Davidson, and M. Fernandez. Adding
structure to unstructured data. In ICDT Conference,
pages 336–350, 1997.

[4] R. Elmasri and S. B. Navathe. Fundamentals of

Database Systems. Addison/Wesley, Redwood City,
California, 3rd edition, 2000.

[5] R. Goldman and J. Widom. Enabling query
formulation and optimization in semistructured
databases. In VLDB Conference, pages 436–445, 1997.

[6] A. R. Jaiswal, C. L. Giles, P. Mitra, and J. Z. Wang.
An architecture for creating collaborative semantically
capable scientific data sharing infrastructures. In ACM

WIDM Workshop, pages 75–82, 2006.

[7] T. Milo and S. Zohar. Using schema matching to
simplify heterogeneous data translation. In VLDB

Conference, pages 122–133, 1998.

[8] S. Nestorov, S. Abiteboul, and R. Motwani.
Extracting schema from semistructured data. In ACM

SIGMOD Conference, pages 295–306, 1998.

[9] C. Ordonez and J. Garćıa-Garćıa. Consistent
aggregations in databases with referential integrity
errors. In ACM IQIS Workshop, pages 80–89, 2006.

[10] C. Ordonez and J. Garćıa-Garćıa. Referential integrity
quality metrics. Decision Support Systems Journal,
44(2):495–508, 2008.

[11] M. Papiani, J.L. Wason, A.N. Dunlop, and D.A.
Nicole. A distributed scientific data archive using the
Web, XML and SQL/MED. SIGMOD Rec.,
28(3):56–62, 1999.

[12] W. Permelani, M. Blaha, and J. Rumbaugh. An
object-oriented relational database. Comm. ACM,
33(11):99–109, 1990.

[13] J. Shanmugasundranam, H. Gang, K. Tufte,
C. Zhang, D.J. DeWitt, and J.F. Naughton.
Relational databases for querying XML documents:
Limitations and opportunities. In VLDB Conference,
pages 302–314, 1999.


