
Building Statistical Models and Scoring with UDFs

Carlos Ordonez
University of Houston

Houston, TX 77204, USA

ABSTRACT
Multidimensional statistical models are generally computed
outside a relational DBMS, exporting data sets. This ar-
ticle explains how fundamental multidimensional statistical
models are computed inside the DBMS in a single table scan
exploiting SQL and User-Defined Functions (UDFs). The
techniques described herein are used in a commercial data
mining tool, called Teradata Warehouse Miner. Specifically,
we explain how correlation, linear regression, PCA and clus-
tering, are integrated into the Teradata DBMS. Two major
database processing tasks are discussed: building a model
and scoring a data set based on a model. To build a model
two summary matrices are shown to be common and essen-
tial for all linear models: the linear sum of points and the
quadratic sum of cross-products of points. Since such ma-
trices are generally significantly smaller than the data set,
we explain how the remaining matrix operations to build the
model can be quickly performed outside the DBMS. We first
explain how to efficiently compute summary matrices with
plain SQL queries. Then we present two sets of UDFs that
work in a single table scan: an aggregate UDF to compute
summary matrices and a set of scalar UDFs to score data
sets. Experiments compare UDFs and SQL queries (run-
ning inside the DBMS) with C++ (running outside on ex-
ported files). In general, UDFs are faster than SQL queries
and UDFs are more efficient than C++, due to long export
times. Statistical models based on the summary matrices
can be built outside the DBMS in just a few seconds. Ag-
gregate and scalar UDFs scale linearly and require only one
table scan, making them ideal to process large data sets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
Data mining ; G.3 [Mathematics of Computing]: Prob-
ability and statistics—Multivariate statistics; H.2.4 [Data-
base Management]: Systems—Relational databases

General Terms
Languages, Performance, Theory

Keywords
DBMS, SQL, statistical model, UDF

c© ACM, 2007 . This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in SIGMOD Conference 2007.
http://doi.acm.org/10.1145/1247480.1247599

1. INTRODUCTION
The problem of analyzing large data sets has been exten-

sively studied in data mining, but most research has concen-
trated on proposing efficient algorithms that work outside
the DBMS on flat files. Some well-known techniques include
association rules [2], clustering [22] and decision trees [7].
Only a few proposals have tackled the problem of actually
integrating data mining or machine learning algorithms into
the DBMS [16, 19, 20]. Integrating statistical techniques
has received even less attention due to their mathematical
nature, DBMS complexity and the comprehensive function-
ality available in statistical packages. In a modern database
environment, users generally export data sets to some statis-
tical tool, build many models outside the DBMS, score data
sets based on the best model and then the scored data sets
are imported back into the DBMS. Scoring means model ap-
plication on a data set, generally a new one. Some statistical
tools can directly score data sets by generating SQL queries.
In general, SQL is the standard language to process a data
set inside a DBMS, but unfortunately it has limitations to
perform complex matrix operations, as required in multidi-
mensional statistical models. This article explains a novel
approach in which several fundamental statistical models are
integrated into the Teradata DBMS with SQL queries and
User-Defined Functions (UDFs).

The techniques explained in this article are used in a com-
mercial data mining tool called Teradata Warehouse Miner
(TWM). TWM is a Windows client program that connects
to the DBMS server via ODBC [6] and automatically gen-
erates SQL code based on user-specified parameters. TWM
implements statistical and machine learning algorithms com-
bining SQL queries, UDFs and mathematical libraries. The
linear statistical models explained in this work, implemented
in TWM, include correlation, linear regression, factor anal-
ysis and clustering. UDFs are a standard Application Pro-
gramming Interface (API) in Teradata V2R6. UDFs in Ter-
adata are developed in the C language, compiled to object
code and executed inside the DBMS like any other SQL func-
tion. Thus UDFs represent a promising alternative to ex-
tend SQL with multidimensional statistics capabilities, ex-
ploiting C’s flexibility and speed. Therefore, SQL syntax is
not changed with a new primitive or SELECT clause. The
UDFs presented in this article are an important component
of Teradata statistical and data mining functionality, but
they can be used in any other DBMS supporting scalar and
aggregate UDFs.

The article is organized as follows. Section 2 introduces
definitions and UDFs. Section 3 explains how to build sta-

tistical models and score data sets in a single table scan
with SQL queries and UDFs. Section 4 presents experi-
ments comparing SQL, UDFs and C++, evaluating UDF
optimizations and studying time complexity. Section 5 dis-
cusses related work. Section 6 presents conclusions.

2. PRELIMINARIES

2.1 Definitions
We focus on computing multidimensional (multivariate)

statistical models on a d-dimensional data set. Let X =
{x1, . . . , xn} be the input data with n points, where each
point has d dimensions. X is a d × n matrix, where xi

represents a column vector (equivalent to a d × 1 matrix).
Entry Xli is the lth dimension from xi. For predictive pur-
poses, X may have an additional dimension with a predicted
variable Y . To avoid confusion we use i = 1 . . . n as a sub-
script for points and a, b as dimension subscripts. The T
superscript is used to indicate matrix transposition. In mul-
tivariate statistics the columns from a data set are called
“variables”. In machine learning the term “feature” is pre-
ferred. In databases the term “dimension” is the standard
and that is the term used throughout this article. We will
refer to the ath dimension (variable) as Xa. To simplify no-
tation sometimes we use Σ without subscript to mean we
are computing a sum over all rows i = 1 . . . n.

In a relational database the data set X is stored on a table
with another column i identifying the point (e.g. a customer
id), which is not used for statistical purposes. This leads to
table X being defined as X(i, X1, X2, . . . , Xd) with primary
key i. When there is a predicted numeric dimension Y , X
is defined as X(i, X1, X2, . . . , Xd, Y). Statistical models are
stored in tables as well. We use the j subscript to refer to
the jth component (factor) or the jth cluster of a model,
whose range is j = 1 . . . k. The linear regression model is
stored in a single row table having d columns, while principal
component analysis and clustering model tables have k rows
and d columns and use j as their primary key. Notice Xl

(upper case) refers to the lth dimension and xi (lower case)
is the ith point/observation.

2.2 User-Defined Functions
We explain User-Defined Functions (UDFs) in the context

of Teradata. UDFs are programmed in the C language and
can be called in any “SELECT” statement, like any other
SQL function. There are two classes of functions that can
be used in a “SELECT” statement: (1) Scalar functions,
that take a number of parameter values and return a sin-
gle value. The function produces one value for each input
row. (2) Aggregate functions, which work like standard SQL
aggregate functions. They return one row for each distinct
grouping of column value combinations and a column with
some aggregation (e.g. “sum()”). If there are no grouping
columns they return one row. We omit discussion on a third
class of UDFs that allows using external tables.

UDFs have several advantages. There is no need to modify
internal DBMS code. UDFs are programmed in the C lan-
guage and once compiled they can be used in any“SELECT”
statement like other SQL functions. The UDF source code
can exploit the flexibility and speed of the C language. UDFs
work in main memory; this is a crucial feature to reduce
disk I/O and reduce run time. UDFs are automatically ex-
ecuted in parallel in Teradata. This is an advantage, but

also a constraint because code must be developed accord-
ingly. On the other hand, UDFs have important constraints
and limitations. Currently, Teradata UDF parameters can
be only of simple types (e.g. numbers or strings, but not
arrays). UDFs cannot perform any I/O operation, which
is a constraint to protect internal storage. UDFs can only
return one value of a simple data type. In other words,
they cannot return a set of values or a matrix. Scalar func-
tions cannot keep values in main memory from row to row,
which means the function can only keep temporary vari-
ables in stack memory. In contrast, aggregate functions can
keep aggregated values in heap memory from row to row.
UDFs cannot internally call other UDFs. UDFs cannot ac-
cess memory outside their allocated heap memory or stack
memory. The amount of memory that can be allocated is
somewhat low and it is currently limited to one 64 kb seg-
ment in the Unix and Windows operating systems.

3. BUILDING MODELS AND SCORING
This section presents our main contributions. We start by

studying matrix computations in linear multivariate statis-
tical models. We identify demanding matrix computations
that are common to all techniques. Two matrices turn out
to be common for all statistical models, effectively summa-
rizing a large data set. We study several alternatives to
compute such summary matrices with SQL queries. Then
we present an efficient aggregate UDF that computes sum-
mary matrices in one table scan. We then introduce several
scalar UDFs that are used to score a data set when a statis-
tical model is available. Several research issues about query
optimization are discussed. This section concludes with a
brief time and space complexity analysis.

3.1 Statistical Models and Techniques
We focus on four fundamental statistical techniques: cor-

relation analysis, linear regression, principal component anal-
ysis and clustering. These techniques have long been used
in statistics [10] and are commonly available in statistical
packages. Therefore, it is desirable to have an efficient im-
plementation of them that can work on large data sets stored
in a relational DBMS.

Linear correlation
A fundamental technique used to understand linear relation-
ships between pairs of dimensions (variables) is correlation
analysis. The correlation matrix is not a model, but it can be
used to understand and build linear models as we shall see.
All the following sums are calculated over i and therefore
i is omitted to simplify equations. The Pearson correlation
coefficient between dimensions a and b is given by

ρab =
n

∑

xaixbi −
∑

xai

∑

xbi
√

n
∑

(xai)2 − (
∑

xai)2
√

n
∑

(xbi)2 − (
∑

xbi)2

=
n

∑

XaXb −
∑

Xa

∑

Xb
√

n
∑

X2
a − (

∑

Xa)2
√

n
∑

X2
b − (

∑

Xb)2

Linear regression
We extend the definitions given in Section 2.1. The general
linear regression model [10] assumes a linear relationship
between d independent numeric variables from X and a de-
pendent numeric variable Y : Y = βT X + β0, where Y is a

1×n matrix (consistent notation), β0 is the Y intercept and
β is the vector of regression coefficients [β1, β2, . . . , βd]. To
allow easier mathematical manipulation it is customary to
extend β with the intercept β0 and X with X0 = 1. Then
the linear regression equation becomes

Y = βT X,

where β is unknown. The solution by the minimum least
squares method is: β = (XXT)−1XY T .

The equation above requires several matrix computations.
The most important partial computation is XXT that ap-
pears as a term for β. This matrix is analogous to the
one used in correlation analysis, but in this case XXT is
a (d + 1) × (d + 1) matrix. However, this product does not
solve all computations. After computing XXT we need to
invert it and multiply it by X: (XXT)−1X. Instead, since
matrix multiplication is associative we can multiply X by
Y T first: XY T which produces a d×1 matrix. Then we can
multiply the final matrix as a product of a d× d matrix and
a d × 1 matrix: β = (XXT)−1(XY T). We use parentheses
to make the order of evaluation explicit. Matrix inversion
and matrix multiplication are problems that will be solved
outside the database system.

When β has been computed the predicted value of Y can
be estimated with: Ŷ = βT X. This computation will pro-
duce a 1× n matrix. The variance-covariance matrix of the
model parameters, which is used to evaluate error, is ob-
tained with:

var(β) =
(XXT)−1(Y − Ŷ)(Y − Ŷ)T

n − d− 1

=
(XXT)−1 ∑n

i=1(yi − ŷi)
2

n− d− 1

We can again reuse XXT to compute the first term. The
second term

∑n

i=1(yi − ŷi)
2 can be easily computed in SQL

since it is just a sum of squared differences.
Equations only require matrix computations. Inverting a

matrix is not easy to compute in SQL. Let Z be a (d+1)×n
matrix that has the d + 1 dimensions from X (including the
1s to be multiplied by β0) and Y . Then Z contains the two
matrices with n rows put together. Z = (X, Y). Therefore,
the product ZZT , has the nice property of being able to
derive XXT and XY T . There are other regression model
statistics that are easily derived from XXT , Y , β and Ŷ .

PCA and Factor Analysis
Dimensionality reduction techniques build a new data set
that has similar statistical properties, but fewer dimensions
than the original data set. Principal Component Analysis
(PCA) [10] is the most popular technique to perform di-
mensionality reduction. PCA is complemented by Factor
Analysis (FA) [10], which fits a probabilistic distribution to
the variance of X. The output of PCA and FA is a d × k
dimensionality reduction matrix Λ, where k < d. Matrix Λ
is orthogonal: ΛΛT = Id, meaning each component vector
is statistically independent. PCA and FA compute compo-
nents (factors) from the correlation matrix and the covari-
ance matrix, effectively centering X at its mean µ. The cor-
relation matrix leaves dimensions in the same scale, whereas
the covariance matrix maintains dimensions in their original

scale. PCA typically decomposes a matrix with the SVD
decomposition. Maximum likelihood (ML) factor analysis
[10, 18] uses an Expectation-Maximization (EM) algorithm
[10, 16] to get factors. In short, both techniques can work
directly with a d× d matrix derived from X.

Clustering and mixtures of distributions
K-means is the most popular clustering algorithm. The K-
means algorithm [3, 10] partitions X into k disjoint sub-
sets X1,X2, . . . ,Xk using the nearest centroid at each itera-
tion. Compared to the previous techniques, clustering can-
not build an optimal model in just one scan. The standard
version of K-means requires scanning X once per iteration,
but there exist incremental versions that can get a good,
but probably suboptimal, solution in a few or even one it-
eration(s) [15]. Our discussion focuses on one iteration. Let
Nj be the number of points in Xj . At each iteration the
centroid of cluster j is computed as:

Cj =
1

Nj

∑

xi∈Xj

xi,

where C is a d × k matrix and Cj represents a column
vector with one centroid. The cluster radius matrix, which
measures the average squared distance per dimension to Cj ,
is updated using:

Rj =
1

Nj

∑

xi∈Xj

(xi − Cj)(xi − Cj)
T .

Each cluster weight is Wj = Nj/n. In general, cluster-
ing techniques assume dimensions are independent, which
makes Rj a diagonal matrix (with zeroes off the diagonal).
In this case the sums above just require adding points and
adding squared points (getting the squared of each dimen-
sion). Rj is also known as the variance matrix of cluster j,
since covariances are ignored. Compared to the three previ-
ous techniques, we do not need to consider elements off the
diagonal for Rj .

3.2 Summary Matrices
Some of the matrix manipulations we are about to intro-

duce are well-known in statistics, but we exploit them in a
database context. We introduce the following two matrices
that are fundamental and common for all the techniques de-
scribed above. Let L be the linear sum of points, in the sense
that each point is taken at power 1. L is a d × 1 matrix,
shown below with sum and column-vector notation.

L =
n

∑

i=1

xi. (1)

L =











∑

X1
∑

X2

...
∑

Xd











Let Q be the quadratic sum of points, in the sense that
each point is squared with a cross-product. Q is d× d.

Q = XXT =
n

∑

i=1

xix
T
i . (2)

Matrix Q has sums of squares in the diagonal and sums
of cross-products off the diagonal:

Q =











∑

X2
1

∑

X1X2 . . .
∑

X1Xd
∑

X2X1

∑

X2
2 . . .

∑

X2Xd

...
...

∑

XdX1

∑

XdX2 . . .
∑

X2
d











The most important property about L and Q is that they
are much smaller than X, when n is large (i.e. d << n).
However, L and Q summarize a lot of properties about X
that can be exploited by statistical techniques. Therefore,
the basic usage of L and Q is that we can substitute every
sum

∑

xi for L and every matrix product XXT for Q. In
other words, we will exploit L and Q to rewrite equations
so that they do not refer to X, which is the largest matrix.

Linear correlation
The d× d correlation matrix ρ is given by:

ρab =
nQab − LaLb

√

nQaa − L2
a

√

nQbb − L2
b

This equation is expressed only in terms of L and Q. That
is, we do not need X.

Linear regression
In linear regression, taking the augmented matrix Z, we
can compute Q′ = ZZT and let zi = [xi, yi] represent the
augmented vector with the dependent variable Y . In this
case matrix Q is a (d + 1) × (d + 1) submatrix of Q′, with
rows and columns going from 1 to d+1 containing XY T on
the last row and the last column. We compute L′ =

∑

zi

that contains L (first d + 1 values) and
∑

yi (last value).

Q′ =

















Q11 Q12 . . . (XY T)1
Q21 Q22 . . . (XY T)2

...
...

...

Q(d+1)1 Q(d+1)2

. . . (XY T)d+1

(XY T)1 (XY T)2 . . . Y Y T

















Based on these matrices the linear regression model can
be easily constructed from Q′: β = Q−1(XY T). With β it

is straightforward to get Ŷ . Then with Ŷ we can finally
compute var(β) that just requires

∑

(yi − ŷi)
2. In short, L′

and Q′ leave var(β) as the only computation that requires
scanning X a second time. This is consequence of not being
able to derive the estimated column Ŷ without β. In short,
for linear regression L′ and Q′ do most of the job, but an
additional scan on X is needed to get Ŷ .

PCA and Factor Analysis
We now proceed to study how to solve PCA with L and Q.
As we saw above the correlation matrix can be derived from
L and XXT . The variance-covariance matrix has a simpler
computation than the correlation matrix. In statistics it is
customary to call the variance-covariance matrix Σ, but we
will use V to avoid confusion with the sum operation. A
variance-covariance matrix entry is defined as:

Vab =
1

n

n
∑

i=1

(Xa − X̄a)(Xb − X̄b),

where X̄a is the average of Xa (idem for b). This equation
can be expanded to get:

Vab =
1

n
[
∑

XaXb −
∑

XaX̄b −
∑

X̄aXb +
∑

X̄aX̄b],

which by mathematical manipulation reduces to the fol-
lowing equation based on L and Q:

Vab =
1

n
Qab −

1

n2
LaLb.

In matrix terms, V is d × d and V = Q/n − LLT /n2. In
summary, n, L and Q are enough (sufficient) to compute the
correlation matrix ρ and the covariance matrix V that are
the basic input to PCA and ML Factor Analysis; then X is
not needed anymore by SVD or the EM algorithm.

Clustering
K-means and EM are based on distance computation. The
distance between xi and Cj can be obtained with a scalar
UDF assuming Cj is one row. We explain this UDF below.

Assuming we know the closest centroid to point xi, we
perform a similar manipulation to the variance-covariance
matrix, but we consider only diagonal matrices. The jth
(j = 1 . . . k) cluster centroid and radius (variance) are:

Cj =
1

Nj

Lj ,

Rj =
1

Nj

Qj −
1

N2
j

LjL
T
j .

Finally, the cluster weight is Wj = Nj/n. We ignore
elements off the diagonal in Rj , thereby having two sums
that are computed with d operations per point, instead of
d2. Notice these equations are simple and they involve d-
dimensional vectors and d×d matrices. Therefore, they can
be easily computed inside the DBMS with plain SQL queries
or scalar UDFs, that will be explained later.

Summary of matrix applicability
We have shown n, L and Q are general enough to solve al-
most all demanding matrix computations in four different
statistical techniques. Therefore, we concentrate on ana-
lyzing how to compute them in an efficient manner in the
DBMS. For a large data set, where d << n, matrices L and
Q are comparatively much smaller than X. Therefore, the
cost to export them or write them to disk is minimal from
a time/performance perspective. This is expected to be the
typical case in a database environment.

3.3 Implementation Alternatives
In the case of the Teradata DBMS, there are five alterna-

tives to evaluate matrix expressions, taking into account X
is stored inside the database: (1) perform all matrix com-
putations with SQL queries, manipulating matrices as re-
lational tables; (2) perform all matrix computations with
UDFs, manipulating matrices with C arrays; (3) perform
no matrix operations inside the DBMS, exporting the data
set to an external statistical or data mining tool; (4) per-
form only demanding matrix computations inside the DBMS
combining SQL queries and UDFs and the rest outside; (5)
integrate all matrix operations inside the DBMS.

Alternative (1) requires generating SQL code and exploits
DBMS functionality. However, since SQL does not provide
advanced manipulation of multidimensional arrays, matrix
operations can be challenging to express as SQL queries. Al-
ternative (2) gives the ability to express matrix operations
in the C language, but given the possibility of programming
errors, the mathematical complexity of matrix computations
and the parallel nature of the Teradata DBMS, we believe
it is not advisable to program every matrix operation with
UDFs. In general, UDFs incur on less overhead than gener-
ated SQL. Alternative (3) gives great flexibility to the user
to analyze the data set outside the DBMS with any language
or statistical package. The drawbacks are the time to export
the data set or subsets of it, the potentially lower process-
ing power of a workstation compared to a large database
server and compromising data security (e.g. a bank data
set). Alternative (4) represents a compromise among the
three alternatives above. Computations inside the database
system can combine SQL queries and UDFs. From a prac-
tical point of view, there exist many off-the-shelf packages
and software libraries that can build the statistical mod-
els or perform most complex matrix computations discussed
above. Alternative (5) represents the “ideal” scenario, where
all matrix computations are done inside the database sys-
tem. But at this moment this possibility is ruled out for
two reasons: the parallel nature of Teradata and the exis-
tence of many statistical and machine learning libraries and
tools that can easily work outside the DBMS (e.g. in a
workstation). For instance, inverting a matrix, evaluating
a long expression involving many matrices, implementing a
Newton-Raphson method and computing singular value de-
composition (SVD), are difficult to program in SQL or with
UDFs. Instead, matrices L and Q are used to evaluate com-
plex, but more efficient and equivalent, matrix expressions
as explained in Section 3.2. Such matrix expressions can
be analyzed by a software system different from the DBMS,
which can reside in the database server itself or in a work-
station. Therefore, we focus on alternative (4), computing
n, L and Q for a large data set X with SQL queries and
UDFs. The remaining matrix computations involving com-
plex equations and numerical stability issues can be easily
and efficiently solved outside the DBMS.

3.4 Summary Matrices Computed with UDFs
We start by presenting a first approach to calculate L and

Q with SQL queries. Then this framework is used to develop
an efficient aggregate UDF.

Summary Matrices Computed with SQL
This is a first alternative to “push” the demanding compu-
tation of n, L, Q inside the DBMS with SQL queries. It is
simple and works in any relational DBMS. The initial task
is getting n the first time X is scanned.

SELECT sum(1.0) AS n FROM X;

The second step is computing L, which can be done with
d statements: “SELECT a,sum(Xa) FROM X”, giving the
ability to access every L entry by subscript a. L can be
equivalently computed with the SQL statement below. This
statement is faster than d statements, but L entries must be
accessed by column names.

SELECT sum(X1),sum(X2). . . ,sum(Xd) FROM X;/* L */

The third step requires computing Q. A first straightfor-
ward approach is to get one matrix entry per “SELECT”
statement. Each select statement specifies one row/column
combination. These d2 statements can be accelerated syn-
chronizing table scans.

SELECT 1,1,sum(X1 ∗X1) FROM X; /* Q */
. . .
SELECT a,b sum(Xa ∗Xb) FROM X;
. . .
SELECT d,d,sum(Xd ∗Xd) FROM X;

Given the fact that Q is symmetrical we can apply a tra-
ditional numerical analysis optimization based on the fact
that Qab = Qba: We can compute the lower triangular sub-
matrix of Q with d(d + 1)/2 operations instead of d2. For
K-means and EM clustering we only need d computations
to get the diagonal submatrix of Q.

We can compute n, L, Q more efficiently in a single SQL
statement based on the fact that n, L and Q are indepen-
dent. This is a fundamental property about sufficient statis-
tics [10] that is exploited in a database context. This prop-
erty will also be essential for aggregate UDFs.

SELECT
sum(1.0) /* n */

,sum(X1),sum(X2),. . . ,sum(Xd) /* L */
,sum(X1 ∗X1),null,. . . ,null /* Q */
,sum(X2 ∗X1),sum(X2 ∗X2),. . . ,null
. . .
,sum(Xd ∗X1),sum(Xd ∗X2),. . . ,sum(Xd ∗Xd)

FROM X;

As we can see n, L and Q can be computed in one table
scan with one “long” SQL query having 1 + d + d2 terms.

Aggregate UDF
We now explain how to compute summary matrices n, L, Q
inside the Teradata DBMS, with an efficient aggregate UDF.

Generalizing, L and Q are the multidimensional version
of sum(Xa) and sum(X2

a) for one dimension Xa, taking into
account inter-relationships between two variables Xa and
Xb. From a query optimization point of view, we reuse the
approach used for SQL by computing n, L and Q in one
table scan on X.

Aggregate UDF definition in SQL
The SQL definition specifies the call interface with parame-
ters being passed at run-time and the value being returned.
The aggregate UDF takes as parameter the type of Q matrix
being computed: diagonal (clustering), triangular (correla-
tion/PCA/FA/regression) or full (querying/visualization),
to perform the minimum number of operations required.
UDFs in Teradata cannot accept arrays as parameters or
return arrays. To solve the array parameter limitation, we
introduce two basic UDF versions: one version passes xi as
a string and the second version passes xi as a list. Both
versions take d and pack n, L, Q as a string and return it.

The amount of maximum heap memory allocated is spec-
ified with the “CLASS AGGREGATE” clause. The amount
of memory required by the “big” output value is also speci-
fied here after the “RETURNS” keyword.

Aggregate UDF variable storage
Following the one pass principle for the SQL query, the ag-
gregate UDF also computes n, L and Q in one pass. The
UDF also computes the minimum and maximum for each
dimension, which can be used to detect outliers or build his-
tograms. A C “struct” record is defined to store n, L and
Q, which is allocated in main memory in each processing
thread. Since X is horizontally partitioned each thread can
work in parallel. Notice n is double precision and d is dy-
namic for both SQL and UDFs, but the UDF has a threshold
on d (MAX d) because the UDF memory allocation is static.

typedef struct udf_nLQ_storage {

int d; double n;

double L[MAX_d];

double Q[MAX_d][MAX_d];

} UDF_nLQ_storage;

Aggregate UDF run-time execution
We omit discussion on code for handling errors (e.g. empty
tables), invalid arguments (e.g. data type) and memory allo-
cation. The aggregate UDF has four main steps that are ex-
ecuted at different run-time stages: (1) Initialization, where
memory is allocated and UDF arrays for L and Q are initial-
ized in each thread. (2) Row aggregation, where each xi is
scanned and passed to the UDF, xi entries are unpacked and
assigned to array entries, n is incremented and L and Q en-
tries are incrementally updated by Equation 1 and Equation
2. Since all rows are scanned, this step is executed n times
and therefore, it is the most time-consuming. (3) Partial re-
sult aggregation, which is required in the parallel Teradata
DBMS to compute totals, by adding subtotals obtained by
each thread. Threads return their partial computations of
n, L, Q that are aggregated into a single set of matrices by
a master thread. (4) Returning results, where matrices are
packed and returned to the user.

In step 1 since the dimensionality d of X cannot be known
at compile time, the UDF“struct”record is statically defined
to have a maximum dimensionality. This wastes some mem-
ory space but it does not affect speed. The reason behind
this constraint is that storage gets allocated in the heap be-
fore the first row is read. An alternative to allocate only the
minimum space required is to define d UDFs that have d dif-
ferent number of parameters. The UDF with k parameters
s.t. k ≤ d would have matrices L of size k and Q of size k2,
respectively.

Step 2 is the most intensive because it gets executed n
times. Therefore, most optimizations are incorporated here.
The first task is to grab values of X1, . . . , Xd. Given the con-
straint that arrays are not allowed in Teradata SQL, there
are two choices to pass a vector as a UDF parameter: (1)
packing all vector values as a long string. (2) passing all vec-
tor values as parameters individually; each of them having
a null indicator parameter as required by SQL. For choice
(1) the UDF needs to call a function to unpack xi, which
takes time O(d) and incurs on overhead. Overhead is pro-
duced by two reasons: at run-time, floating point numbers
must be cast as strings and when the long string is received,
it must be parsed to get numbers back, so that they are
properly stored in an array. The unpacking routine deter-
mines d. For choice (2) the UDF directly assigns vector en-
tries in the parameter list to the UDF internal array entries.
Given the UDF parameter compile-time definition, d must

be passed as a parameter as well. Then n in incremented
and L← L+xi. Finally, the UDF computes Q← Q+xix

T
i

based on the desired type of matrix: diagonal, triangular or
full, with triangular being the default.

3.5 Scoring Data Sets with Scalar UDFs
Once a model has been built it can be applied on data

sets having the same dimensions. Such data sets can be
used to test the accuracy of the model using the standard
train and test approach [10] or they can contain new points,
where model application is required (i.e. predicting a nu-
meric variable Y , reducing a high dimensional data set down
to a manageable dimensionality k, finding the closest repre-
sentative Cj). In statistical terms, applying a model on a
data set is called scoring. In general, step-wise procedures
for linear regression, feature selection for clustering and se-
lecting representative dimensions in PCA reduce d to some
lower dimensionality d′, effectively getting a subset of all
dimensions in X. To simplify exposition we assume all d di-
mensions are used. Since correlation is not a model, scoring
is not needed in such case; we analyze the other statistical
techniques below.

On using SQL queries to score
The following discussion applies to both SQL queries and
UDFs expressing a scoring equation. Some key differences
include the following. In general, SQL queries require a pro-
gram to automatically generate SQL code given the model
and an arbitrary input data set, but it is not possible to have
generic SQL stored procedures for such purpose, because
data sets have different columns and different dimensionali-
ties. SQL arithmetic expressions are interpreted at run-time,
whereas UDF arithmetic expressions are compiled.

Linear regression
For linear regression we have β as input. Thus we need to
compute

ŷi = βT xi

for each point xi. The regression model is stored in the
DBMS as a table BETA(β1, . . . , βd). This table layout al-
lows retrieving all coeficients in a single I/O. Scoring a data
set simply requires a dot product UDF between two vec-
tors, each having d dimensions: linearregscore(X1 , . . . , Xd,
β1, . . . , βd). This UDF returns ŷi. A cross-product join be-
tween BETA and X is computed and then xi and BETA
are passed as parameters to the UDF. Therefore, X can be
scored with a linear regression model in a single pass calling
the UDF once in a SELECT statement.

PCA and factor analysis
PCA and factor analysis produce as output the d × k di-
mensionality reduction matrix Λ, where k < d. Matrix Λ
and vector xi are used to obtain the dimensionality-reduced
k-dimensional vector x′

i for i = 1 . . . n:

x′

i = ΛT (xi − µ),

Matrix Λ is stored as a table LAMBDA(j, X1, . . . , Xd) and
the mean is stored on table MU(X1, . . . , Xd). These table
layouts allow retrieving all d dimensions in a single I/O. The
scoring equation can be computed with a UDF that takes xi,
µ and the jth component (factor) (Λj) as parameters and

returns the jth coordinate of the “reduced” vector. Vector
µ corresponds to the mean of X and is used to “center” new
points at the original mean. The UDF call is as follows:
fascore(X1, X2, . . . , Xd, µ1, µ2, . . . , µd, Λ1j , Λ2j , . . . , Λdj).
This UDF is called k times in the same SELECT statement
with j = 1 . . . k to obtain x′

i. Notice the UDF needs to
be called k times to produce k numbers since UDFs cannot
return vectors. In this case X is cross-joined with LAMBDA
k times (with aliasing to avoid ambiguity) to retrieve each
of the k components (factor) and then xi and component Λj

are passed as parameters to the UDF. Therefore, X can be
scored with a PCA or factor analysis model in a single pass,
calling the UDF k times in a SELECT statement.

Clustering
Scoring for clustering requires two steps: (1) computing dis-
tances to each centroid and (2) finding the nearest one. Clus-
ter centroids are stored on table C(j, X1, . . . , Xd), their vari-
ances are stored on table R(j, X1, . . . , Xd), and weights are
stored in table W(W1, . . . , Wk). The Euclidean distance em-
ployed by K-means between xi and Cj is given by

dj = (xi − Cj)
T (xi − Cj).

The k distances between xi and each centroid Cj , can be
obtained with a UDF that takes two d dimensional vectors:
distance(X1, . . . , Xd, C1j , . . . , Cdj). By calling this distance
UDF k times corresponding to each Cj we get k distances:
d1, . . . , dk. In this case X and the k cluster centroids Cj are
cross-joined k times (with aliasing) to compute distance dj

and then the k distances are passed as parameters to the
scoring UDF. We just need to determine the closest cen-
troid subscript J , based on the minimum distance, which is
the required score for a clustering model: J s.t. dJ ≤ dj

for j = 1 . . . k. This UDF computes the closest centroid,
based on k distances clusterscore(d1, . . . , dk). Therefore, X
can be scored based on a clustering model in a single table
scan. Both UDFs could be combined into a single UDF that
takes xi and the k cluster centroids Cj packed as a string
as parameters, effectively reducing UDF call overhead. But
this could involve long strings for high d, exceeding the SQL
parser limits.

3.6 Query Optimization
Optimizing queries calling our UDFs is a broad problem

because the UDF C code does not allow manipulating the
SQL statement calling the UDF. So far we have discussed
how to efficiently compute the summary matrices and score
the data set in one table scan, but we have not discussed how
the data set X is derived in the first place. In general X, as
defined in Section 2.1, exists as: (1) a table or (2) a view. In
either case many joins and many aggregations, are statically
computed before or dynamically computed on-demand, re-
spectively. From a query optimization view alternative (1) is
easier than (2) because X is already available and the UDFs
just require scanning X once, without worrying how X was
computed. Alternative (2) represents the general query op-
timization problem and it is challenging because X is gen-
erally a large data set, has very high dimensionality and the
view query will generally involve multiple joins and aggre-
gations on other tables and views. Therefore, we discuss
relevant query optimization techniques based on alternative
(2). In general, statistical and machine learning algorithms
work with tabular data sets, similar to X, where each dimen-

sion of X is one of the following: (a) some known property
of point i; (b) a binary flag, indicating presence/absence of
some characteristic about point i; (c) some metric. Proper-
ties of point i generally come from other tables or views, by
joining on the corresponding foreign keys and primary keys,
keeping the desired property in X in a denormalized form
(e.g. customer state, customer age). Binary flags are gen-
erally derived with the SQL CASE statement and are used
to convert categorical variables into binary dimensions (e.g.
is customer active? 1/0, where 1=yes). Metrics are gener-
ally computed with aggregations, being sum() and count()
the most common. Aggregations are used to create new
dimensions (features) (e.g. number of items purchased, to-
tal money spent). The three most relevant query optimiza-
tions are: (1) join elimination [8], which involves rewriting
queries so that unnecessary joins are avoided; this optimiza-
tion is particularly useful for scoring data sets, after some
feature selection or step-wise procedure has been done. (2)
performing group-by before join [4], which involves chang-
ing the default order of evaluation (join before group-by).
This optimization is useful when several queries aggregate
from large tables grouping by the same columns (e.g. cus-
tomer id). (3) Efficient star-join computation; in general X
is built using left outer joins using some reference table as the
left operand, containing the universe of all possible points i,
populating missing values with nulls. This optimization is
particularly useful when X is incrementally built with ver-
tical partitions of its dimensions coming from multiple large
tables (e.g. number of products purchased, number of com-
plaint calls, tenure).

3.7 Time and space complexity
Space for SQL and UDF: n takes O(1), L takes O(d), Q

takes O(d2) in memory. The outstanding property about
the UDF is that I/O time to compute L and Q is linear in
d and n: O(dn), instead of O(d2n). Time to compute Q is
O(dn) for diagonal matrices, and O(d2n) for triangular and
full matrices. Table X is scanned once with I/O time O(dn)
(except for linear regression that requires an additional scan
on X). The result table has one row and 1+ d+ d2 columns
for SQL and one row with one long string for the UDF.

Once matrices are exported statistical techniques take the
following times to build models outside the DBMS: linear
correlation takes O(d2), PCA takes O(d3), which is the time
to get SVD with the correlation matrix ρ, linear regression
takes O(d3) to invert Q and clustering takes O(dk) to com-
pute k clusters. The UDF approach will be efficient as long
as d << n, which is expected in a database environment.

When a statistical model is available scoring with UDFs
takes O(dn) for linear regression and O(dkn) for PCA, factor
analysis and clustering. However, I/O time is O(dn) for
the three techniques since the corresponding vector/matrix
operations are computed in main memory.

4. EXPERIMENTAL EVALUATION
This section presents experimental evaluation on the Tera-

data DBMS V2R6. The Teradata server had 20 parallel pro-
cessing threads in a shared-nothing architecture, four nodes
running at 1.2 GHz, 256 MB of memory per node and 1 TB
on disk. The DBMS ran under the UNIX operating sys-
tem. Data sets were horizontally partitioned evenly among
threads, where each thread was responsible for processing
1/20th of X. We also used a workstation with a 1.6 GHz

n linear correlation PCA
linear regression

×1000 C++ SQL UDF C++ SQL UDF
100 49 24 6 50 25 6
200 97 33 11 98 34 12
400 194 43 21 195 44 22
800 387 59 42 388 60 43

1600 774 105 77 775 106 78

Table 1: Total time to build models at d = 32 (secs).

CPU, 256 MB of main memory and 40 GB on disk with a
C++ implementation computing n, L, Q. Computers were
linked by a 100 Mbps LAN. Time comparisons between the
DBMS server and the workstation are not fair, but they il-
lustrate a typical database scenario, where the user has the
choice of processing data sets inside the DBMS or outside.
Average time is calculated from five runs of each experiment.

Data Sets
We generated synthetic data sets with a mixture of normal
distributions that were stored as tables. We used k = 16
distributions with means in [0,100] and standard deviation
around 10 per dimension, with about 15% of points repre-
senting uniformly distributed noise. Varying these parame-
ters does not change n or d, but we avoided data sets that
produced exceptions or undefined calculations. We varied n
and d to study UDF optimizations and to test scalability.
Since the three implementations produce the same results
the quality of solutions is not measured.

Parameter settings and default optimizations
The C++ implementation analyzed data sets stored in text
files exported out from the DBMS with the ODBC interface;
we exclude export times with faster proprietary interfaces
available in Teradata since ODBC is an industry standard.
The C++ program was optimized to scan X once, keeping L
and Q in main memory at all times. The SQL query and the
UDF compute n, L and Q in a single table scan as explained
in Section 3 and compute the lower triangular matrix for Q
by default. The UDF passes vector entries as a list (instead
of packed string) by default. Table X is read from disk every
time; table X is not cached under any circumstance.

4.1 Comparing Implementation Alternatives
We have two sets of comparisons: (1) the aggregate UDF

compared with SQL and C++, (2) the scalar UDFs com-
pared with SQL queries producing the same result and C++,
scoring outside the DBMS exporting with ODBC.

Table 1 compares C++, SQL and the UDF to compute
n, L, Q. This table excludes times to export X with ODBC
for the C++ time, which will be analyzed below; this gives
an unfair advantage to C++. The three implementations
take advantage of L and Q thereby requiring only one scan
on X. The time to build the linear regression model excludes
the time to compute Ŷ , which requires a second table scan
on X. The times to compute ρ for linear correlation, and the
times to get β for linear regression were the same. Therefore,
both time measurements appear as one column. PCA took
slightly longer (one additional second) than the other tech-
niques. In summary, all the techniques take practically the

n × 1000 d C++ SQL UDF ODBC
100 8 6 6 4 168
100 16 16 10 5 311
100 32 48 23 5 615
100 64 162 77 8 1204
200 8 12 10 9 335
200 16 31 15 10 623
200 32 96 32 10 1234
200 64 324 112 12 2407

Table 2: Time to compute n, L and Q with aggregate
UDF and time to export X with ODBC (secs).

d linear linear PCA clustering
correlation regression

4 1 1 1 1
8 1 1 1 1

16 1 1 1 1
32 1 1 2 1
64 1 2 4 1

Table 3: Time to build models with n, L, Q; time is
independent from n (secs).

same time for large data sets in each respective implementa-
tion. Comparing C++, SQL and the UDF we can see that
C++ has performance comparable to SQL only for smaller
data sets. Otherwise, C++ is much slower, especially for the
largest data set, which can be explained by the difference in
computing power between the parallel database server and
the workstation (typical scenario). C++ and UDFs show
linear behavior, but SQL does not; this will be illustrated
with graphs. The UDF shows better performance than the
SQL query in every case, but the SQL query scalability im-
proves as n increases.

Table 2 and Table 3 provide a breakdown of times shown
in Table 1 varying d for n = 100k and n = 200k. Observe
the bulk of the work in computing linear models is in getting
n, L and Q as illustrated in Table 2. Table 3 is redundant,
but it illustrates the fact that the time to build a model is
independent from n, when n, L, Q are available. That is,
the only scalability factor is d. From all the techniques only
PCA has a slightly higher time growth as d increases. But in
all cases the time to build the models is negligible compared
to the time to compute n, L, Q. The column that shows
numbers significantly higher than the rest is the ODBC col-
umn, where the time to export the data set can be as high
as two orders of magnitude higher than the time for the
UDF or the SQL query. These results indicate that export
times can become a reason not to analyze a data set out-
side the database. The UDF shows the best performance
and the trend indicates that a higher d will make the gap
wider compared to the SQL query. The SQL query comes in
second place and C++ is the slowest; adding ODBC times
makes C++ clearly the worst.

Table 4 compares SQL queries and scalar UDFs to score
a data set based on a model. SQL queries use an arith-
metic expression evaluating the corresponding model equa-
tion. We can see the UDF is as efficient as SQL to produce a
linear regression score. For PCA the UDF is also as efficient

n × 1000 technique SQL UDF
100 linear 1 1
200 regression 2 2
400 2 3
800 5 6
100 PCA 2 2
200 3 4
400 8 9
800 17 18
100 clustering 10 3
200 19 6
400 37 12
800 76 25

Table 4: Time to score X at d = 32 and k = 16 (secs).

0

20

40

60

80

0 400 800 1200 1600

T
im

e
 i
n
 s

e
c
s

n X 1000

n: triangular matrix

UDF d= 8
UDF d=16
SQL d= 8
SQL d=16

0

50

100

150

200

250

300

350

0 400 800 1200 1600

T
im

e
 i
n
 s

e
c
s

n X 1000

n: triangular matrix

SQL d=32
SQL d=64
UDF d=32
UDF d=64

Figure 1: SQL vs. aggregate UDF varying n.

as SQL to produce a k-dimensional vector multiplying by
Λ. Finally, clustering turns out to be more challenging for
SQL. In this case the UDF is faster than SQL because SQL
requires two scans on a pivoted version of X in order to get
distances and then determine the closest centroid. These
results state that UDFs are expected to be as fast or even
faster than equivalent SQL arithmetic expressions.

4.2 Optimizations for Aggregate UDF
Figure 1 compares SQL and the UDF as n grows. The

UDF shows linear behavior as n grows. SQL does not show
linear behavior when n ≤ 200, due to the overhead for pars-
ing and evaluating long “SELECT” statements. It is inter-
esting SQL is faster than the UDF when d = 8 and d = 16.
When d = 32 SQL and the UDF have about the same per-
formance, although the trend indicates that SQL will be
slightly faster as n grows. Finally, when d = 64 the UDF
becomes much faster than the SQL query and the trend in-
dicates the gap will be maintained as n grows.

Figure 2 illustrates time growth as d grows keeping n
fixed. Time growth is much slower for the UDF and in
fact, its growth is almost linear. On the other hand, SQL
time grows much faster in a quadratic fashion. Such differ-
ence in performance can be explained by the disk I/O SQL
needs to perform to create the “wide” table with 1 + d + d2

columns, whereas the UDF performs a quadratic number of
operations in memory but it is impacted mainly by the I/O
to read d dimensions. In short, these graphs indicate the
UDF is better at high d but it is slower at low d. SQL is
particularly fast for very low d.

0

20

40

60

80

100

120

0 16 32 48 64

T
im

e
 i
n

 s
e

c
s

d

d: triangular matrix

SQL n=100
SQL n=200
UDF n=100
UDF n=200

0

50

100

150

200

250

300

350

0 16 32 48 64

T
im

e
 i
n

 s
e

c
s

d

d: triangular matrix

SQL n= 800
SQL n=1600
UDF n= 800

UDF n=1600

Figure 2: SQL vs. aggregate UDF varying d.

0

20

40

60

80

0 400 800 1200 1600

T
im

e
 i
n

 s
e

c
s

n X 1000

n: parameter passing

d=8 string
d=8 list

0

40

80

120

160

200

0 16 32 48 64

T
im

e
 i
n

 s
e

c
s

d

d: parameter passing

n=1600k string
n=1600k list

Figure 3: Comparing UDF parameter passing style.

Figure 3 compares the parameter passing style for the
UDF (string-based or list-based from Section 3) . On the
left graph, when d = 8 the difference in time is marginal as
n grows and d is kept fixed at a low value. On the right
graph, time grows faster for the string-based version when n
is fixed and d grows. We can state that for d ≤ 16 the string-
based and list-based version have similar performance, but
when d ≥ 32 the list-based version becomes a much better
alternative. It is interesting that growth for the list-based
version seems almost constant with an almost zero slope.

Figure 4 illustrates the impact of optimizing matrix com-
putations in the aggregation step. Recall from Section 3
that the UDF can compute a diagonal, triangular or full
matrix. To our surprise, we can see on the left graph that
difference in time for the three types of matrices is marginal
when d = 64. On the right graph we show the trend as d
grows. We can see that time grows very slowly for the di-
agonal matrix and it grows faster for the triangular and full
matrix. In short, doing d2 operations instead of d opera-
tions makes an important difference in time at high d and a
marginal difference at low d.

We analyze how the UDF works when there is a ”GROUP
BY” clause. This type of query is particularly important
to recompute centroids and radiuses in a clustering problem
or to get several sub-models from the same data set based
on different grouping columns. We partition X on k groups
using the mod operator on i, computing a separate set of
summary matrices for each induced group, grouping by the
group subscript (j).

The data set X has d = 32, k is an integer that varies

0

20

40

60

80

100

120

0 400 800 1200 1600

T
im

e
 i
n

 s
e

c
s

n X 1000

n: matrix optimization

d=64 diag
d=64 triang

d=64 full

60

70

80

90

100

110

0 16 32 48 64

T
im

e
 i
n

 s
e

c
s

d

d: matrix optimization

n=1600k diag
n=1600k triang

n=1600k full

Figure 4: Aggregate UDF: Matrix optimization.

n ×1000 k string list
800 1 61 36
800 2 59 37
800 4 63 38
800 8 68 42
800 16 78 52
800 32 198 175

1600 1 120 73
1600 2 117 69
1600 4 124 65
1600 8 138 86
1600 16 168 118
1600 32 458 415

Table 5: Using “GROUP BY” with aggregate UDF
varying # of groups k at d = 32 (secs).

as k = 1, 2, 4, . . . , 32 and we compute a diagonal matrix by
default. This query creates k groups with similar number of
rows, each of which has its own n, L and Q. In practical
terms, this query can be used to compute k clusters if the
nearest centroid is available in column j. Table 5 shows time
growth for both parameter passing styles. In every case the
list-based version is faster than the string-based version, but
the difference in performance is less significant at k = 32.
For both versions time grows slowly when k ≤ 8, there is a
jump at k = 16 and time grows almost four times when d
doubles from 16 to 32.

Summary of importance of each optimization
The first consideration about computing n, L and Q inside
the DBMS is choosing between SQL and UDFs. If a DBMS
does not allow the creation of UDFs, then SQL may be a rea-
sonable choice for low d. SQL turned out to have better per-
formance than UDFs on low d. But a high d makes UDFs the
best choice. Experiments indicate that SQL becomes more
severely affected by I/O than UDFs since SQL internally
creates a table with one row and many columns. The style
of parameter passing is the second most important factor for
time performance. The overhead of converting numbers to
strings becomes important. This is counter-intuitive from
a database point of view because the UDF works in main
memory and parameters are passed on the run-time stack.
Packing vector entries as a string to pass them to the UDF
takes O(d) per point, whereas triangular/full matrix opera-

20

40

60

80

100

120

0 400 800 1200 1600

T
im

e
 i
n

 s
e

c
s

n X 1000

data set size

full d=64
triang d=64

diag d=64
diag d=32

triang d=32
full d=32

40

60

80

100

120

0 16 32 48 64

T
im

e
 i
n

 s
e

c
s

d

dimensionality

diag n=1600k
triang n=1600k

full n=1600k
diag n= 800k

triang n= 800k
full n= 800k

Figure 5: Aggregate UDF: Time varying n and d.

0

10

20

30

40

50

60

0 400 800 1200 1600
T

im
e

 i
n

 s
e

c
s

n X 1000

data set size

linear regression
PCA

clustering

Figure 6: Scalar UDFs to score: Time varying n.

tions take O(d2) per point. Therefore, we expected matrix
operations to be the most demanding task, which was not
the case in our experiments. In other words, the overhead
caused by converting numbers to strings and then strings
back to numbers, is greater than doing a quadratic num-
ber of arithmetic operations. Therefore, if another DBMS
has constraints on a low maximum number of parameters
(say 32), then the string-based UDF version is not much
slower than the UDF list-based version. On the other hand,
if the DBMS allows a high number of parameters then the
list-based version is the best choice. The third factor is
naturally the time complexity of matrix computations. We
have seen that even though matrix computations are done
in main memory, time starts growing in a superlinear way
when d ≥ 32. At d = 64 the difference between the diagonal
and the full matrix becomes important, although not as sig-
nificant as we expected. For practical purposes, this means
we can perform a quadratic number of operations inside the
aggregate UDF without a big concern about an impact on
time performance.

4.3 Time Complexity
Figure 5 shows time complexity for the aggregate UDF to

get n, L, Q with the most important matrix sizes: n and d.
Time growth is clearly linear for the three type of matrices.
We can observe that the difference in performance between d
values is marginal for the diagonal matrix, it is small for the

n × 1000 d # of UDF calls total time
100 64 1 7
100 128 4 28
100 256 16 110
100 512 64 438
100 1024 256 1753

Table 6: Time growth for high d. Times in seconds.

triangular matrix and it becomes bigger for the full matrix.
Time growth for the diagonal matrix is almost zero. Time
grows slightly faster for the full matrix compared to the
triangular matrix. But for the triangular and full matrices
time growth does not look quadratic. In fact, it is almost
linear. This is good news because it indicates that we can
do up to d2 operations in memory with little impact on
performance. However, it is also bad news because no matter
how much we optimize the aggregation step, I/O will remain
a bottleneck.

Table 6 shows time growth for problems with highly di-
mensional data sets, where d ≥ 64. In this case, the problem
of computing L and Q is divided into subproblems that can
fit in submatrices with d = 64, given the fact that matrices
can be partitioned by row/column ranges. Each UDF call
computes a portion of L and Q, specified by the ranges for
subscripts a and b. In this case all the UDF calls are sub-
mitted as a single request with a synchronized table scan
optimization. As can be seen, the total elapsed time is pro-
portional to the number of calls.

Figure 6 shows time complexity to score data sets with
d = 32 and varying n. For PCA and clustering k = 16.
The plots show the scoring UDFs scale linearly with respect
to n. Clustering is the most demanding technique, closely
followed by PCA. Scoring for linear regression is the fastest
since it only requires a simple vector dot product.

5. RELATED WORK
Although there has been considerable work in data mining

to develop efficient mechanisms for computation, most work
has concentrated on proposing algorithms assuming the data
set is available in a flat file outside the DBMS. Statistics and
machine learning have paid little attention to large data sets,
which is precisely the primary focus of data mining. Study-
ing purely statistical techniques in a database context has
received little attention. Most research work has concen-
trated on association rules [2], followed by clustering [1, 22]
and decision trees [7]. The importance of the linear sum
of points and the quadratic sum of points (without cross-
products) to decrease I/O in clustering is recognized in [3,
22], but they assume the data set is directly accessible with
some I/O interface. We have gone well beyond that point,
showing the linear sum and the quadratic sum of points with
dimension cross-products solves four fundamental statistical
problems. This contribution is independent from implemen-
tation.

There exist many proposals that extend SQL with data
mining functionality. Teradata SQL, like other DBMSs, pro-
vides advanced aggregate functions to compute linear regres-
sion and correlation, but it only does it for two dimensions.
Most proposals add syntax to SQL and optimize queries us-
ing the proposed extensions. Several techniques to execute

aggregate UDFs in parallel are studied in [12]; these ideas are
currently used by modern parallel relational database sys-
tems such as Teradata. UDFs implementing common vector
operations are proposed in [17], which shows UDFs are as
efficient as automatically generated SQL queries with arith-
metic expressions, proves queries calling scalar UDFs are sig-
nificantly more efficient than equivalent queries using SQL
aggregations and shows scalar UDFs are I/O bound. Data
mining primitive operators are proposed in [5], including an
operator to pivot a table and another one for sampling, use-
ful to build data sets. SQL extensions to define, query and
deploy data mining models are proposed in [14]; this pro-
posal focuses on managing models rather than computing
them and therefore such extensions are complementary to
our UDFs. Query optimization techniques and a simple SQL
syntax extension to compute multidimensional histograms
are proposed in [11], where the GROUPING SETS clause is
optimized. Computation of sufficient statistics for classifi-
cation in a relational DBMS is proposed in [9]. Developing
data mining algorithms, rather than statistical techniques,
using SQL has received moderate attention. Some impor-
tant approaches include [13, 19] to mine association rules,
[16, 15] to cluster data sets using SQL queries, and [20] to de-
fine primitives for decision trees. SQL syntax is extended to
allow spreadsheet-like computations in [21], letting an end-
user express complex equations in SQL, but such approach
is not as flexible and efficient as UDFs to express matrix
equations.

6. CONCLUSIONS
We explained how linear multidimensional statistical mod-

els are integrated into the Teradata DBMS with SQL queries
and UDFs. The techniques presented in this work are used in
a commercial data mining tool called TWM. We focused on
four well-known statistical techniques including correlation,
linear regression, principal component analysis and cluster-
ing. UDFs are presented in two groups: an aggregate UDF
that computes summary matrices to build models and a set
of scalar UDFs to score data sets given a model as input.
In general, UDFs can process a data set in a single table
scan (except clustering). To build models, statistical tech-
niques take advantage of two sufficient statistics matrices
that effectively summarize a large, high dimensional data
set. The first matrix contains the linear sum of points and
the second one contains the quadratic sum of points with
dimension cross-products. Complex matrix equations for a
model based on sufficient statistics can be efficiently evalu-
ated outside the DBMS in a few seconds. Two alternatives
to compute sufficient statistics were discussed: with plain
SQL queries and with a faster UDF. Both alternatives re-
quire only one table scan. We then presented a set of scalar
UDFs to score data sets in a single pass based on linear
regression, PCA and clustering models. UDFs are efficient
since they work in main memory, but they are constrained
by the DBMS architecture. Experiments compare UDFs and
SQL queries (running inside the DBMS) and C++ (running
outside the DBMS). Long export times using ODBC rep-
resent a limitation to analyze a data set outside the DBMS
with C++. The aggregate UDF can compute a diagonal, tri-
angular or a full summary matrix to improve performance.
There is a small performance gain at low dimensionality
when computing a diagonal instead of a triangular matrix
or when computing a triangular instead of a full matrix,

but such gain becomes important at high dimensionality.
Scalar UDFs to score data sets and the aggregate UDF to
compute summary matrices exhibit linear scalability, high-
lighting their remarkable efficiency.

These are several issues for future research. Other statis-
tical techniques can benefit from the same approach: finding
matrices that summarize large data sets to build a model, ef-
ficiently computing such matrices with aggregate UDFs and
scoring data sets through scalar UDFs. Studying in depth
optimization of queries calling UDFs that directly access
views is an important next step. Disk I/O remains a bot-
tleneck to develop even faster UDFs, but there are further
optimizations like main or cache memory processing, block
read-ahead and synchronized table scans on query steps ac-
cessing the same table that may further reduce time.

Acknowledgments
This work was partially conducted while the author worked
at Teradata, a division of NCR Corporation. The author
thanks Mike Rote, Tim Miller, the TWM (Teradata Ware-
house Miner) team and the data mining consulting team for
many interesting discussions and their support.

7. REFERENCES
[1] R. Agrawal, J. Gehrke, D. Gunopolos, and

P. Raghavan. Automatic subspace clustering of high
dimensional data for data mining applications. In
ACM SIGMOD Conference, pages 94–105, 1998.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large
databases. In ACM SIGMOD Conference, pages
207–216, 1993.

[3] P. Bradley, U. Fayyad, and C. Reina. Scaling
clustering algorithms to large databases. In Proc.
ACM KDD Conference, pages 9–15, 1998.

[4] S. Chaudhuri. An overview of query optimization in
relational systems. In Proc. ACM PODS Conference,
pages 84–93, 1998.

[5] J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and
P. Lohman. Non-stop SQL/MX primitives for
knowledge discovery. In ACM KDD Conference, pages
425–429, 1999.

[6] R. Elmasri and S. B. Navathe. Fundamentals of
Database Systems. Addison/Wesley, Redwood City,
California, 3rd edition, 2000.

[7] J. Gehrke, Venkatesh Ganti, and R. Ramakrishnan.
BOAT-optimistic decision tree construction. In Proc.
ACM SIGMOD Conference, pages 169–180, 1999.

[8] A. Ghazal, A. Crolotte, and R. Bhashyam. Outer join
elimination in the Teradata RDBMS. In DEXA
Conference, pages 730–740, 2004.

[9] G. Graefe, U. Fayyad, and S. Chaudhuri. On the
efficient gathering of sufficient statistics for
classification from large SQL databases. In Proc. ACM
KDD Conference, pages 204–208, 1998.

[10] T. Hastie, R. Tibshirani, and J.H. Friedman. The
Elements of Statistical Learning. Springer, New York,
1st edition, 2001.

[11] A. Hinneburg, D. Habich, and W. Lehner.
Combi-operator-database support for data mining
applications. In Proc. VLDB Conference, pages
429–439, 2003.

[12] M. Jaedicke and B. Mitschang. On parallel processing
of aggregate and scalar functions in object-relational
DBMS. In ACM SIGMOD Conference, pages 379–389,
1998.

[13] R. Meo, G. Psaila, and S. Ceri. An extension to SQL
for mining association rules. Data Mining and
Knowledge Discovery, 2(2):195–224, 1998.

[14] A. Netz, S. Chaudhuri, U. Fayyad, and J. Berhardt.
Integrating data mining with SQL databases: OLE
DB for data mining. In Proc. IEEE ICDE Conference,
pages 379–387, 2001.

[15] C. Ordonez. Integrating K-means clustering with a
relational DBMS using SQL. IEEE Transactions on
Knowledge and Data Engineering (TKDE),
18(2):188–201, 2006.

[16] C. Ordonez and P. Cereghini. SQLEM: Fast clustering
in SQL using the EM algorithm. In Proc. ACM
SIGMOD Conference, pages 559–570, 2000.

[17] C. Ordonez and J. Garćıa-Garćıa. Vector and matrix
operations programmed with UDFs in a relational
DBMS. In Proc. ACM CIKM Conference, pages
503–512, 2006.

[18] S. Roweis and Z. Ghahramani. A unifying review of
linear Gaussian models. Neural Computation,
11:305–345, 1999.

[19] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating
association rule mining with relational database
systems: alternatives and implications. In Proc. ACM
SIGMOD Conference, pages 343–354, 1998.

[20] K. Sattler and O. Dunemann. SQL database
primitives for decision tree classifiers. In Proc. ACM
CIKM Conference, pages 379–386, 2001.

[21] A. Witkowski, S. Bellamkonda, T. Bozkaya,
G. Dorman, N. Folkert, A. Gupta, L. Sheng, and
S. Subramanian. Spreadsheets in RDBMS for OLAP.
In Proc. ACM SIGMOD Conference, pages 52–63,
2003.

[22] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
An efficient data clustering method for very large
databases. In Proc. ACM SIGMOD Conference, pages
103–114, 1996.

