
Referential Integrity Quality Metrics

Carlos Ordonez Javier Garcı́a-Garcı́a
University of Houston UNAM

Houston, TX 77204, USA Mexico City, CU 04510, Mexico ∗

Abstract

Referential integrity is an essential global constraint in a relational database, that maintains it in a
complete and consistent state. In this work, we assume the database may violate referential integrity and
relations may be denormalized. We propose a set of quality metrics, defined at four granularity levels:
database, relation, attribute and value, that measure referential completeness and consistency. Quality
metrics are efficiently computed with standard SQL queries, that incorporate two query optimizations:
left outer joins on foreign keys and early foreign key grouping. Experiments evaluate our proposed
metrics and SQL query optimizations on real and synthetic databases, showing they can help detecting
and explaining referential errors.

1 Introduction

Referential integrity is a fundamental global constraint in a relational database [8], that basically ensures a
foreign key value exists in the referenced relation. Referential integrity issues are found in database integra-
tion, data quality assurance, data warehousing and data modeling. Referential integrity is violated or relaxed
for practical reasons. Database integration represents a common scenario where similar tables coming from
multiple source databases (OLTP systems) have different referential integrity constraints and each DBMS
provides distinct mechanisms and rules to enforce referential integrity [20]. Therefore, source databases
may violate referential integrity and their integration may uncover additional referential integrity problems.
Performance is the second common reason, where referential integrity checking is disabled to allow fast
insertions in batch mode. Finally, the logical data model behind a relational database evolves, incorporating
new attributes and new relations not defined before, causing old data to violate new referential integrity
constraints. In short, referential integrity is an important broad problem in modern relational databases.

The issues outlined above motivated us to revisit the fundamental concept of referential integrity. We
propose several Quality Metrics (QMs) that measure completeness and consistency with respect to referen-
tial integrity . Our QMs not only cover normalized databases whose relations are incomplete when they have
missing foreign key values, but also measure the inconsistency that arises when a relation is not normalized
and an attribute value, determined by a foreign key, does not match the corresponding attribute value in the
referenced relation. This is common when tables are denormalized, views are materialized or similar tables,
from different source databases, are integrated. This article continues our work on referential integrity [20]
(see Section 5).

The article is organized as follows. Section 2 introduces definitions on relational databases, referential
integrity and denormalized databases. Section 3 presents our main contributions. We introduce QMs that

∗ c© Elsevier, 2008. This is the author’s version of the work. The official version of this article was published in Decision
Support Systems (DSS Journal). 44(2):495-508, 2008. DOI: 10.1016/j.dss.2007.06.04

1

measure completeness and consistency in a relational database with respect to referential integrity. QMs
quantify referential errors at the database, relation, attribute and value level, on both normalized and denor-
malized databases. We introduce a basic set of SQL queries to compute QMs and identify two main opti-
mizations. Section 4 presents an experimental evaluation with real and synthetic databases. We demonstrate
the usefulness of QMs on real databases and we study query optimization with large synthetic databases.
Section 5 discusses related work. Section 6 presents the conclusions and directions for future research.

2 Definitions

We denote a relational database by D(R, I), where R is a set of N relations R = {R1, R2, . . . , RN},
Ri is a set of tuples and I a set of referential integrity constraints. A relation Ri of degree di is denoted by
Ri(Ai1, Ai2, . . . , Aidi

), where each attribute comes from some domain. One attribute from Ri is the primary
key (PK), called Ki, and the remaining attributes Aij are functionally dependent on Ki: denoted Ki → Aij .
To simplify exposition we use simple PKs. Relations are manipulated with the standard relational algebra
operators σ,Π,1 (i.e. with SPJ queries [7]) and aggregations. The cardinality (size) of Ri is denoted by
|Ri| and ni (to avoid confusion with N).

A referential integrity constraint, belonging to I , between Ri and Rj is a statement of the form: Ri(K) →
Rj(K), where Ri is the referencing relation, Rj is the referenced relation, K is a foreign key (FK) in Ri and
K is the primary key (PK) of Rj . To simplify exposition we assume the common attribute K has the same
name on both relations Ri and Rj . In a valid database state with respect to I , the following two conditions
hold: (1) Ri.K and Rj.K have the same domains. (2) for every tuple in Ri there must exist a tuple in Rj

such that Ri.K = Rj.K . The primary key of a relation (i.e. Rj .K) is not allowed to have nulls. But in
general, for practical reasons the foreign key Ri.K is allowed to have nulls. We also study integrity over
inclusion dependency (ID). An ID constraint between attributes Ai and Aj from relations Ri and Rj holds
when ΠAi

(Ri) ⊆ ΠAj
(Rj).

We relax the concept of referential integrity. Assume D(R, I) is an invalid state with respect to I . That
is, some relations Ri from R violate referential integrity constraints. We call the valid state a strict state. A
database state where there exist referential errors is called relaxed. We assume Ri may contain tuples having
Ri.K values that do not exist in Rj .K or Ri.K may be null (η). To make our definition more precise, if
Ri.K is null in some tuple we will consider such tuple incorrect. This is motivated by the fact that a null
reference provides no information and the 1 operator eliminates Ri tuples with a null value on K . Our goal
is to quantify referential integrity violations, by defining quality metrics of relaxed states.

We add one practical aspect: relations can be denormalized. We compute referential integrity metrics on
attributes such that each attribute is either a foreign key (as defined above) or a foreign attribute (functionally
dependent on some foreign key). We use K to refer to a foreign key and F for a foreign attribute, in a generic
manner. Recall we assume primary and foreign keys consist of one attribute to simplify exposition, but in
practice a foreign key may consist of two or more attributes (e.g. composite keys). Notice a foreign attribute
introduces a potential source of inconsistency; this notion will be formalized in the next section. Relation
Ri has ki foreign keys and fi foreign attributes. Attributes that depend only on the primary key, and not on
any foreign key, are assumed to be correct. Therefore, we do not define quality metrics on them.

3 Referential Integrity QMs

3.1 Operations violating Referential Integrity

Referential integrity can be violated basically for two reasons: (1) a relation (table) coming from a different
source database is integrated into a central database, such as a data warehouse. (2) A database operation
at the row level introduces a referential integrity violation when a constraint is disabled or non-existent.

2

This is a common scenario in a data warehouse which stores tables coming from multiple source databases.
In general, referential integrity constraints are disabled with two reasons in mind: Adding new data more
efficiently and avoiding the elimination of tuples with invalid references. The database operations that can
cause a relaxed state are: (a) Inserting or updating a foreign key value Ri.K in Ri, such that the Ri.K
is null or it does not exist in Rj.K at the time of insertion or updating (completeness issue); (b) Deleting
or updating tuples from Rj , whose primary key Rj .K leaves a set of referencing tuples in Ri without a
corresponding matching tuple with the same Ri.K value (completeness issue); (c) Updating or inserting
an attribute F in Rj , functionally dependent on Rj .K , that is used as a foreign attribute in Ri leaving both
attributes with inconsistent values or, conversely, updating F in Ri, but not on Rj (inconsistency issue). This
case arises when referencing tables are denormalized, when views are materialized or when query results
are stored.

There are a variety of DBMS mechanisms to enforce referential integrity [10] in databases that are as-
sumed to be in 3NF. A common mechanism is to forbid insert or update operations on a referencing relation
that have tuples with inexistent foreign keys on the referenced relation. Orthogonal referential actions as-
sociated with delete or update operations on referenced relations commonly are: restrict, cascade, nullify,
set a default value or no action at all. These actions are commonly used to neutralize the possible refer-
ential integrity violation. In general, a DBMS does not enforce referential integrity on non-key attributes
because databases are assumed to be in 3NF and views are materialized. Triggers [10] can be used to detect
referential violations.

3.2 Absolute and Relative Error

Let X represent an attribute (foreign key K or foreign attribute F), a relation or a database. We define the
absolute error of object X as a(X), given by its number of incorrect references. Let t(X) be the total count
of references in X . The relative error of X is defined as r(X) = a(X)/t(X).

Absolute error is useful at fine granularity levels or when there are few referential violations. In contrast,
relative error is useful at coarse granularity levels or when the number of referential violations is large.

3.3 Hierarchical Definition of QMs

We introduce referential integrity QMs at four granularities: (1) database; (2) relation; (3) attribute; (4)
value. QMs are intended to give a global picture and a micro-view of the database. Database level QMs
constitute the first step towards discovering referential errors. Relation level QM isolate those relations with
referential problems. Attribute QMs provide specific information that may be used to explain and fix specific
referential integrity errors. QMs are hierarchically defined starting with the attribute QMs and ending with
the database QMs.

Attribute and attribute value QMs are defined over foreign keys and foreign attributes. QMs over foreign
keys represent a measure of completeness. QMs over foreign attributes represent a measure of consistency.
Therefore, denormalization introduces potential inconsistency.

Attribute level QMs

Given an attribute K that is a foreign key, a referencing tuple in Ri is considered correct if there exists a
matching tuple in the referenced relation Rj with the same K value. For a foreign attribute F in a referencing
table that is denormalized, a referencing tuple is considered correct if Ri.F = Rj.F for the matching tuple
in the referenced table Rj , where Ri.K = Rj .K . Otherwise, a tuple is considered incorrect. Therefore,
a tuple in Ri with null values in K or F is considered incorrect. We even consider the case that a foreign
attribute is also a foreign key, where we treat it as a foreign attribute so that inconsistency can be detected.

3

Summarizing, referential integrity for K (a foreign key), requires just an existential check, but referential
integrity for F (foreign attribute) also requires an equality test.

We define the attribute level metric on Ri with referential integrity Ri(K) → Rj(K) on foreign key K .
We start by defining the attribute level absolute error metric, that is defined in terms of unmatched values
and nulls. If K is a foreign key in Ri referencing Rj then

a(Ri.K) = |Ri| − |Ri 1K Rj| (1)

This QM is a measure of completeness. In this case, null values and unmatched foreign keys contribute
to absolute error. Motivated by the fact that sometimes foreign keys are allowed to have nulls, especially in
data warehouses, we provide a less restrictive definition, where K is allowed to have nulls. In this case error
is computed over a subset of Ri, where K is not null. That is, tuples where K is null are assumed correct.

a(Ri.K) = |σnotnull(K)
(Ri)| − |Ri 1K Rj | (2)

Let F be a foreign attribute in Ri dependent on a foreign key attribute K and let P be the primary key
of Ri where Ri references Rj . That is, Ri.P → Ri.K , Ri.P → Ri.F and Rj .K → Rj .F . But notice
Ri.K → Ri.F is not necessarily valid because R can be in a relaxed (inconsistent) state. We define the
absolute error for a foreign attribute as:

a(Ri.F) = |Ri| − |σRi.F=Rj .F (Ri 1K Rj)|. (3)

This QM is a measure of consistency. Notice the metric for a foreign attribute is strict in the sense that
in order to consider a reference a correct one, not only must its foreign key exist, but also have the same
value and such value must be different from null. A comparison between two values in which either value
is null returns null by three-valued logic [8] and therefore it increases a(Ri.F). Notice that in Equation 3
we adopted a conservative strategy in the sense that if the foreign key of the corresponding foreign attribute
does not match, then it will be counted as an error, no matter the value of the foreign attribute. If F is also a
foreign key then we treat it as a foreign attribute so that inconsistency can be detected. If we only need the
number of inconsistent values from F where the foreign key is valid we can compute a(Ri.F) − a(Ri.K).
In an analogous manner, we provide a less restrictive definition, where K can be null. Notice when F is
null it will still be considered incorrect since comparison with any value is undefined.

a(Ri.F) = |σnotnull(K)
(Ri)| − |σRi.F=Rj .F (Ri 1K Rj)|. (4)

We can now define the attribute level relative error QM. Notice this metric is undefined for empty
relations. If Aij is either a foreign key or a foreign attribute in Ri then

r(Ri.Aij) =
a(Ri.Aij)

ni
(5)

The QM r(Ri.K) over a foreign key K is a measure of completeness and r(Ri.F) on a foreign attribute
F is a measure of consistency.

Value level QMs

We define a value level QM for one foreign key value kp ∈ Ri.K as a(Ri.K, kp) = |σ
K=kp

(Ri)| −|σ
K=kp

(Ri 1K

Rj)|, for each key value kp, where kp may be null. This QM provides the frequency of invalid key values,
including null. This QM is a measure of completeness. The value QM for each foreign attribute value
fq ∈ Ri.F is similarly defined counting those tuples that contain values kp ∈ K and fq ∈ F in Ri and
Ri 1K Rj . This QM measures consistency and provides the frequency of each non-matching foreign at-
tribute value. If nulls in K are considered correct then fq will be considered correct if it is null. When nulls

4

are not considered correct a null value in K will cause fq to be considered incorrect, regardless of null.
Therefore, incompleteness in K leads to inconsistency in F . Relative error for attribute values is defined
dividing by ni = |Ri|.

Statistics and Correlations on Attribute QMs

We introduce univariate and bivariate statistics to understand the probability distribution behind referential
errors in some attribute and also, to discover interrelationships among two unrelated attributes. We calculate
univariate statistics on attribute QMs including the minimum, maximum, mean and standard deviation of
absolute error (frequency) of invalid attribute values. Statistics on QMs are useful to explain why errors
happen and to develop a database repair plan. As we shall see in Section 4, these statistics can give us
specific information on the probability distribution behind invalid values in a relation. For instance, we
can know how many tuples there are per invalid value on average. To have an idea about the scatter of
frequencies of invalid values we compare their mean and standard deviation. The minimum and maximum
frequencies help us detect critical values (outliers). We also introduce an error correlation measure between
two attributes on the same relation. In general, the correlation between a foreign key and a functionally
dependent foreign attribute is close to 1. Error correlation can reveal interesting facts among two attributes
that do not have any functional dependency between them. A correlation between two unrelated foreign
keys or two unrelated foreign attributes provides valuable insight to explain why referential errors happen.

Relation level QMs

We define relation QMs for table Ri with ki foreign keys and fi foreign attributes. When Ri is normalized
fi = 0.

Based on attribute QMs we define independent error aggregations on foreign keys and foreign attributes.
The following QM measures the completeness of Ri:

aK(Ri) =
ki

∑

j=1

a(Ri.Kj) (6)

This QM measures completeness since it tells us how many foreign key values are not matched in each
Rj or are simply null. Similarly, we define a consistency QM for Ri as:

aF (Ri) =
fi

∑

j=1

a(Ri.Fj) (7)

We define relative error QMs for completeness and consistency, respectively:

rK(Ri) =
aK(Ri)

kini
(8)

rF (Ri) =
aF (Ri)

fini
(9)

rK() and rF () are η (undefined) when ki = 0, fi = 0 or ni = 0. Also, aF (Ri) is η when Ri is normal-
ized. Observe that relation level QMs quantify completeness and consistency in a relation based on all its
attributes.

5

Data Quality absolute relative
dimension error error

Completeness a(Ri.K) r(Ri.K)

Consistency a(Ri.F) r(Ri.F)

Table 1: Attribute level QMs.

R N rK() rF ()

storeDB 14 0.02% 0.02%

Table 2: Database level QMs

Database level QMs

We define database absolute error QMs, for completeness and consistency respectively.

aK(R) =
N

∑

i=1

aK(Ri) (10)

aF (R) =
N

∑

i=1

aF (Ri) (11)

Finally, we define global relative error QMs.

rK(R) =
aK(R)

∑N
i=1 kini

(12)

rF (R) =
aF (R)

∑N
i=1 fini

(13)

Our database level QMs exclude relations Ri with ki = 0 (e.g. lookup relations without references). If
ki = 0 for some Ri then Ri does not contribute to relative error.

Discussion on QMs

Completeness and consistency are measured separately. In our proposal we do not give different weights to
references coming from large or small relations. An incorrect reference in a small relation (e.g. a lookup
table) is as important as an incorrect reference in a large relation (e.g. a transaction table). Correlations and
further multidimensional statistical models can be used to explain relationships between referential errors
in different attributes. QMs can be ranked by the cardinality of the referencing relation so that references
in smaller or larger relations carry more or less weight based on user’s preferences. Table 1 summarizes
attribute-level QMs, which can be thought as the atomic metrics from which relation and database QMs are
aggregated. Value QMs can be considered a zoomed view of attribute QMs. Figure 1 shows the hierarchical
relationship among QMs; everything is derived from attribute level QMs.

3.4 Example

We now present examples of QMs using a store database schema. Since the goal of our QMs is to help
a user discover and explain referential errors in a database, we present QMs going from the highest level

6

Figure 1: QMs diagram.

Ri ki fi ni aK() aF ()

categ 0 0 20 η η

product 4 5 100109 2444 3100
txHeader 2 2 2003569 0 220
txLine 4 2 19130964 7200 7495

Table 3: Relation level QMs

Ri Aij K or F a() r()

categ categName ∅ 0 0.00%
city stateId K 12 9.01%
product categId K 2444 2.00%
product categName F 3100 3.00%
txLine prodId K 7200 0.02%
txLine prodPrice F 7495 0.02%

Table 4: Attribute level QMs.

7

Ri stateId a(Ri.K)

store η 4
store 0 3
store blank 2
store T. 2
store XX 1

Table 5: Value level QMs for foreign key K .

Ri cityId cityName a(Ri.K,Ri.F)

store LA η 43
store SF blank 34
store SF Los Angeles 1
store SF η 67
store η New York 1

Table 6: Value level QMs for foreign attribute F .

down to the most detailed level, in opposite order from their definition. We start showing global measures
of quality of referential integrity at the database level in Table 2. The first important observation is that rK()
and rF () are not zero, which indicates there exist referential errors in the database. The second observation
is that incompleteness and inconsistency have similar importance. If it is desired to maintain a database in a
strict state this QM table can be periodically refreshed and monitored, by a set of SQL queries, as discussed
above. Going down one level we can discover which specific relations are giving us problems. Table 3
helps us identify those relations with errors. For each relation there are completeness and consistency QMs
with a(K) and a(F). Relation product has a mixture of completeness and consistency problems. Relation
txHeader has only consistency problems in its foreign attributes (e.g. customerId). Relation txLine reveals
completeness and consistency problems: some foreign keys have invalid values or referenced relations are
incomplete.

The next level gives us more specific evidence about referential problems, as shown in Table 4. To make
output more concise we only show absolute error, but relative error can be easily derived. Relation categ
has no references, and it has attribute categName which is neither K nor F ; therefore, this attribute does
not contribute to absolute/relative error. Relation city indicates there exists a serious completeness problem
in the database with a high fraction of invalid foreign keys. Relation product indicates denormalization
introduces important consistency problems since it has many inconsistent values in categName. In relation
txLine we can see that the main source of referential problems are invalid foreign keys, but we can see there
are 7495-7200=295 rows with inconsistent values for prodPrice even when the foreign key exists. Finally,
at the finest storage granularity level, Tables 5 and 6 show value level QMs, exhibiting unmatched K values
and inconsistent F values in a denormalized relation, as well as their respective frequencies. Values are
sorted in descending order by their absolute error to quickly identify critical values in order to develop
a database repair plan. In other words, when a(K) or a(F) have skewed distributions we can learn which
values can help us fix most errors. Value level metrics for F consider every existing combination between K
and F , which can help explain why denormalized values do not match and assess their relative importance.
In this case we can see that the functional dependency between K and F does not hold. When a database
is in a strict state, these value level tables are empty. Another important aspect is that these QM tables

8

represent extended statistics on the database metadata. Therefore, QM tables can be queried by an end-user
to explore a database for completeness and consistency.

3.5 QMs Calculation with SQL

Absolute error metrics are distributive [13] based on the fact that they are counts. Therefore, from a query
evaluation perspective, most of the effort is spent on computing attribute level or value level QMs. But since
relative error is a quotient it cannot be used to compute relative error at coarser granularity levels. This is a
consequence of the relative QM being an algebraic [13] function.

We present two query optimizations that are particularly useful to compute QMs. The first optimization
favors a left outer join over a set containment computation to compute absolute QMs. The second optimiza-
tion evaluates error aggregations grouping by foreign keys either before or after joining Ri and referenced
relations Rj .

Set containment and left outer join

The following query computes a(Ri.K) as defined above, with the constraint Ri(K) → Rj(K), assuming
the primary key of Ri is P . We call this query “set containment”. This query is generally computed with a
nested loop algorithm.

SELECT count(*) FROM Ri WHERE Ri.Ki NOT IN
(SELECT Ri.Ki FROM Ri JOIN Rj ON Ri.K = Rj.K)

We introduce an equivalent query to compute a(Ri.K) that may be more efficient, when using a different
join algorithm, like a merge-sort join. We call it “left outer join”.

SELECT count(*)
FROM Ri LEFT OUTER JOIN Rj ON Ri.K = Rj .K
WHERE Rj.K is null

A similar framework can be used for foreign attributes. The following query computes a(Ri.K) and
a(Ri.F) in a single table scan over Ri. In general, the left outer join optimization will be applied by default.

SELECT
sum(case when Rj .K is null then 1 end) AS aK

,sum(case when Rj .K is null or Ri.F <> Rj .F then 1 end)
AS aF

FROM Ri LEFT OUTER JOIN Rj ON Ri.K = Rj .K;

Early or late foreign key grouping

This optimization evaluates a “group-by” clause by foreign keys either before or after joining R i and ref-
erenced relations Rj . The rationale behind this optimization is reducing the size of Ri before joining with
Rj . We also call this optimization the “cube” variant because we build a cube whose dimensions are foreign
keys before joining. The early foreign key grouping query optimization with Ri and Rj computes a(Ri.K)
as follows:

INSERT INTO RK SELECT K ,count(*) AS a
FROM Ri GROUP BY K;
SELECT sum(a) FROM RK LEFT OUTER JOIN Rj

ON RK.K = Rj.K WHERE Rj.K is null;

9

Input: R
Output: attribute, relation and database QMs, stored in tabular form
1. Create and initialize output tables.
2. Compute attribute level QMs.

FOR i = 1 TO N DO /* Ri: referencing relation */
Compute Ri 1K Rj s.t. i 6= j /* Ri references Rj */
IF ki = 0 THEN a(Ri) = η /* Ri: zero references */
ELSE /* ki 6= 0 */

FOR J = 1 TO ki DO
Compute a(Ri.AiJ) using Equation 1 and Eq. 3.
Compute r(Ri, AiJ) using Equation 5.
Compute statistics on QMs

END
END

END
3. Compute relation level QMs with Equations 6, 7, 8, 9.
4. Compute database level QMs with Equations 10, 11, 12, 13.

Figure 2: Algorithm to compute QMs.

On the other hand, the late group-by evaluation on Ri and Rj to get a(Ri.K) is shown below. The
derived table T can be materialized to efficiently query value level QMs.

INSERT INTO Rij SELECT Ri.K
FROM Ri LEFT OUTER JOIN Rj

ON Ri.K = Rj .K WHERE Rj.K is null;
SELECT sum(a) FROM (
SELECT K ,count(*) AS a FROM Rij GROUP BY K)T ;

The early foreign key grouping optimization can be generalized to Ri being joined with m relations
R1, R2, . . . , Rm on foreign keys, K1,K2, . . . ,Km, respectively.

3.6 Algorithm to get QMs

We represent referential integrity constraints by a directed graph G = (V,E), where V = {1, . . . , N} and
vertex i corresponds to Ri and E = {(i, j)|Ri(K) → Rj(K)}. That is, each directed edge represents one
reference. We introduce an algorithm that computes referential integrity QMs based on G. The algorithm
traverses the logical data model behind the database, moving from referenced relations towards referencing
relations, as specified by G. Each vertex i corresponding to relation Ri, stores information about its primary
key, foreign keys, foreign attributes and functional dependencies. Each edge (reference) makes the algorithm
create an SQL query between Ri and Rj . The algorithm produces metadata tables with QMs at different
levels. The algorithm is shown in Figure 2.

4 Experimental evaluation

We implemented our program in the Java language that connected to different relational DBMSs through the
JDBC interface. The program received G (the referential integrity directed graph) as input, and generated
SQL statements to create the four QM tables, one for each granularity level. We used three real databases

10

Ri K rK time

student studentId 19.0% 707

Table 7: Educational institution: attribute level QMs.

Ri Aij min µ max σ

student studentId 1 3 9 1.52

Table 8: Educational institution: attribute QM statistics.

and one synthetic database, generated with the TPC-H DBGEN program. All times are reported in seconds,
unless stated otherwise.

We used multiple relational DBMSs, from different software companies. To avoid discussion on each
DBMS specific features, performance and SQL compliance, we omit their real name. This was also a
request from end users to protect their privacy, while allowing us to report our findings. We used standard
SQL (ANSI) in our QMs implementation, making it portable in all relational DBMSs.

4.1 Real Databases

Real databases were used to assess the usefulness of our approach and the relative importance of QMs. In the
experiments presented below we asked several information technology organizations to give us permission
to discover referential integrity problems in their databases. The real databases came from a university, a
government organization and a retail company. In our discussion we change the actual table and column
names to protect privacy. Organizations did not agree to reveal attribute value QMs since they revealed
specific information about their operation. In general, query running times are given in seconds.

Educational Institution

We now present interesting results on a database from a public higher educational institution. Since this
was a production environment, other database processes were running concurrently with our program, but
the workload was similar in all cases; we report the average running time. Due to security restrictions we
could only explore one important historic table containing important student information, including student
name, year, semester, course names, course grades, credits and grade point average. We were not allowed
to explore value level QMs, showing specific referential errors for specific students. The experiment goal
was to validate that student identifications were actually valid, according to a reference table containing
biographic and demographic information for all students ever registered at the institution. Results were
discussed with the Information Technology manager, two database developers and a system administrator.
Results are presented in Table 7. The IT manager was aware there existed some referential integrity issues.
Database developers were surprised there was such a high fraction of missing foreign keys for student
identification numbers. The system administrator stated the historic table was constantly updated with new
semester course grades, but he said this table had a few changes in its definition in the past. Table 8 gives

R N rK rF

GovtDB 23 0.43% 0.01%

Table 9: Government database; database level QMs.

11

Ri ki ni a r

docum 3 4779940 2081465 14.52%
genId 3 2493855 15198 0.14%

Table 10: Government database; relation level QMs.

Ri Aij KorF a r

docum county K 2076530 43.443%

docum citizen K 4935 0.103%

docum paymts K 0 0.000%

genId brName F 5628 0.226%

genId model F 4562 0.183%

Table 11: Government database; attribute level QMs.

statistical information about the probabilistic distribution of invalid references. It is noteworthy that there
exists a value that contributes significantly to a() with 9 invalid references. The coefficient of variation σ/µ
states there is not much variation around µ: most values contribute equally to a().

Government Organization

Applying our approach on a different database, we now present QMs on a driver’s license database from
a state in Mexico (state name omitted due to privacy restrictions). This database contained driver’s license
information and vehicle registration information for people living in certain counties. The database had
historic tables containing historic personal information, driving records, traffic fines and payments. There
were additional reference tables containing personal identifiers issued by government, similar to the US
Social Security Number. These results were obtained during an early stage of our project, where we did
not compute all QMs. Results were discussed with the IT manager, a database applications developer and
a database administrator. The database level QMs are shown on Table 9, where we can see there are minor
referential integrity problems. Incompleteness of foreign keys is clearly more important than consistency,
even though the database is denormalized. This was good news for the IT manager, who did not anticipate
having any important referential issues. Going down one level, Table 10 shows a couple of relation level
QMs. Users became aware referential problems were prevalent specifically in relation License, which was
the most important relation being continuously updated. To a lesser extent, there were both completeness
and consistency problems in relation person. Then going to a more granular storage level, attribute level
metrics are shown in Table 11. QMs a() and r() are significantly high for the county attribute. On the other
hand, our prototype uncovered inconsistency problems in attributes brName and model. Before computing

Attribute K/F a() r()

storeId K 9468 7.56%
format F 9672 7.72%
region F 15036 12.01%

Table 12: Retail database; attribute-level QMs.

12

ρ a(storeId) a(format) a(region)

a(storeId) 1.000
a(format) 0.988 1.000
a(region) 0.774 0.764 1.000

Table 13: Retail database; a() error correlation.

our QMs, users had told us there could be referential violations. Nevertheless, they had not imagined there
were serious problems in many cases.

Retail Company

We present error correlation results with a database from a retail company. We focused on a summary fact
table, having ni = 125, 208 rows, used to perform store-level data mining analysis and to build monthly
and annual OLAP reports. This fact table had been built from a database containing 6 billion transactions.
From an analytical perspective this was one of the most important tables to perform OLAP and data mining
analysis for this company. We ran our QMs and they took just 10 seconds; the correlation matrix was
derived in 2 seconds. Table 12 shows attribute-level QMs only for those attributes with non-zero error.
Clearly, completeness is a major issue since more than 7% of rows have an invalid FK for storeId. Looking
at foreign attributes we can see a(format) is close to a(storeId) which indicates we cannot tell if format
is consistent or not with the value in the referenced relation; given our conservative definition we assume
it is incorrect. On the other hand, a(region) is far from a(storeId), which reveals a serious consistency
problem. In fact, 15036-9468=5568 values are inconsistent despite the fact that the FK storeId exists.
Table 13 shows a high correlation between storeId and format, which is a consequence of the functional
dependency. However, region shows a lower correlation to either attribute, which tells us that this attribute
shows inconsistency in an independent manner. In practical terms, repairing referential errors in storeId
takes care of format, but region requires a separate (independent) repair action.

Users Feedback Summary

In general, users expected their databases to be clean and they asked us to keep their specific organization
names and specific record information confidential. In some cases, they also requested to keep the DBMS
brand confidential as well. We requested getting access to critical databases that were updated and refreshed
continuously. It did not matter if such databases were denormalized since our program was prepared to
handle them. In particular, we focused on analyzing large historic tables whenever possible since those
tables are used in a wide variety of queries and reports. Under the IT manager supervision we were allowed
to compute our QMs with automatically generated SQL queries. When the referential integrity prototype
had generated results, these results were discussed with the IT managers, database developers and database
administrators. We presented results hierarchically going from the database level QMs down to attribute
level QMs. Based on findings, users requested to browse a sample of records with referential errors. Some
users were intrigued by results and asked us to explain how our QMs were computed with SQL queries.

We asked the IT managers the following questions. Are you surprised QMs indeed uncovered some
referential problems?, what level of granularity of QMs would you compute on a frequent basis?, which
is a more critical dimension in your database: completeness or consistency?, for which tables is it critical
to maintain referential integrity? We asked database developers and database administrators the following
questions. Why do you think table X has referential errors?, when table X is denormalized, how is it
computed?, how frequently is database X updated?, is table X updated in batch or continuously, inserting one

13

QM level usefulness application user

database low detection IT manager
relation medium detection IT manager/DBA
attribute high diagnosis DBA/developer
value high diagnosis/repair DBA/developer

Table 14: Users feedback.

record at a time?, is there an explanation for attribute Y to have high levels of referential errors, compared
to other attributes?

In general, users feedback about our tool was positive. Users stated that QMs helped them to discover
unexpected referential integrity problems and to ensure data quality policies and procedures were working
properly. Since most tables were normalized, QMs on foreign keys were more interesting. Database level
QMs were not particularly useful on the three real databases because relative error was high. Attribute
level QMs on foreign keys (completeness) were particularly useful in OLTP systems or isolated databases in
which referential integrity was routinely enforced. That is, completeness was more important for databases
where records were inserted by transactions. Attribute level QMs on foreign attributes (consistency) were
valuable to identify stale records in large fact tables and to detect inconsistent attributes in denormalized
tables used for data mining purposes. That is, consistency was more important for a data warehouse where
there exists a large fact table with historic information and where there are denormalized tables computing
aggregations from the fact table. Database and relation level QMs helped detecting unforeseen referential in-
tegrity issues. Attribute and value level QMs helped diagnosing (explaining) referential errors and preparing
a repair plan. Users feedback is summarized in Table 14.

We now present a more detailed discussion of users comments. A system manager stated that QMs
revealed problems he was not aware of, and another IT manager stated that QMs helped him obtain a
clear idea about data quality. A DBA for a data warehouse stated that QMs could enrich metadata to test
data loading scripts in order to detect problems while tables are being refreshed. An IT manager said
QMs could justify a plan to improve data quality when integrating databases into a central data warehouse.
QMs provided varied usefulness depending on each type of user. QMs at the relation and database levels
were more useful for IT managers since they give a high level referential integrity quality assessment.
QMs at the attribute and value level were more useful for database application developers, who suggested
integrating QMs with testing database application code. FK value level QMs (invalid FK frequencies)
were interesting to all users (e.g. a FK appearing in many relations) because they provided evidence about
problems, but users stated they preferred to run the prototype on their own. An IT manager and a DBA stated
that QMs should be collected over a long period of time (e.g. every week), especially for large historic tables
containing transaction data, to track data quality and prevent future data quality problems. Users feedback
is summarized in Table 14.

4.2 Synthetic Databases

We conducted our experiments on a database server with one Intel Xeon CPU at 1 GHz with 256 MB of
main memory and 108 GB on disk. The relational DBMS we used was Postgres V8.0.1.

Our synthetic databases were generated by the TPC-H DBGEN program, with scaling factors 1 and
2. We inserted referential integrity errors in the referencing fact table (lineitem) with different relative
errors (0.1%, 0.2%,. . . , 1%, 2%,. . . , 10%). The invalid values were inserted following several different
probability distribution functions (pdfs) including geometric, uniform, zipf and normal, and in three foreign
keys (l orderkey, l partkey and l suppkey).

14

pdf function Parameters

Uniform 1
h h = 6000

Zipf 1/ks

HM,s
M = 40000

s = 1

Geometric (1 − p)n−1p p = 1/2

Normal 1√
2πσ2

exp
(

− (x−µ)2

2σ2

)

µ = 3000

σ2 = 1000

Table 15: Probability distributions used to insert invalid values.

ni Left Set
outer join containment

10000 25 60

20000 25 240

30000 29 600

50000 35 1560

100000 37 6120

Table 16: Query optimization: left outer join and set containment.

The results we present in this section, unless stated otherwise, use a default scale factor 1. The ref-
erencing table, lineitem and the referenced tables, orders, part and supplier have the following sizes:
6M, 1.5M, 200k and 10k tuples, respectively. Invalid FK values were randomly inserted according to four
different pdfs, as shown in Table 15. The minimum number of referential errors was approximately 6,000
and the maximum was 600,000. Elapsed times are indicated in seconds.

Query Optimizations

First, we evaluated the left outer join optimization on foreign keys, summarized in Table 16. Performance
degrades significantly for the set containment query, as the cardinality of the referencing relation increases.
On the other hand, it is noteworthy time grows more slowly for the left outer join query. To explain why
set containment queries are slower than left outer join queries, we obtained the query plans for both types
of queries on two DBMSs. We found that the query optimizer in DBMS X first produced a sequential scan
for the nested subquery and then a nested loop join to determine the negated set containment. The optimizer
from DBMS Y produced a nested loop join for the same query, which was more efficient. On the other hand,
the left outer join was generally computed with a merge sort or hash join. These results supported using a
left outer join by default.

We compared the performance between the late and the early foreign key grouping optimization for
small groups of invalid foreign key values. If the number of distinct values in the foreign key was similar
to the relation cardinality (i.e. large) applying early foreign key grouping was counterproductive. But if
the number of distinct values on foreign keys was smaller, then this optimization produced a significant
speedup. In Table 17 we present performance for different cardinalities, considering foreign key groups of
size 4 and 5 (meaning each invalid value appeared in 4 or 5 tuples on average). Times become better for
group size 5. Small referenced relations or large referencing relations having few distinct FK values make
early foreign key grouping an essential optimization, since it significantly reduces the size of the relation to

15

ni Late Early FK grouping

FK group Size 4 Size 5

1200000 54 67 56
2500000 91 136 85
5000000 165 172 134

Table 17: Query optimization: early and late foreign key grouping.

Figure 3: Early FK grouping variant with two pdfs.

be joined with all its referenced relations.
Figure 3 analyzes the impact of referential errors on time performance with two representative pdfs. We

can see a() has a marginal impact on performance as it increases. The impact is more important for the zipf
distribution. Summarizing, the size of a relation is far more important than the number of invalid values.

Statistics on QMs

Table 18 shows a summary of statistics of QMs with a fixed r() = 1% for the lineItem table and the partId
column. Observe that for the geometric pdf one invalid value produces many referential errors. On the other
hand, for the uniform pdf all invalid values contribute evenly to referential errors. The geometric pdf has the
highest standard deviation, meaning there are values far from the mean, that significantly contribute to error.

pdf min µ max σ

Uniform 1 10 22 3

Zipf 1 7 6002 82

Geometric 1 3505 29873 7825

Normal 1 120 372 121

Table 18: Univariate statistics with different probability distributions.

16

5 Related Work

There is extensive work on maintaining referential integrity. For instance, [17, 19] identify conditions
to avoid referential problems during data manipulation. Reference [14] presents a model for referential
integrity maintenance during run-time execution. There is a proposal to check deferred referential integrity
using a metadata network [5], where inclusion dependencies are considered and each foreign key value is
verified to have a corresponding matching key value. No analysis is done on measuring inconsistency, nor
on algorithm performance. Implementation of update and delete referential actions, full and partial types,
reference types, are features that have not been fully completed in commercial DBMSs [24].

The SQL language has supported referential integrity by defining foreign keys and referential actions.
A survey on SQL query optimization is given in [7], explaining when to perform a “group-by” operation
before a join operation (early or eager), instead of joining tables first and then performing the “group-by”
operation (late or lazy). This optimization is applicable when the number of result groups is small and when
a different evaluation order does not change result correctness. Our early foreign key grouping is a particular
case of this optimization, but we also consider null key values and we generalize it to build a cube of foreign
keys. SQL aggregations are extended to return approximately consistent answer sets when there exist invalid
FKs [20]; this approach dynamically detects referential errors and improves answer sets in two ways: (1) by
distributing aggregated values in a measure attribute from invalid FK values among valid FK values; (2) by
exploiting valid FK values in another attribute to make distribution more accurate.

To our knowledge, data quality metrics have not been proposed with respect to referential integrity. A
proposal of simple metrics for data quality in relational databases is given in [18], where completeness and
soundness metrics are introduced. These metrics compare the state of the database to the data from the real
world such database is supposed to represent. Our proposed QMs measure the completeness of references
among relations and to some extent QMs on foreign attributes measure soundness. We do not deal with
the problem of measuring if a valid reference is indeed valid. Concerning this aspect, [25] introduces an
attribute-based model that incorporates data quality indicators and focuses on two dimensions: interpretabil-
ity and believability. In [22] the authors introduce an algebra to measure completeness in several data quality
dimensions, considering basic relational set operations, null values and the open/closed world assumptions,
but ignoring referential integrity.

A model linking data quality assessment to user requirements is proposed in [6]. In [21] a classification
of objective quality measures is presented. In particular, their simple ratio function measures the ratio of de-
sired outcomes to total outcomes. The authors suggest that consistency could be measured by these means.
This is related to our referential integrity error definitions. In [16] the authors investigate the correct inte-
gration of relationship instances integrated from different source databases, focusing in detecting semantic
conflicts and reconciling them. This proposal can be used as pre-processing to get QMs, since semantic
conflicts must be solved before quantifying referential integrity errors. Referential integrity metrics have
been studied considering the model design point of view. Reference [4] introduces two metrics to aid model
designers make better decisions by analyzing referential paths and the number of foreign keys in a schema.
The authors do not consider invalid keys or denormalized relations. In contrast, our approach is applica-
ble after the database logical data model has evolved from its original design or for database integration.
Authors in [23] introduce metrics to evaluate the effectiveness of conceptual models for a data warehouse,
which complement logical and physical design tools.

We now explain our approach from a broader perspective. Data quality problems related to referential
integrity are described in [15]. The authors distinguish between operational and diagnostic data quality
metrics. In this work referential violations between two tables are called poor join paths. Our metrics at
the database and relation levels are diagnostic and frequencies of invalid foreign key values are operational
since they provide insight into how to fix referential errors.

Healthcare data warehouses represent a prominent example, where data quality (missing information,
inconsistency), data integration from diverse sources (structured and semistructured) and privacy (confi-

17

dentiality of patient records) make database management difficult [2]; several of such issues are related to
referential integrity maintenance among tables coming from different sources. On a closely related topic,
[1, 11] study data quality issues in data warehouses considering the time dimension for aggregate queries;
in our work we simply detect referential integrity errors on the current state of the database, but we do not
track when referential errors were introduced. Therefore, discovering and explaining referential errors back
in time is an interesting issue for future work.

Discovering database relationships and repairing inconsistent databases are important related problems.
In [9] the authors propose techniques to automatically identify PK/FK relationships between tables coming
from different databases; in our case we assume such relationships are manually specified by the user or
come from a logical data model. Therefore, this approach can be applied as a pre-processing phase before
computing referential integrity QMs. In [3] the authors introduce a cost framework to aid in the restoration of
a database with integrity constraints (user-defined rather than referential) violations via value modifications.
Constraints in an inconsistent database can be satisfied by incorporating constraint checks in equivalent
rewritten queries to given queries [12]. Both approaches apply heuristics to repair databases, either statically
(by updating tables) or dynamically (by rewriting queries). In contrast, our work diagnoses problems and
gives detailed information to the user in order to explain and repair referential errors. Therefore, our proposal
can serve as a pre-processing step before applying any heuristic to repair invalid values.

6 Conclusions

We proposed a comprehensive set of quality metrics (QMs) for referential integrity, which can be applied
in data warehousing, database integration and data quality assurance. Our QMs measure completeness in
the case of foreign keys and consistency in the case of foreign attributes in denormalized databases. QMs
are hierarchically defined at four granularities: database, relation, attribute and attribute value. Quality
metrics are of two basic types: absolute and relative error. Absolute error is useful at fine granularity
levels or when there are few referential violations. Relative error is adequate at coarser granularity levels
or when the number of referential violations is relatively large. We introduced univariate and bivariate
statistics on attribute level QMs to further understand the probability distribution of invalid foreign key
values. We explained how to efficiently calculate QMs with SQL queries. Specifically, we presented two
query optimizations. The first optimization favors a left outer join over a set containment to use a hash or
merge-sort join algorithm instead of a nested loop algorithm. The second optimization performs a group-
by operation on foreign keys before a join (pushing aggregation, early group-by) to reduce the size of the
referencing relation. This optimization is effective for large relations with many foreign keys, where the
number of distinct values per foreign key is small. Experiments evaluate referential integrity QMs with
real and synthetic databases on different DBMSs. We got interesting results on real databases and end-
users opinion was positive. QMs at the database and relation level were more useful for managers, whereas
value and attribute level QMs were more interesting to DBAs and application programmers. We studied
quality metrics for attributes following four different probability distributions. Attribute values with a high
relative error in skewed distributions can be used to fix critical referential problems. Univariate statistics and
correlations can help understand the probability distribution and co-occurrence of referential errors. On the
time performance side, a left outer join evaluation was generally more efficient than a set containment due
to fast join evaluation algorithms in different DBMSs. On the other hand, early foreign key grouping was
always more efficient than late foreign key grouping.

Our work can be extended to repair a database considering the frequency of matching values for foreign
keys and foreign attributes. Our statistics on attribute level metrics can be extended to apply multidimen-
sional data mining techniques, such as clustering and factor analysis. We want to study how to efficiently
repair a denormalized database to leave it in a strict state, based on a plan derived from quality metrics.
Incremental computation is needed to keep quality metrics up to date in ever-growing data warehouses.

18

Finally, we believe our ideas may be applicable in semistructured data, such as text or XML.

References

[1] D.J. Berndt and J.W. Fisher. Understanding dimension volatility in data warehouses. In INFORMS
CIST Conference, 2001.

[2] D.J. Berndt, J.W. Fisher, and J. Studnicki A.R. Hevner. Healthcare data warehousing and quality
assurance. IEEE Computer, 34(12):56–65, 2001.

[3] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model and effective heuristic for
repairing constraints by value modification. In ACM SIGMOD Conference, pages 143–154, 2005.

[4] C. Calero, M. Piattini, and M. Genero. Empirical validation of referential integrity metrics. Information
& Software Technology, 43(15):949–957, 2001.

[5] S.J. Cammarata, P. Ramachandra, and D. Shane. Extending a relational database with deferred refer-
ential integrity checking and intelligent joins. In ACM SIGMOD Conference, pages 88–97, 1989.

[6] C. Cappiello, C. Francalanci, and B. Pernici. Data quality assessment from the users perspective. In
Proc. ACM IQIS Workshop, pages 68–73, 2004.

[7] S. Chaudhuri. An overview of query optimization in relational systems. In Proc. ACM PODS Confer-
ence, pages 84–93, 1998.

[8] E.F. Codd. Extending the database relational model to capture more meaning. ACM TODS, 4(4):397–
434, 1979.

[9] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining database structure; or, how to
build a data quality browser. In ACM SIGMOD Conference, pages 240–251, 2002.

[10] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addison/Wesley, Redwood City,
California, 3rd edition, 2000.

[11] J.W. Fisher and D.J. Berndt. Creating false memories: Temporal reconstruction errors in data ware-
houses. In Eleventh Workshop on Technologies and Systems, New Orleans, 2001.

[12] A. Fuxman, E. Fazli, and R.J. Miller. Conquer: efficient management of inconsistent databases. In
ACM SIGMOD Conference, pages 155–166, 2005.

[13] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation operator
generalizing group-by, cross-tab and sub-total. In ICDE Conference, pages 152–159, 1996.

[14] B.M. Horowitz. A run-time execution model for referential integrity maintenance. In IEEE ICDE
Conference, pages 548–556, 1992.

[15] T. Johnson, A. Marathe, and T. Dasu. Database exploration and Bellman. IEEE Data Engineering
Bulletin, 26(3):34–39, 2003.

[16] E.P. Lim and R.H. Chiang. The integration of relationship instances from heterogeneous databases.
Decis. Support Syst., 29-2(3-4):153–167, 2000.

[17] V.M. Markowitz. Safe referential structures in relational databases. In VLDB, pages 123–132, 1991.

19

[18] A. Motro and I. Rakov. Estimating the quality of data in relational databases. In IQ, pages 94–10,
1996.

[19] D. Mukhopadhyay and G. Thomas. Practical approaches to maintaining referential integrity in multi-
database systems. In RIDE-IMS, pages 42–49, July 1993.

[20] C. Ordonez and J. Garcı́a-Garcı́a. Consistent aggregations in databases with referential integrity errors.
In ACM IQIS Workshop, pages 80–89, 2006.

[21] L. Pipino, Y.W. Lee, and R.Y. Wang. Data quality assessment. ACM CACM, 45(4):211–218, 2002.

[22] M. Scannapieco and C. Batini. Completeness in the relational model: A comprehensive framework.
In IQ Conference, 2004.

[23] M. Serrano, C. Calero, J. Trujillo, S. Lujan-Mora, and M. Piattini. Empirical validation of metrics for
conceptual models of data warehouses. In CAISE, pages 506–520, 2004.

[24] C. Türker and M. Gertz. Semantic integrity support in SQL: 1999 and commercial (object-)relational
database management systems. VLDBJ, 10(4):241–269, 2001.

[25] R.Y. Wang, M.P. Reddy, and H.B. Kon. Toward quality data: an attribute-based approach. Decis.
Support Syst., 13(3-4):349–372, 1995.

20

