
Measuring Referential Integrity in Distributed Databases

Carlos Ordonez
University of Houston

Houston, TX, USA

Javier García-García
UNAM University

Mexico City, Mexico

Zhibo Chen
University of Houston

Houston, TX, USA

ABSTRACT
Distributed relational databases are used by different or-
ganizations located at multiple sites that work together on
common projects. In this article, we focus on distributed
relational databases with incomplete and inconsistent con-
tent. We propose to measure referential integrity errors in
them for integration and interoperability purposes. We pro-
pose local and global referential integrity metrics at three
levels: column, table and database. We assume each table
can be asynchronously updated at any site and new records
are periodically broadcasted to all sites. We explain sev-
eral distributed query optimization issues. Our proposal is
useful in database integration, multiple database interoper-
ability and data quality assurance. We discuss applications
of our proposal in distributed scientific databases.

1. INTRODUCTION
Referential integrity [3] represents the cement that keeps

relational database components together. In a relational
database such components are tables and the link between
two tables is a foreign key. Unfortunately, in a modern en-
vironment, referential integrity may be violated because ta-
bles with similar content, but coming from different source
databases, are integrated or need to inter-operate. To com-
pound the problem, nowadays many organizations use mul-
tiple databases, residing at different locations, that are com-
municated through the Internet. In general, such databases
are integrated into a data warehouse or they need to ex-
change records. Our goal is to efficiently identify tables and
columns with referential integrity problems in a distributed
database so that users detect and avoid inconsistency or in-
completeness issues. In our approach there is the underlying
assumption that it is expensive to maintain all databases
synchronized with the latest updates. For a long time scien-
tists have worked in isolation, creating private data reposi-
tories with their own experimental results. Nowadays, with
the growing usage of the Internet and faster computers, more
scientists are interested in collaborating with other scien-
tists working at different locations and storing shared data
in their local computers. We believe distributed databases
combined with referential integrity verification represent a
promising alternative to detect and fix data quality issues
in order to maintain experimental data repositories in a col-
laborative environment.

c© ACM, 2007 . This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in CIMS 2007 (CIKM 2007 workshop).
http://doi.acm.org/10.1145/1317353.1317367

The article is organized as follows. Section 2 introduces
basic definitions. Section 3 introduces referential integrity
metrics in a distributed database and identifies query op-
timization issues. Section 4 provides a description of our
program and GUI. Related work is discussed in Section 5.
Section 6 concludes the article.

2. DEFINITIONS
Our proposal is based on a distributed database at n sites

[8]. Let D = {D1, D2, . . . , Dn} be a set of n relational
databases. To have a uniform framework, all databases have
the same tables (i.e. same structure), but potentially differ-
ent content (i.e. inconsistent or incomplete content). Let
Di be defined as Di({T1, T2, . . . , Tm}, I), where Ti is a table
and I a set of referential integrity constraints.

A referential integrity constraint [3] in I, between Ti and
Tj is an assertion of the form Ti(K) → Tj(K), where Ti is
called the referencing table, Tj is called the referenced ta-
ble, K is a foreign key (FK) in Ti and K is the primary
key (PK) of Tj . Since we deal with incomplete or inconsis-
tent databases, we assume Ti may contain rows having Ti.K

values that are null or that do not exist in Tj .K. To make
our proposal more practical, we also assume tables can be
denormalized. Denormalization is generally used to reduce
query evaluation time. We use K to refer to a foreign key
and F for a foreign column in a denormalized table, that is
functionally dependent on some foreign key.

Each table Ti can be updated at any site since all sites
have local copies of Ti (replicas) that are periodically re-
freshed with sets of new records. Since the database is dis-
tributed any site can receive local updates and sets of new
records. For instance, for a distributed medical database for
hospitals each local database has patient and doctor infor-
mation that is locally updated, where a batch of new records
is periodically broadcasted to the other hospitals. The dia-
gram in Figure 1 shows a distributed database with indepen-
dent updates at each site and periodic updates broadcasting
sets of new records.

3. REFERENTIAL INTEGRITY METRICS
IN A DISTRIBUTED DATABASE

In this section we present our main contributions. First,
we introduce distributed referential integrity metrics. Then
we explain several distributed query optimization issues. Fi-
nally, we conclude by summarizing potential application in
scientific databases. Our proposal generalizes referential in-
tegrity quality metrics for a single database. We first define

Figure 1: Distributed database environment.

Letter Meaning
l local
g global
r referential
com completeness
con consistency
cur current

Table 1: Logic for acronyms of metrics.

a local metric for a single database and then such metric
is generalized to n databases. We define completeness and
consistency metrics so that they are in [0,1] (1 being the op-
timal). Table 1 summarizes the logic to name our metrics.

3.1 Assumptions
We make two assumptions:

1. Metadata has been integrated before; this is a separate
and more difficult problem.

2. Database content may be inconsistent due to both lo-
cal and global issues.

We assume tables structure is known and uniform across
databases. Broadcasting updates happens independtly and
asynchronously for each table in one database. Therefore,
tables may violate referential integrity over time. We further
assume that unique identifiers can be generated by concate-
nating the site identifier to avoid primary key duplication.

3.2 Column Metrics
An invalid foreign key or a foreign key with nulls is con-

sidered incorrect. In practice nulls are sometimes considered
correct FK values. It is straightforward to extend our defini-
tions to ignore nulls for metric computation. We first define
a metric as a local measure on a single database. Notice 1

automatically filters out invalid and null FKs. The following
metric is a completeness measure for one column:

lrcom(Ti.K) =
|Ti 1K Tj |

|Ti|
(1)

We generalize definitions to n databases. Let Ti be defined
as the global union of all local copies of Ti:

Ti = D1.Ti ∪ · · · ∪ Dn.Ti. (2)

The next metric measures global completeness for one ta-
ble and detects the existence of table replicas with missing
foreign keys.

grcom(Ti.K) =
|Ti 1K Tj |

|Ti|
(3)

This definition does not consider the case where there are
inconsistent rows such that the K is the same, but function-
ally dependent columns on K are different, because different
sites cannot generate duplicate record identifiers.

We now concentrate on consistency metrics. Let F be a
foreign column in a denormalized table Ti. The following
equation measures the local consistency:

lrcon(Ti.F) =
|σTi.F=Tj .F (Ti 1K Tj)|

|Ti|
. (4)

This equation can be computed in a simpler manner with
one relational operator as:

lrcon(Ti.F) =
|Ti 1K,F Tj |

|Ti|
. (5)

We generalize the previous definition to n databases reusing
the global union tables Ti, Tj . The following metric detects
foreign columns F that do not match their corresponding
reference values in the referenced table.

grcon(Ti.K, Ti.F) =
|Ti 1K,F Tj |

|Ti|
(6)

3.3 Table Metrics
We first define a metric to know if a table has all latest

updates (i.e. if it is current). This global metric is applicable
to both the referencing table Ti and the referenced table Tj

and is similar to the Jaccard coefficient [4]:

gcur(Ti) =
|D1.Ti ∩ D2.Ti ∩ · · · ∩ Dn.Ti|

|D1.Ti ∪ D2.Ti ∪ · · · ∪ Dn.Ti|
(7)

We now define global metrics and omit analogous defini-
tions for local metrics. Given a global table Ti with k foreign
keys K1, . . . , Kk its referential completeness is measured by:

grcom(Ti) =

∑k

j=1
|Ti|grcom(Ti.Kj)

k|Ti|
(8)

Given the global table Ti with f foreign columns K1, . . . , Kf

its referential consistency is:

grcon(Ti) =

∑f

j=1
|Ti|grcon(Ti.Fj)

f |Ti|
(9)

3.4 Database Metrics
It makes sense to only define local referential metrics for

each individual database. Given a database Di its local com-
pleteness metric can be derived by aggregating table metrics:

lrcom(Di) =

∑m

j=1
|Tj |lrcom(Tj)
∑

j
|Tj |

(10)

Figure 2: Classification of metrics.

For Di its local metric for consistency is computed aggre-
gating table consistency metrics:

lrcon(Di) =

∑m

j=1
|Tj |lrcon(Tj)
∑

j
|Tj |

(11)

Finally, we define global metrics for the entire distributed
database D for completeness and consistency, respectively:

grcom(D) =

∑m

j=1
|Tj |grcom(Tj)
∑

j
|Tj |

(12)

grcon(D) =

∑m

j=1
|Tj |grcon(Tj)
∑

j
|Tj |

(13)

The diagram in Figure 2 shows our proposed metrics clas-
sification according to data quality dimensions and being
local or global.

3.5 Query Optimization
Referential integrity metrics at the three levels are com-

puted with automatically generated SQL code. As expected,
column metrics are the most demanding. On the other hand,
table and database metrics are quickly aggregated from col-
umn metrics. For local metrics in a single database two
query optimizations are useful [7]:

• Computing aggregations grouping by foreign keys be-
fore joins for a table having several FKs. This opti-
mization reduces the size of intermediate tables when
foreign keys have low selectivity and it is based on
pushing aggregations before joins [2].

• Creating a secondary index on each foreign key for
efficient access; the cost of index creation is amortized
with frequent foreign key joins.

Generalizing optimizations to n databases is interesting
because updates can happen asynchronously at any site. We
adapted distributed query optimization techniques [8] to our

problem, assuming the cost to transfer a large table is high.
For global metrics the most important relational operation
is the global union of all local copies of one table. Such
union can be optimized by computing pairwise intersections
of tables projecting only the foreign key to determine which
tables have new rows and then transfer only new rows. Met-
rics are based on foreign keys and foreign columns which can
be projected before the global union. The second important
operation is computing the global intersection to find out
records existing at every database. The intersection opera-
tion is less demanding because intersections generally return
smaller tables.

Global metrics for all tables (say m) and the database can
be computed with several approaches:

• A static approach is to transfer n − 1 copies to some
site designated as the “central” site. When this is done
for all m tables it becomes expensive.

• A second approach is to compute metrics at one site
one time and then incrementally update them when
new records are inserted; metrics are continuously re-
computed for all m tables when they are refreshed.
The challenge is to maintain a low overhead.

• A third approach is to compute metrics for each pair of
tables linked by a foreign key on demand, when their
referential integrity needs to be verified.

When tables are large sampling can be used to get an
approximation of referential metrics. Iterated sampling are
preferred over transferring large tables. To process a dis-
tributed join the program can take advantage of a replicated
table, being locally stored at the same site, but which may
be outdated. When there is a need to join tables stored at
different sites the program projects only a minimum set of
primary keys, foreign keys and foreign attributes, covering
the generated query. When a join requires two tables stored
at different sites the smallest table is transferred to the other
site. We are currently exploring strategies to compute a dis-
tributed join with two large tables.

3.6 Application with Scientific Databases
Let us consider a distributed database to manage experi-

ment data from researchers collaborating on a common project.
We make the following assumptions. Researchers work at
different locations and are connected by the Internet. Re-
searchers have access to each other databases, but they need
to frequently compare their results with everyone else. Hence,
results must be integrated. Therefore, each researcher has
a local database for his results and keeps copies of other re-
searchers results in his database. That is, each researcher
export data sets from the other databases, downloads them
into local text files and imports those files into his local
database. Referential integrity may be locally violated be-
cause experiment data sets are manually collected outside
the database and because the local database does not have
the latest version of referenced tables. Now consider a po-
tential application scenario. Researcher A is browsing exper-
imental results from other researches. Researcher A makes
the following findings. There exists incomplete data in ex-
periments (nulls) and there is inconsistent classification of
results (similar experimental results have different foreign
column values). There are missing foreign keys in rows (i.e.
unavailable, invalid at time of experiment). It turns out that

Figure 3: Selecting tables and columns from LDM.

there is missing classification of experimental findings be-
cause there is work in progress. Based on referential metrics
researcher A realizes certain databases, from other teams,
tend to have more referential errors and when that happens
referential errors tend to be localized in tables X, Y and Z.
Researcher A can investigate which specific columns tend
to have errors to prepare a solution plan. Researchers at
other sites are probably unaware of referential issues. Two
potential solutions to fixing referential errors could be the
following. Referenced tables could be synchronized at every
site, but this implies immediately propagating new records,
which is inefficient. Keeping a central database, but this
implies there is always a fast connection and the central
database is always fast and available. In short, it is more
flexible and faster to keep local databases, even though they
may have referential errors.

4. DESCRIPTION OF PROGRAM
We now provide an overview of a prototype that can con-

nect to several distributed databases with join-compatible
tables to compute referential completeness and consistency
metrics. The program takes as input the logical data model
(LDM) behind the distributed database, which is assumed to
be uniform across local databases. The LDM is represented
as a directed graph, where each vertex represents a table and
each edge represents a foreign key relationship between two
tables. Tables can be stored at multiple sites and the LDM
is enriched with the http addresses of the DBMSs storing
each table, designating one as the master copy. The LDM is
internally manipulated as a list of foreign key relationships
between a referencing table and a referenced table. The
user can inspect the entire distributed database, which re-
quires running the program in batch mode, or interactively,
by selecting one table or a few columns from one table; see
Figure 3. The database may be denormalized. That is, some
tables may not be in 3NF [3]. In such case the user can ver-
ify foreign attribute consistency by comparing denormalized
column values against “reference”values.

Completeness and consistency metrics are initially com-
puted for each column. Then they are aggregated at the ta-
ble level and finally, they are aggregated at each database, in
a bottom-up fashion. Finally, the program computes global

Figure 4: Query optimizations.

referential metrics. The program provides several query op-
timization strategies, as shown in Figure 4. The program
sampling feature can approximate metrics, providing fair ac-
curacy guarantees, that may be improved through repeated
sampling. As discussed above, a useful query optimization is
performing an early“group by”on foreign keys before joining
a large table to accelerate processing of tables with several
foreign keys, each having a low number of distinct values;
this optimization effectively compresses a table before joins.
Response time depends on metric results stored from pre-
vious runs, at which sites tables are stored, network speed,
tables sizes and query optimizations.

When results are ready, the user has the ability to explore
local and global referential integrity metrics. When explor-
ing local metrics the user can browse each LDM by clicking
on desired tables or columns. The output is a set of met-
rics at three levels: database, table and column. Databases,
tables and columns are marked green, yellow or red, indicat-
ing no errors, some errors and significant referential issues,
respectively, as shown in Figure 5. When the user is inter-
ested in knowing why a certain column has a high error, he
can “drill down”on such column, getting a list of values with
referential errors, sorted by their frequency in descending
order. This list explains why errors happened and it can
help identifying critical values to fix referential errors.

5. RELATED WORK
In order to manage distributed scientific models and data,

a distributed database system and an enhanced metadata
support system are proposed in [1]. They focus on solv-
ing issues related to the use of scientific resources, programs
and data, in environmental applications. By means of an
extended architecture they manage distribution and hetero-
geneity of data and program sources. Additionally, they
propose mechanisms to capture model descriptions and to
monitor the distributed usage of models, programs and data.
A middleware system called MOCHA is presented in [10].
This system is used to integrate distributed data sources
and it is based on the idea that the code that implements
user-defined types and functions should be automatically de-
ployed to remote sites by the middleware system itself. This

Figure 5: Displaying referential integrity issues.

is done by means of an XML-based framework to specify
metadata about data sites, data sets, user-defined types and
functions.

A prototype system to manage large result files from nu-
merical simulations is presented in [9]. The proposed in-
terface was specifically designed for users with a scientific
background and not familiar with SQL. By using an intu-
itive searching and browsing mechanism the user can store,
search and retrieve large, distributed, files resulting from sci-
entific simulations. The interface construction is automated
and dynamic so that it requires little database/web devel-
opment experience to install and use. This is achieved by
allowing the user interface specification to be defined in an
XML file used to initialize the system and by providing a
program that can generate default XML specifications. An
architecture for creating a collaborative centralized infras-
tructure for sharing scientific data is proposed in [5]. The
architecture uses a search scheme that allows users to locate
data sets by exploiting metadata information.

Our proposal extends quality metrics defined on a single
database [7]. This article presents metrics that measure ab-
solute and relative error with respect to referential integrity.
Two new aspects in our generalization are that we measure
completeness and consistency instead of error and that we
contrast a local database state with a global state where
all referential issues are reduced or eliminated. Also, our
proposal identifies new issues related to distributed query
optimization. Our work is also related to getting consistent
aggregations under referential integrity issues [6]; this work
goes a step beyond detecting errors: it dynamically builds a
repaired answer set to a query.

6. CONCLUSIONS
We proposed metrics to discover and quantify referen-

tial integrity problems in a distributed database, consider-
ing normalized and denormalized schemas. Referential com-
pleteness and consistency metrics are defined in a hierarchi-
cal fashion at the column, table and database levels. We
discussed research issues on distributed query optimization
to efficiently compute metrics. We presented potential appli-
cation with scientific databases. As a data quality diagnostic

tool, our referential integrity distributed browser represents
a complement to programs that measure data quality in each
table individually or in a single centralized database.

Acknowledgments
The second author is with Universidad Nacional Autónoma
de México (UNAM) and was sponsored by the UNAM IT
project ”Macroproyecto de Tecnoloǵıas para la Universidad
de la Información y la Computación”. We would like to
thank René Villeda-Ruz and the students from the database
laboratory from the UNAM University for their help imple-
menting our system.

7. REFERENCES
[1] M.C. Cavalcanti, M. Mattoso, M.L. Campos,

E. Simon, and F. Llirbat. An architecture for
managing distributed scientific resources. In 14th

International Conference on Scientific and Statistical

Database Management, pages 47 – 55, 2002.

[2] S. Chaudhuri. An overview of query optimization in
relational systems. In Proc. ACM PODS Conference,
pages 84–93, 1998.

[3] R. Elmasri and S. B. Navathe. Fundamentals of

Database Systems. Addison/Wesley, Redwood City,
California, 3rd edition, 2000.

[4] J. Han and M. Kamber. Data Mining: Concepts and

Techniques. Morgan Kaufmann, San Francisco, 1st
edition, 2001.

[5] A. R. Jaiswal, C. L. Giles, P. Mitra, and J. Z. Wang.
An architecture for creating collaborative semantically
capable scientific data sharing infrastructures. In ACM

WIDM Workshop, pages 75–82, 2006.

[6] C. Ordonez and J. Garćıa-Garćıa. Consistent
aggregations in databases with referential integrity
errors. In ACM IQIS Workshop, pages 80–89, 2006.

[7] C. Ordonez and J. Garćıa-Garćıa. Referential integrity
quality metrics. Decision Support Systems Journal,
44(2):495–508, 2008.

[8] M.T. Ozsu and P. Valduriez. Principles of Distributed

Database Systems. Prentice Hall, 2nd edition, 1999.

[9] M. Papiani, J.L. Wason, A.N. Dunlop, and D.A.
Nicole. A distributed scientific data archive using the
Web, XML and SQL/MED. SIGMOD Rec.,
28(3):56–62, 1999.

[10] M. Rodriguez-Martinez, N. Roussopoulos, J. M.
McGann, S. Kelley, J. Mokwa, B. White, and J. JaJa.
Integrating distributed scientific data sources with
MOCHA and Xroaster. In SSDBM Conference, pages
263–266, 2001.

