
1

Estimating and Bounding Aggregations in
Databases with Referential Integrity Errors∗

Javier Garcı́a-Garcı́a
Universidad Nacional Autónoma de México

Facultad de Ciencias
UNAM, Mexico City, CU 04510, Mexico

Carlos Ordonez
University of Houston

Department of Computer Science
Houston, TX 77204, USA

Abstract—Database integration builds on tables coming from
multiple databases by creating a single view of all these data.
Each database has different tables, columns with similar content
across databases and different referential integrity constraints.
Thus, a query in an integrated database is likely to involve
tables and columns with referential integrity errors. In a data
warehouse environment, even though the ETL processes take
care of the referential integrity errors, in many scenarios this is
generally done by including ‘dummy’ records in the dimension
tables used to relate to the fact tables with referential errors.
When two tables are joined, and aggregations are computed,
the tuples with an undefined foreign key value are aggregated
in a group marked as undefined effectively discarding poten-
tially valuable information. With that motivation in mind, we
extend aggregate functions computed over tables with referential
integrity errors on OLAP databases to return complete answer
sets in the sense that no tuple is excluded. We associate to each
valid reference, the probability that an invalid reference may
actually be a certain correct reference. The main idea of our
work is that in certain contexts, it is possible to use tuples
with invalid references by taking into account the probability
that an invalid reference actually be a certain correct reference.
This way, improved answer sets are obtained from aggregate
queries in settings where a database violates referential integrity
constraints.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems - Query process-
ing

General Terms

Languages, Experimentation

Keywords

Functions, data quality, SQL

I. INTRODUCTION

There has been a growing interest on the problem of ob-
taining improved answer sets produced by queries in a setting

∗This is the authors version of the work. The official version of this article was
published in Proc. ACM Workshop on Data Warehousing and OLAP (DOLAP, CIKM
2008 Workshop), p. 49-56, 2008

where a database has incomplete content or violates integrity
constraints [4], [3], [1], [2]. This is a common scenario in a
data warehouse, where multiple databases of different reliabil-
ity and similar contents are integrated. One way to deal with
the problem is by updating the database in order to achieve
consistency. This strategy has been thoroughly studied recently
and several solutions have been proposed. In [5] consistency
is achieved by inserting or deleting tuples, whereas in [16]
attribute values are changed. The objective of the proposed
techniques is to repair the original database to convert it into
a consistent database. Once repaired, the database is ready to
be exploited, for example, with OLAP queries. Fixing errors is
difficult since it requires understanding inconsistencies across
multiple tables, potentially going back to the source databases.
In many data warehouse environments, the repair is done by
adding rows to some dimension tables to make explicit that the
fact with an invalid foreign key exists in the database but the
dimension record is not available or undefined, thus leaving
the database without referential interity errors.

In this work we propose a different strategy in order
to obtain improved answer sets produced by queries posed
over tables with invalid references that involve aggregation
functions. Instead of repairing (changing) the invalid values
of a foreign key in the original database, or inserting records
into the dimension tables referenced by the fact tables with
invalid values and returning “undefined” groups in the answer
set, we estimate and bound aggregation answer sets by using
the most likely values from the correct references. Our interest
is to determine the expected correct values and the lower and
upper bounds of aggregations where foreign keys are involved.
In this paper we generalize and expand the ideas presented in
[11]. Based on our initial studies, we present two families
of extended aggregate functions and show that our aggregates
together with the standard SQL grouped attribute aggregations
computed over a joined table on foreign key-primary key
attributes with potential referential integrity violations are part
of a common probabilistic framework.

The article is organized as follows: Section II presents defi-
nitions. In Section III we explain how to compute aggregations
in the presence of referential integrity errors and we introduce
several families of extended aggregations. Section IV presents



2

experiments. Section V discusses related research. Section VI
concludes the article.

II. DEFINITIONS

A. Referential Integrity

A relational database is denoted by D(R, I), where R is a
set of N tables R = {R1, R2, . . . , RN}, Ri is a set of tuples
and I a set of referential integrity constraints. A referential
integrity constraint, belonging to I , between two tables Ri
and Rj is a statement of the form: Ri(K) → Rj(K), where
Ri is the referencing table, Rj is the referenced table, K is a
foreign key (FK) in Ri and K is the primary key or a candidate
key of Rj . In general, we refer to K as the primary key of Rj .
To simplify exposition we assume simple primary and foreign
keys and the common attribute K has the same name on both
tables Ri and Rj .

Let ri ∈ Ri, then ri [K] is a restriction of ri to K. In a valid
database state with respect to I , the following two conditions
hold for every referential constraint: (1) Ri.K and Rj .K have
the same domains. (2) for every tuple ri ∈ Ri there must exist
a tuple rj ∈ Rj such that ri [K] = rj [K]. The primary key
of a table (Rj .K in this case) is not allowed to have nulls.
But in general, for practical reasons the foreign key Ri.K is
allowed to have nulls when its value is not available at the
time of insertion or when tuples from the referenced table are
deleted and foreign keys are nullified.

Referential integrity can be relaxed. We assume the database
may be in an invalid state with respect to I . That is, some
referential integrity constraints may be violated in subsets of
R. A database state where there exist referential errors is
called relaxed state. In a relaxed database Ri may contain
tuples having Ri.K values that do not exist in Rj .K. In a
data warehouse environment, a commonly used strategy to
avoid that joins return answer sets that exclude tuples, is
by inserting ‘dummy’ records into the dimension tables to
explicitly indicate not available or undefined references.

B. Aggregations

Let Fagg(R.A) be a simplified notation to denote the
answer set returned by an aggregation, where agg() is an
aggregate function and A is some attribute in R to compute
aggregations on, or equivalently in SQL

SELECT agg(R.A) FROM R.

The value of this atomic table with one tuple and one attribute
will be denoted as agg(R.A) to make it compatible for
arithmetic and logical expressions. The aggregate function list
over attribute A associated to the values of grouping attribute
B will be denoted as BFagg(R.A). Throughout the article,
since there exist several different definitions for aggregate
functions [9] which have distinct semantics, when we refer
to an aggregate function agg(), it is taken from {count(*),
count() and sum()} based on the standard SQL definition
[6]. Our proposal can be applied in any database. However,
our examples refer to an OLAP database. In this work, the
following two tables will be used:

Ri(PK, . . . ,K, . . . A, . . . ), Rj(K, . . . ),

where Ri with primary key PK represents a referencing table
playing the role of the fact table and Rj represents a referenced
table acting as the dimension table. Attribute K is a foreign
key in Ri and the primary key in Rj , A is a measure attribute
over which the aggregate function is applied.

We are particularly interested in computing aggregations
over a joined table on foreign key-primary key attributes,
with potential referential integrity violations, in this case, over
Ri onK Rj . We are also motivated by situations where the
user is not interested in receiving an “undefined” group in the
answer set as explained above.

Motivated by the fact that a null reference provides no
information and the on operator eliminates Ri tuples with a
null on K, if Ri.K in the referencing table is null in some
tuple we may consider such tuple incorrect. However, for the
cases where foreign keys are allowed to have nulls, as happens
especially in data warehouses, less restrictive definitions are
required that assume that foreign keys are allowed to have
nulls. To consider both scenarios, and in order to simplify our
exposition, throughout the article we will denote as R[K] the
set of values in πK(R) and may or may not include the null
value depending on if it is considered valid or not. When null
in the foreign key is considered correct, all the tuples with
a null in its foreign key are treated as members of a single
group of tuples, the null group. Proper explanations will be
given for each case. We denote a generic null value by η.

With these ideas in mind, the answer set returned by an
aggregation over a joined table on foreign key-primary key
attributes, with potential referential integrity violations will be
denoted as: Fagg(Ri.A, ri[K] ∈ Rj [K]) or equivalently in
SQL assuming η is invalid
SELECT agg(Ri.A) FROM Ri JOIN Rj ON Ri.K = Rj .K

where agg() is an aggregate function, as defined above. The
corresponding aggregate function list with grouping attribute
K will be denoted as: KFagg(Ri.A, ri [K] ∈ Rj [K]), written
in SQL as

SELECT agg(Ri.A)
FROM Ri JOIN Rj ON Ri.K = Rj .K GROUP BY Ri.K

For the cases where the user is not interested in receiving
an “undefined” group in the answer set of the aggregation, to
detect tuples with invalid references, we propose to create a
view of the referenced table Rj [K] that excludes the records
that have undefined, not available or a similar description,
causing the undefined values in Ri[K] to be discarded from
the answer set. These cases will be treated as if the undefined
foreign key values were referential integrity errors.

In formal terms the problem we are solving is the following.
An inconsistency may arise due to referential integrity errors
when group:

KFagg(Ri.A) 6= KFagg(Ri.A, ri[K] ∈ Rj [K]) (1)

and total aggregates:

Fagg(Ri.A) 6= Fagg(Ri.A, ri[K] ∈ Rj [K]) (2)

are computed over joined tables. Finally, given k ∈ Rj [K],
we will denote as agg(Ri.A, ri [K] = k) the value of the
aggregate function list KFagg(Ri.A, ri [K] ∈ Rj [K]) that



3

sales
sId cityId amt qtr

1 LAX 54 1

2 LAX 64 2

3 MEX 48 1

4 NXX 33 2

5 η 65 3

6 ROM 53 1

7 ROM 58 2

8 MAD 39 1

city

cityId cityName
LAX Los Angeles
LON London
MAD Madrid
MEX Mexico
ROM Rome

Fig. 1: A store database in a relaxed state with invalid foreign
keys highlighted.

SELECT city.cityId,
cityName, sum(amt)
FROM sales JOIN city
ON
sales.cityId=city.cityId
GROUP BY city.cityId,
cityName
UNION
SELECT ‘-TOT.’, ‘-’,
sum(amt) FROM sales

cityId cityName sum

(amt)

LAX Los Angeles 118

MAD Madrid 39

MEX Mexico 48

ROM Rome 111

-TOT. - 414

Fig. 2: Inconsistent answer set (total is inconsistent).

corresponds to the tuples where ri [K] = k.

C. Motivating Example

Our examples throughout the article are based on the
following database with two tables:
sales(sId, cityId, amt,qtr., . . . ), city(cityId, cityName, . . . )

The database in a relaxed state is shown in Figure 1, where
invalid references are highlighted.

Example 1 The attribute cityId in sales is a foreign key. The
referential integrity constraint, sales(cityId) →
city(cityId), should hold between the two tables. Now ob-
serve the query in Figure 2. The unioned query computes
the sales amounts grouped by city.cityId, cityName and the
total sales amount. But, as we can see, the answer set is
inconsistent in a summarizable sense. That is, let s ∈ sales:
Fsum(sales.amt) 6=Fsum(sales.amt, s[cityId]
∈ city[cityId]) their total sum of sales amount is different.

In this relaxed state the answer sets are inconsistent due to
the existence of referential integrity errors. The first unioned
query gives grouped aggregates, that considered as a whole,
are inconsistent with respect to the total given by the same
query. The answer set represents the original database, but
with the tuples with referential integrity errors deleted. Invalid
tuples are eliminated from the aggregate function answer set.
Now, assuming that there is a high probability that the tuples
with invalid foreign keys, that is, invalid values in attribute
cityId, represent true facts, could we improve the aggregate
answer set grouped by city.cityId, cityName? Can we get an
approximate answer set of the true real values?

In a data warehouse environment, where no referential
integrity errors exist due to the existence of a value in

city.cityId matching the undefined values in foreign key
sales.cityId, city is then a view of the original table with
the record with the matching undefined value in city.cityId
discarded. The records with a foreign key value referencing
the tuple marked as undefined, will be considered records with
a referential integrity error.

III. AGGREGATIONS IN DATABASES WITH REFERENTIAL
INTEGRITY ERRORS

In this section we will present our proposal. First we
will provide some preliminary definitions. Based on these
definitions we present our extended aggregations in databases
with referential integrity errors.

A. Preliminary Definitions

For the following definitions, consider a relaxed database
where the referential integrity constraint Ri(K) → Rj(K)
could be violated. As stated in Section II-B, we denote as
Rj [K] the set of values in πK(Rj) and may or may not include
the null value and/or a ‘dummy’ value used to relate undefined
values depending on if η (null) and/or the ‘dummy’ value are
considered valid values or not.

The following definition is in the spirit of the definition of
partial probability in [10]. A partial probability is a vector
which associates a probability with each possible value of
a partial value. This last value corresponds to a subset of
elements of the domain of an attribute, and one and only one
of the elements of the subset is the true value of the partial
value.

Definition 1 Referential partial probability (RPP) The RPP
is a vector of probabilities that corresponds to a foreign
key, say Ri.K, where its probabilities are associated to each
value of the referenced primary key, say Rj .K. Each value
corresponds to the probability that an invalid foreign key in
Ri.K is actually the associated correct reference in Rj .K.
Let k ∈ Rj [K], and p(k) ∈ RPP the associated probability.
We say that Rj .K is complete under the RPP if∑

k∈Rj [K]

p(k) = 1 (3)

The idea behind the RPPs is to associate to each primary
key value a probability. Each probability corresponds to the
probability that the associated value be the correct reference
in a tuple with an invalid value in the corresponding foreign
key. Notice that for each referenced key, a set of RPPs may
be defined, one or more for each foreign key that references
it. Users with good database knowledge may assign these
probabilities. Depending on the probabilities the user assigns
to the valid foreign key values, different RPPs that satisfy
completeness (Equation 3) can be defined. If the probability
values are associated to a discrete probability distribution we
can have a uniform or Zipf or geometric or in general, any
probability distribution function RPPs. For example, if all the
valid foreign key values were equally probable, a uniform RPP
would be defined. Another special case could be a skewed
probability distribution function where the user may want



4

to assign probability one to a specific valid reference and
zero to all others. Nevertheless, a feasible way to assign
these probabilities when computing our proposed aggregate
functions is following the intuition that a high probability will
correspond to a high frequency in the foreign key and a low
probability corresponds to a low frequency.

Definition 2 Frequency weighted RPP Let k ∈ Rj [K] and
n = | { ri ∈ Ri | ri[K] ∈ Rj [K] } |, the number of tuples
with a valid reference in ri[K]. We define p(k) as

p(k) =


|σK=k(Ri)|

n if n 6= 0

1
|Rj | otherwise

We are assuming a uniform probability distribution function
if there are only invalid values in Ri.K, since we do not have
more information. Thus defined then Rj .K is complete under
the Frequency weighted RPP.

Example 2 Consider the relaxed database of Figure 1. The
Frequency weighted RPP that corresponds to sales.cityId con-
sidering the values of the referenced primary key city.cityId,
〈LAX,MEX,ROM,MAD,LON 〉, is

〈2
6
,
1
6
,
2
6
,
1
6
, 0〉

Other feasible ways to assign the probabilities of the RPP
achieving completeness can be designed such as a uniform or a
constant RPP following the ideas presented above. The former
one consists in associating to each correct reference an equal
probability meaning that an invalid reference has an equal
probability of being in fact any potentially valid reference.
For this case, the value of each probability is 1/|Rj | or, if η
is considered valid, 1/(|Rj | + 1). The constant RPP consists
in assigning to one potentially valid reference probability
1, meaning that all the invalid references are, in fact, the
corresponding correct reference.

We can design RPPs that fail to meet completeness. Two
special RPPs where completeness may not be satisfied are the
following:

Definition 3 Full RPP Define p(k) as p(k) = 1.

Definition 4 Restricted RPP Define p(k) as p(k) = 0.

With the Full RPP we associate to each correct reference
probability 1, meaning that every invalid value of the foreign
key is in fact the associated valid value. On the other hand,
with the Restricted RPP we associate probability 0 instead.

Definition 5 Referentiality (REF) Let ri ∈ Ri and k ∈
Rj [K], we define the referentiality of a foreign key value ri[K]
with respect to k, REF (ri[K], k), as follows:

REF (ri[K], k) =


1 if ri[K] = k

0 if ri[K] 6= k

and ri[K] ∈ Rj [K]
p(k) if ri[K] /∈ Rj [K]

where the probability p(k) corresponds to a given RPP.

TABLE I: Extended aggregates according to different RPPs.

Name abrev. prefix RPP
Weighted WR w Any RPP that

referential satisfies completeness
Frequency FWR fw Frequency
weighted referential weighted

Full referential FR f Full
Restricted RR r Restricted

referential

TABLE II: Referentialities (Definition 5) of foreign key
sales.cityId values in valid tuples

REF (s [cityId] , k) LAX LON MAD MEX ROM
< 1,LAX,. . . , 54,. . .> 1 0 0 0 0

< 2,LAX,. . . , 64,. . .> 1 0 0 0 0

< 3,MEX,. . . , 48,. . .> 0 0 0 1 0

< 6,ROM,. . . , 53,. . .> 0 0 0 0 1

< 7,ROM,. . . , 58,. . .> 0 0 0 0 1

< 8,MAD,. . . , 39,. . .> 0 0 1 0 0

Intuitively, REF(ri[K],k) is the degree to which a foreign
key value ri[K] in a tuple ri ∈ Ri refers to a correct reference
k ∈ Rj [K].

B. Extended Aggregate Function Definitions

For the following definitions, consider a relaxed database
where the referential integrity constraint Ri(K) → Rj(K)
could be violated. Let ri ∈ Ri and k ∈ Rj [K]. Our extendend
aggregate functions computed over relaxed databases with
referential integrity errors will be defined under a given RPP
as follows:

x count(Ri.PK, ri [K] = k) =
∑
ri∈Ri

REF (ri [K] , k) (4)

x count(Ri.A, ri [K] = k) =
∑
ri∈Ri

REF (ri [K] , k) (5)

x sum(Ri.A, ri [K] = k) =
∑
ri∈Ri

ri [A] ∗REF (ri [K] , k)

(6)In Equations 5 and 6, we are assuming the tuples with
η in ri[A] are ignored. For the x sum() aggregates, we are
assuming also, as in many OLAP scenarios (e.g. Example 1),
that the ri[A] values, when different from zero, are always
positive or negative. The specific name and meaning of the
extended aggregate is obtained by changing prefix x and
using the corresponding RPP, according to Table I.

Equation 4 corresponds to count(*). When η is assumed
to be an invalid reference, the RR extended aggregates cor-
respond to the standard SQL aggregations computed over
a joined table on foreign key-primary key attributes, with
potential referential integrity violations.

Example 3 Consider the relaxed database of Figure 1. Let
s ∈ sales. The referentiality of the values in sales.cityId that
corresponds to each of the valid tuples is shown in Table II.

The referentiality of the same foreign key that corresponds
to the invalid tuples using different RPPs is shown in Table
III. Next we show how to compute the different extended
aggregates that correspond to the aggregate sum() using the
corresponding RPP shown in Table III.



5

TABLE III: Referentialities (Definition 5) of foreign key
sales.cityId values in invalid tuples with different RPPs (Def-
inition 1).

REF (s [cityId] , k) LAX LON MAD MEX ROM
Frequency weighted RPP
< 4,NXX,. . . , 33,. . .> 2/6 0 1/6 1/6 2/6

< 5, η ,. . . , 65,. . .> 2/6 0 1/6 1/6 2/6

Full RPP
< 4,NXX,. . . , 33,. . .> 1 1 1 1 1

< 5, η ,. . . , 65,. . .> 1 1 1 1 1

Restricted RPP
< 4,NXX,. . . , 33,. . .> 0 0 0 0 0

< 5, η ,. . . , 65,. . .> 0 0 0 0 0

Uniform RPP
< 4,NXX,. . . , 33,. . .> 1/5 1/5 1/5 1/5 1/5

< 5, η ,. . . , 65,. . .> 1/5 1/5 1/5 1/5 1/5

Frequency weighted referential:
fw sum(sales.amt, s [cityId] = LAX)

= 1× 54 + 1× 64 + 0× 48 + 2/6× 33
+ 2/6× 65 + 0× 53 + 0× 58 + 0× 39 = 150.66

Full referential:
f sum(sales.amt, s [cityId] = LAX) = 216.00

Restricted referential:
r sum(sales.amt, s [cityId] = LAX) = 118.00

Weighted referential:
w sum(sales.amt, s [cityId] = LAX) = 137.60

The last expression computed with the uniform RPP.

As for the definitions of the total aggregates, that is, the
value of Fx agg(), using the simplified notation defined in
Section II-B, we have the following:

x count(Ri.PK) =
∑

k∈Rj [K]

x count(Ri.PK, ri [K] = k)

(7)x count(Ri.A) =
∑

k∈Rj [K]

x count(Ri.A, ri [K] = k) (8)

x sum(Ri.A) =
∑

k∈Rj [K]

x sum(Ri.A, ri [K] = k) (9)

C. Function Properties

Our extended aggregate functions must fulfill certain prop-
erties to be considered clean extensions of their counterpart
standard SQL aggregations. The proofs of the following propo-
sitions are omitted due to lack of space.

Ascending/Descending, An ascending feature as defined
in [7] holds for the aggregate functions x count(*) and
x count(). That is, in our context, as tuples are inserted or
deleted, the aggregate functions may increase (i.e. ascending)
or decrease (i.e. descending). For x sum() aggregate func-
tions, there are cases where inserting or deleting tuples implies
an increasing or decreasing aggregate as in many OLAP
scenarios (e.g. Example 1), where the measure attribute, when
different from zero, is always positive or negative. In these
cases the aggregate functions x sum() fulfill an ascending or
descending feature.

Proposition 1 The extended aggregates x count(*) and
x count() are ascending aggregates. If ∀ri ∈ Ri, ri[A] ≥ 0
then the x sum() functions are ascending aggregates.

Equivalently, for x sum() with negative values in the mea-
sure attribute, we have the following:

Proposition 2 If ∀ri ∈ Ri, ri[A] ≤ 0 then the x sum()
functions are descending aggregates.

Safety. If the referential integrity errors are repaired (in our
context the referential integrity errors are repaired by the sub-
stitution of invalid references with correct references without
varying the number of tuples) or if there are no referential
errors, that is, if the referential integrity constraint holds for
all tuples, a safety feature holds for the extended aggregations,
meaning that the answer sets will not be different compared
to the ones from the standard SQL joined aggregations, that
is, the SQL grouped attribute aggregations computed over a
joined table on foreign key-primary key attributes. Here, we
assume η is invalid.

Proposition 3 If ∀ri ∈ Ri, ri[K] ∈ Rj [K] then Fx agg() =
Fagg().

Summarizable consistency. For the WR and FWR count(*),
count() and sum() aggregate functions, a summarizable con-
sistency property holds. That is, these distributive aggregate
functions applied to an attribute is equal to a function applied
to aggregates, that, in turn, are generated by the original
aggregate function applied over the attribute of each partition
of the table. This property corresponds to the summarizability
feature described in [8]. That is, a distributive function over a
set should preserve the results over the subsets of its partitions.
The proof is based on the definition of referentiality, Definition
5, and the completeness property of the RPP of these type of
aggregates, Equation 3.

Proposition 4 Let ri ∈ Ri and attribute PK its primary key.
Then

w count(Ri.PK) =
∑

k∈Rj [K]

w count(Ri.PK, ri [K] = k) = | Ri |

Summarizable consistency for w sum(Ri.A) can be formu-
lated as: w sum(Ri.A) =∑
k∈Rj [K] w sum(Ri.A, ri [K] = k) =

∑
ri∈Ri

Ri.A.
WR and FWR count(*), count() and sum() total aggregates

are invariant wrt referential integrity repairs. As the referential
integrity errors are repaired, the total aggregate remains invari-
ant wrt referential integrity repairs. That is, the total aggregate
remains constant during this type of repair processes.

The elements of the aggregate lists of the RR and FR
extended aggregates are plausible. A plausibleness property
means that the answer set represents a potential repair of the
table. For the FR aggregates, the repair consists in assigning
to all the invalid references, the valid reference we are con-
sidering. For the RR aggregates, this repair consists in never
updating the invalid reference with the valid value we are
considering.

D. Probabilistic Interpretation

In order to obtain a valid inference from our extended
aggregate functions, it is important that the user bears in
mind the following assumptions. Notice we are assuming
that Rj [K] is complete. That is, the set of referenced values



6

are all the possible valid values, possibly with the η value,
depending on if it is considered valid or not. On the other
hand, attribute Ri.K is assumed to have potentially invalid
references. Alternative approaches, may consider Ri.K invalid
references valid after all, assuming that the error is due to an
incomplete set of references in Rj [K].

Users may assign different RPPs, nevertheless, the Fre-
quency weighted RPP assumes that the probability that a
certain foreign key valid value be the actual value that should
stand instead of the invalid value in a foreign key depends on
the occurrence, frequency, of that same valid value in the given
foreign key. That is, the occurrence is not completely random,
it depends on the observed valid values. On the other hand,
we are assuming also that the occurrence of an invalid value
does not depend on the invalid values. As for the aggregate
functions like sum() where the aggregate function is applied
over an attribute we are assuming that the foreign key and the
invalid values are not related to the attribute in question. That
is, the values of the attribute do not depend on the values of
the foreign key.

Now consider a set of binomial random variables each one
of them represented by a potentially valid reference of a given
foreign key Ri.K. Suppose each random variable has as its
initial value the number of tuples where the value it represents
is present in Ri.K. Next, given our assumptions, suppose that
each tuple of Ri with an invalid reference in attribute K is
an independent trial of a given random variable, say the one
represented by the potentially valid reference k ∈ Rj [K]. Let
the probability of success of the binomial random variable
represented by k be the corresponding probability in the RPP.
A successfull trial, in this context, represents the fact that an
invalid reference is updated with value k.

Notice that if k ∈ πK(Ri) (if η is valid, then it should
be considered also) then |{ri | ri ∈ Ri ∧ ri[K] = k}|, in
our context, is the lower bound of the corresponding binomial
random variable. If k /∈ πK(Ri), then the lower bound is
0, that is, no tuples with the valid reference k in ri[K]. In
both scenarios, the lower bound represents the case where
all the trials (tuples with referential integrity errors) were
unsuccessful. That is, the case where the actual value of
attribute Ri.K in the invalid tuples is different from k. This
number corresponds to the correct tuples with ri[K] = k. The
upper bound of this binomial random variable represents the
case that all the tuples with referential integrity errors were
successful. That is, the case where all the actual values of
the invalid values of foreign key Ri.K are indeed k. We
can see then that for the random variables described above,
if k ∈ πK(Ri), the probability is 0 that it takes a value
lower than |{ri | ri ∈ Ri ∧ ri[K] = k}|, once the invalid
references are repaired and the probability is 1 that it has
a value lower or equal to |{ri | ri ∈ Ri ∧ ri[K] =
k}| + |{ri | ri ∈ Ri ∧ ri[K] /∈ Rj [K]}| once the repair
process takes place. If k /∈ πK(Ri) the corresponding values
are 0 and |{ri | ri ∈ Ri ∧ ri[K] /∈ Rj [K]}| respectively. Now
observe we can compute the expected value of the binomial
random variable by adding to its initial value the product
between the number of independent trials (invalid tuples) and
its corresponding probability in the RPP. This value represents

the expected number of tuples in Ri that will eventually end
with value k in attribute K.

Following these ideas, we can see that the RR and FR
variants of aggregates x count(*), x count() and x sum()
are the lower and upper bounds, respectively, of the value
the corresponding standard aggregate may take when the
referential integrity errors are repaired. The WR and FWR
are the expected value, again, of the corresponding standard
aggregates and its result depends on which RPP is considered.

E. Discussion
In order to evaluate the usefulness of the answer sets

delivered by the WR and the FR aggregations the follow-
ing important aspects have to be discussed: How hard is
to compute all the plausible answer sets of the aggregate
functions?, how many are there?, and does a repair process
will eventually give the answer set delivered by the weighted
referential aggregations? We discuss these issues below.

Let e be the number of tuples in Ri with a referential
integrity error in attribute K, that is, e = |{ri|ri ∈ Ri ∧
ri[K] /∈ Rj [K]}|. Also let a referential integrity repair of
attribute Ri.K be a new instance of Ri, with the same number
of tuples, but with the invalid values of attribute K replaced
with valid values taken from the set of values of Rj [K]. The
number of potential referential integrity repairs of attribute
Ri.K is (| Rj [K] |)e. For our example in Figure 1 there are 25
potential referential integrity repairs of attribute sales.cityId
which is a big number considering there are only 2 referential
integrity errors. As for the number of plausible values of a
given group once a repair process of a given foreign key have
taken place, given the interpretation just discussed we can
see that for the aggregate function count() there are e + 1
or less plausible answers and 2e at most for the aggregate
function sum(). For our example in Figure 1 take the group
represented by the value LAX . The plausible answers for the
aggregate function count() for the group represented by value
LAX are {2, 3, 4} since there are 2 invalid references. The
aggregation fw count() gives us 2.6 for value LAX since
there are 2 valid tuples with this value, the total number of
errors is 2 and, as we saw in Example 2, the probability of
value LAX in the corresponding RPP is 2/6, considering η
as an invalid reference. If we compute the probabilities of
each of the plausible answers considering the RPP of the
same example we have {(2, 0.44), (3, 0.44), (4, 0.11)}, where
the first number of each pair is the plausible answer and
the second its probability. The cumulative probability of the
plausible answer 3 is 0.88 with the plausible answers sorted
in ascending order, meaning that the probability is 0.88 that
the answer be 3 or less once a repair process of foreign key
sales.cityId takes place.

In the same way, for the aggregate function sum() the
plausible answers for value LAX and their corresponding
probabilities considering the same RPP as above, are
{(118, 0.44), (151, 0.22), (183, 0.22), (216, 0.11))}. The cu-
mulative probability of the plausible answer 151 is 0.66 with
the plausible answers sorted on ascending order. As we can
see from Example 3 the corresponding value of the fw sum()
for value LAX , Los Angeles, is 150.66.



7

TABLE IV: Transaction detail in a given point of sale (p. of
s.) for a given sellerId.

transId clientId agentId prodId amt sellerId
1276 143547 45779 814 $22, 347.83 9343
1277 143547 821 $16, 086.96 9343
1278 243577 17425 677 $1, 477.39 9343
1279 193430 17378 684 $2, 826.09 9343
1280 192430 225 $773.91 9343
1281 289940 218 $513.04 9343
1282 268948 784 $4, 513.04 9343

TABLE V: Total commission per agent
concept amt
Total sales amt. $1′654, 404
Total sales amt. $110, 001

without agent
Commission paid $154, 440
Bonus paid $11, 000

We can see then that the proposed aggregations are a
very efficient way to compute the estimated answer sets and
the upper and lower bounds of the corresponding aggregate
functions, although we do not pretend to give an exact result
of a repair process.

IV. EXPERIMENTAL EVALUATION

We used a real and a synthetic database, generated with the
TPC-H DBGEN program [15]. We used standard SQL (ANSI)
in our implementation, making it portable in each relational
DBMS.

A. Real Database

An important retail company in Mexico listing at the stock
market since more than 25 years ago, tried our extended
aggregates in one of its applications to assess the usefulness
of our approach. Our aggregates were used in a reward
program applied to agents. The agents are advisers working in
specialized departments that participate in sales and they earn
commissions based on sales depending on the number of sales
and the total amount sold of their corresponding products. In
every point of sale, a seller records the information related
to a sale including the agent’s code, but in several occasions
this code is omitted or is erroneous, since this particular
data is manually inputted. The company has separated file
systems in several stores nationwide and the information is
daily concentrated in a centralized database. In this database,
about 7% of the total number of sales that should appear with
an agent’s code, have an invalid value in this field. In Table IV
are several records showing how the information is received,
some of them with no information in the agent’s code field,
agentId.

Several assumptions about the database were discussed and
were validated by the user in order to obtain valid inferences

TABLE VI: Bonus computed using fw sum()
date agentId amt. comm. sales bonus
02/23/07 45779 $282, 231 $28, 223 12 $1, 760
02/23/07 17425 $438, 111 $43, 811 13 $1, 906
02/23/07 17378 $138, 168 $138, 16 9 $1, 320
03/14/07 84536 $333, 949 $33, 394 17 $2, 493
03/14/07 13754 $171, 440 $17, 144 14 $2, 053
03/14/07 17033 $180, 504 $18, 050 10 $1, 466

from the extended aggregates, for example: a referential in-
tegrity error did not depend on the particular type of transac-
tion nor on the attribute that was aggregated.

The commission is paid after a given time to avoid paying
an agent when a product is returned. A bonus was added
to compensate the sales that were inputted without a valid
value in agentId. This bonus is computed using the fw sum()
aggregate considering the total amount of sales without an
agent code and taking into account the total number of sales
where an agent took part. Tables V and VI show the amount
of sales per agent, the commission earned and the bonus
computed using fw sum().

B. TPC-H Database

Our synthetic databases were generated by the TPC-H DB-
GEN program with scaling factors 1 and 2. We inserted refer-
ential integrity errors in the referencing table (lineitem) with
different rates of errors (0.1%, 0.2%,. . . , 1%, 2%,. . . , 10%).
The invalid values were inserted following several different
probability distribution functions (pdfs) including uniform,
Zipf and geometric, and in two foreign keys (l orderkey, and
l suppkey).

The results we present in this section, use a default TPC-
H scale factor 1. The referencing table, lineitem and the
referenced tables, orders and supplier, have the following
cardinalities: 6M, 1.5M and 10k tuples, respectively.

Approximation Accuracy: In order to evaluate the approx-
imation accuracy for the WR aggregations, we conducted
the following experiments. We inserted referential integrity
errors in the foreign key l suppkey of referencing table
lineitem with a 10% error rate. The erroneous values were
generated so that they follow the three pdfs mentioned above
and were inserted randomly in order to simulate a scenario
where the errors occurred in an independent manner. Before
doing so, we stored the valid references on another table
in order to “repair” the invalid references when needed. We
simulated a process of gradually repairing the database and
within this process we also computed our proposed aggregate
functions. We then evaluated the FWR aggregations and their
corresponding standard SQL joined aggregations. Next, we
repaired a 2% random subset of the original invalid references;
our FWR aggregations and standard SQL joined aggregations
were computed again. We repeated this process until the table
was totally repaired. In each iteration we kept the aggregate
values for each different group in order to compare such values
with the “correct” ones on the final repaired table.

Figure 3 shows the accuracy of fw sum() with the measure
attribute l extendedprice in table lineitem assuming a Zipf
pdf. We show the maximum and minimum correct aggregate
values eventually reaching their corresponding values where
the error rate is 0%. As we can see, the lines that correspond
to the fw sum() values are almost constant (horizontal line),
meaning that the estimated values become increasingly similar
to the final real aggregate value. The function fw sum()
converges to the standard SQL joined aggregation sum().

Time Performance: We study the time performance of
extended aggregations in Figure 4 for the aggregate func-



8

Fig. 3: Accuracy of the fw sum() aggregate function.

Fig. 4: Comparing time performance of aggregations.

tions fw sum() and fr sum(). Our experimental results eval-
uate performance of extended aggregation against standard
SQL joined aggregations with foreign keys l orderkey and
l suppkey of table lineitem, with different rates of errors
inserted as described before. In general, time performance is
good, slightly slower than SQL.

As we can see, there are even instances where our proposed
aggregations perform better than the standard SQL joined ag-
gregations. This is because: (1) an early aggregation grouping
is computed before executing the join operation (push “group
by” before join) and the remaining computations are done
on an auxiliary table whose size depends on the number
of different foreign key values. For the sum() aggregations,
performance depends on the size of the referenced table. For
the WR aggregates, the additional computations are done over
the auxiliary table. This overhead is linear in the size of the
referenced table.

V. RELATED WORK

Research on managing and querying incomplete data has
received significant attention. In [4] the authors define a set
of extended aggregate operations that can be applied to an
attribute containing partial values. These partial values, which
generalize applicable null values, correspond to a finite set of
possible values for an attribute in which only one of these
values is the true one. The authors develop algorithms for
several aggregate functions that deliver sets of partial values. In
our work, we explore a similar idea, assuming that an incorrect
reference represents imprecise data. The source of this value
is an element of the set of valid references of the foreign
key. This assumption, although strong, happens to be useful
when we know the tuple holding the incorrect reference comes
from a specific source database. In [1] the authors study scalar
aggregation queries in databases that violate a given set of
functional dependencies. They study the problem of computing

the ranges of all possible answer sets for aggregation queries,
which results in a big search space.

By defining an imprecise probability data model [10], the
authors can handle imprecise and uncertain data. They develop
a generalized aggregation operator capable of determining a
probability distribution for attributes with imprecise or uncer-
tain values. They extend their method to cover aggregations
involving several attributes. In our work we consider each
invalid reference as a place holder (tag) where a crisp [10],
but uncertain value should be stored.

Concerning aggregate operators in probabilistic databases in
[14] the authors define aggregate operators over probabilistic
DBMSs and present linear programming based semantics for
computing these aggregate operators. They present approxi-
mation algorithms that run in polynomial time, but the result
may be an approximation of the correct answer. An important
difference with our work is that the aggregate operators in
probabilistic databases are defined over probability intervals.
The use of a RPP to assign a single probability to each invalid
foreign key is a key element to the efficiency of our proposed
aggregates.

To close our discussion we summarize past research on im-
proving database systems to handle referential integrity issues.
In [12] we propose to measure referential integrity errors.
We introduced the early foreign key grouping optimization
technique mentioned in Section IV. In [13] we extended the
ideas to distributed databases. In [11] we presented an initial
study of how to improve aggregations.

VI. CONCLUSIONS

We improved SQL aggregations to return enhanced answers
sets in the presence of referential integrity errors. Referential
integrity errors are treated as imprecise values that stand for
precise values, determined by a foreign key. We proposed two
families of aggregate functions: weighted referential (WR)
aggregations and full referential (FR) aggregations. These
aggregations represent a complement to standard SQL aggre-
gations and they are studied under a common probabilistic
framework. WR aggregations are based on referential partial
probability vectors (RPPs) associated with the foreign key.
Full referential aggregations are helpful when the user needs
to include for each group all tuples with invalid references.
Our experiments show answer sets returned by extended
aggregations are consistent approximations and they also show
the overhead due to additional computations is reasonable.

Acknowledgments

The first author was sponsored by the UNAM IT project
”Macroproyecto de Tecnologı́as para la Universidad de la
Información y la Computación”.

REFERENCES

[1] M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spinrad.
Scalar aggregation in inconsistent databases. Theor. Comput. Sci.,
296(3):405–434, 2003.

[2] D. Burdick, P.M. Deshpande, T.S. Jayram, R. Ramakrishnan, and
S. Vaithyanathan. OLAP over uncertain and imprecise data. In VLDB
Conference, pages 970–981, 2005.



9

[3] A. Calı̀, D. Lembo, and R. Rosati. On the decidability and complexity
of query answering over inconsistent and incomplete databases. In ACM
PODS, pages 260–271, 2003.

[4] A. L. P. Chen, J. S. Chiu, and F. S. C. Tseng. Evaluating aggregate
operations over imprecise data. IEEE TKDE, 8(2):273–284, 1996.

[5] G. Greco, S. Greco, and E. Zumpano. A logical framework for querying
and repairing inconsistent databases. IEEE TKDE, 15(6):1389–1408,
2003.

[6] ISO-ANSI. Database Language SQL-Part2: SQL/Foundation. ANSI,
ISO 9075-2 edition, 1999.

[7] A. J. Knobbe, A. Siebes, and B. Marseille. Involving aggregate functions
in multi-relational search. In PKDD02, pages 287–298, 2002.

[8] H. J. Lenz and A. Shoshani. Summarizability in OLAP and statistical
data bases. In SSDBM Conference, pages 132–143, 1997.

[9] H. J. Lenz and B. Thalheim. OLAP databases and aggregation functions.
In SSDBM Conference, pages 91–100, 2001.

[10] S. McClean, B. Scotney, and M. Shapcott. Aggregation of imprecise
and uncertain information in databases. IEEE TKDE, 13(6):902–912,
2001.

[11] C. Ordonez and J. Garcı́a-Garcı́a. Consistent aggregations in databases
with referential integrity errors. In ACM IQIS, pages 80–89, 2006.

[12] C. Ordonez and J. Garcı́a-Garcı́a. Referential integrity quality metrics.
Decision Support Systems Journal, 44(2):495–508, 2008.

[13] C. Ordonez, J. Garcı́a-Garcı́a, and Z. Chen. Measuring referential
integrity in distributed databases. In ACM CIMS, pages 61–66, 2007.

[14] R. Ross, V.S. Subrahmanian, and J. Grant. Aggregate operators in
probabilistic databases. J. ACM, 52(1):54–101, 2005.

[15] TPC. TPC-H Benchmark. Transaction Processing Performance Council,
http://www.tpc.org/tpch, 2005.

[16] J. Wijsen. Database repairing using updates. ACM Trans. Database
Syst., 30(3):722–768, 2005.


