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Abstract—The theoretical relationship between association
rules and machine learning techniques needs to be studied in
more depth. This article studies the use of clustering as a model
for association rule mining. The clustering model is exploited
to bound and estimate association rule support and confidence.
We first study the efficient computation of the clustering model
with K-means; we show the sufficient statistics for clustering
on binary data sets is the linear sum of points. We then prove
itemset support can be bounded and estimated from the model.
Finally, we show support bounds fulfill the set downward closure
property. Experiments study model accuracy and algorithm
speed, paying particular attention to error behavior in support
estimation. Given a sufficiently large number of clusters, the
model becomes fairly accurate to approximate support. However,
as the minimum support threshold decreases accuracy also
decreases. The model is fairly accurate to discover a large fraction
of frequent itemsets at different support levels. The model is
compared against a traditional association rule algorithm to mine
frequent itemsets, exhibiting better performance at low support
levels. Time complexity to compute the binary cluster model is
linear on data set size, whereas the dimensionality of transaction
data sets has marginal impact on time.

I. INTRODUCTION

Association rules [2] are a very popular data mining tech-
nique [15], [17], which have produced a significant body of
research. There is research on efficient algorithms to discover
association rules [3], [32], [16], [38], using item taxonomies
[35], creating itemset summaries [8], incorporating constraints
[40], creating summaries [10], [20] and applying them in
different domains [9], [11], [29], among other topics. Unfortu-
nately, association rules lack a basic model to understand their
relationship to properties from the data set. In this work, we
defend the idea of using clustering [7], [26], [12] as a model
to discover association rules.

Association rules is a well studied topic, but most research
has proposed efficient algorithms [24], [16], [32] or variants
like quantitative [36], constrained [25], [40], taxonomy-based
[35], among others. Studying their relationship to classical
machine learning techniques has received less attention. Using
a model to discover them, finding ways to summarize them,
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proposing metrics to approximate them or explaining their
validity using alternative techniques are aspects that have not
received enough attention. Our point of view is that clusters
represent a more fundamental pattern than association rules,
from which we can generate them. The mathematical rela-
tionship between clustering and association rules is important
and interesting because clustering, on one hand, looks for
global patterns producing disjoint subsets of points, whereas
association rules uncover many local patterns referring to
overlapping subsets of points. That is, both techniques have
different goals.

This is a summary of our contributions. We first introduce
a one-pass K-means clustering algorithm based on simplified
sufficient statistics for binary data to build a model that
summarizes a set of transactions as clusters. We prove clusters
can be used to bound and approximate association rule metrics.
Based on the clustering model three association metrics are
introduced: lower, upper and average support. These new
metrics provide bounds and an estimation for association
support. Also, our metrics exhibit the subset downward closure
property, which allows efficient bottom-up search algorithm
that can work in main memory. We derive three metrics for as-
sociation rule confidence reusing support bounds: lower, upper
and average confidence. We perform an extensive experimental
with real and synthetic data sets. We study error behavior
varying the number of clusters and accuracy to discover a
large set of frequent itemsets at different support thresholds.

This is an outline of the article. Basic definitions on cluster-
ing and association rules are presented in Section II. Section
IIT explains how to exploit a clustering model to bound an
estimate itemset support. Section IV discusses experiments
studying error on support estimation, speed and scalability.
Closely related work is presented in Section V. Section VI
concludes the article.

II. DEFINITIONS

We give a unified set of definitions for association rules
[2], [3], [32] and clustering [7], [28]. Items act as dimension
subscripts for matrix manipulation.

A. Association Rules

Let D = {T1,...,T,} be a set of n transactions on
d items, where |T;| << d (crucial to develop an efficient
distance computation [26]) and Z = {1, 2, ..., d} (each integer



identifies one item). Each subset X of items s.t. X C 7
is called an iftemset. An itemset X containing p items is
called a p-itemset: X = {i,i2,...,ip}, where i; € Z. The
probability of appearance for one itemset X C 7, is called
support and it is defined as s(X) = [{T3|X C T;}|/n. That
is, the fraction of transactions in D that contain X. In an
association rule X = Y, X, Y C Z,and X NY = 0.
(X 1is called the antecedent and Y is called the consequent).
X = Y has a measure of reliability called confidence,
given by ¢(X = Y) = s(X UY)/s(X). The standard
association problem is to find all itemsets that have support
above a minimum support threshold 7. The standard problem
of mining association rules is to find all rules X = Y s.t.
s(X=Y)>7and ¢(X =Y) > .

B. Clustering

In the context of clustering D is analyzed as a binary data
set with d dimensions. K-means partitions the data set into &
disjoint groups based on a Euclidean distance similarity metric.
The clustering model consists of matrices W, C, R, which
contain the weights, the centroids (means) and the radiuses
(variances), respectively for each cluster and a partition of D
into k subsets, where k is user-specified. Matrices C' and R
are d x k and W is a k x 1 matrix. To refer to to the jth cluster
we use the j subscript (i.e. C;, R;). Therefore, C; is the jth
cluster centroid, IZ; is the jth (diagonal) variance matrix and
W; is the weight of cluster j. Subscripts are used as follows.
Subscript ¢ is used to scan transactions: ¢ € {1,2,...,n}.
Notice 7 alone is a subscript to index transactions, but i, is item
j. Subscript j is used to refer to one cluster: j € {1,2,...,k}.
Finally, subscript A is used for dimension: h € {1,2,...,d}.
Let Dy, Do, ..., Dy be the k disjoint subsets from D induced
by clusters s.t. D; N Dy, = () for j # g. The diag|] is a
transformation operator to transform a vector into a diagonal
matrix or vice versa. The T superscript indicates vector and
matrix transposition.

Example 2./: In Figure 1 we present a small input database
D, where d = 5,n = 8. Figure 2 presents a clustering model
where & = 2. Finally, Figure 3 presents an intuitive model
summary. Items are grouped according to their cluster centroid
value. The last column shows a basic itemset represented by
each cluster, which can be used to derive itemset subsets. Thus
the clustering summary can derive all frequent itemsets that
can be obtained from D. Parameter )\ is used to filter out long
itemsets obtained from each cluster; it will be explained in
more detail in Section III.

III. BOUNDS ON SUPPORT BASED ON CLUSTERS

Clustering is used as a statistical model for association rules.
In this section we introduce an efficient algorithm to cluster
binary data sets and a family of association rules metrics based
on a clustering model.

A. Clustering Binary Data Sets

Since we are trying to use clusters as a model to discover
associations the first task is clustering transactions. K-means

T; | Items T, 112345
1 45 1 00011
2 134 2 {00110
3 12 3 11000
4 12 4 101000
5 12 5 11000
6 | 345 6 (00111
7 |1 7 10000
8 |34 8 100110
Fig. 1. Input transactions d = 5,n = 8.
0.00 0.75
05 0.00 0.75
W:[O'5]C: 0.75 0.00
' 1.00 0.00
0.50 0.00

Fig. 2. Clustering model; d = 5,k = 2.

[7], [31], [23], [17] is used to cluster transactions. From a
scalability point of view, It is feasible to derive incremental
K-means clustering versions [26] that can get a good solution
in one pass or a few passes over a large data set.

The K-means algorithm used in this work is an improvement
of the incremental K-means algorithm for binary streams [26].
In this section we present the main features that make it
suitable to cluster binary data sets and introduce useful theoret-
ical results. K-means is significantly accelerated with sparse
distance computation, sparse matrix addition and simplified
sufficient statistics.

The K-means algorithm [26], like other scalable cluster-
ing algorithms [7], [44], exploits sufficient statistics, which
are summaries of Dj, Dy, ..., Dy represented by matrices
L,Q, N that contain k sums of points, k& sums of squared
points and number of points per cluster, respectively. L is
a d x k matrix, such that each column L; is computed as
L; = ZMGDJ_ x;. Bach column of @ is a diagonal matrix Q;:
Qj = X,.ep, Tiw] . Finally, matrix N is & x 1 which counts
the number of points per cluster (i.e. N; = |D;|). The update
formulas for W, C, R based on sufficient statistics are:

N.
W=+ M
n
1
C; = ELJ- )
1 1
R; = EQ;‘ - ijLJT ®3)
J
C; range for items Itemsets
j W; | 075-1 05-075 0.25-05|atA=05
1 05]|34 5 345
2 05(12 12
Fig. 3. Clusters summary and itemsets.



The sufficient statistics can be simplified for clustering
binary data. In fact, they are simpler than the sufficient
statistics required for clustering numeric data.

Lemma 3.1: Let Dy, Do, ..., Dy be k subsets representing
a partition of D. Then the sufficient statistics required for
computing C, R, W are only N and L because L = Q.

Proof: Based on the fact that x; is a binary vector:
S x; =Y x;zl. Therefore, L = Q. [ ]

This result states that we only need to update the model
based on Equation (1) and Equation (2). That is, matrix R;
can be obtained from Cj:

R; = diag[Cy] - C;CF ©)

More importantly, storage space for clustering results is
reduced to one half. Therefore, matrix R is not needed to
estimate bounds for support and confidence. We can now
derive a simple criterion to evaluate cluster quality.

Theorem 3.7/: R;; has a minimum if and only if Cj; = 0 or
Cj; = 1. Also, R;; has a maximum if and only if Cj; = 1/2.

Proof: The result follows from R; = diag|C;] — C;CT
and the first derivative conditions for entry R;; to have a
maximum. ]

Theorem 3.1 states that it is best C; entries are close to
either 0 or 1, with the ideal case when Cj; = 0 or Cj; = 1.

B. One Pass K-means for Binary Data

When D is a sparse matrix and d is high, Euclidean distance
is expensive to compute. In a typical binary (transaction) data
set only a few dimensions have non-zero values. Therefore, we
precompute a distance from every C; to the null vector 0. To
that purpose, we define the following k-dimensional vector:
Aj = 6(6707) Let (Sij = (S(.%‘l,C]) Then

d

>

1=1,(z:)1 70

This optimized distance computation decreases time com-
plexity, but it does not affect quality of results. A similar idea
is applied to update L, () matrices in a sparse fashion after a
transaction cluster membership is determined. Sparse matrix
addition updates only the closest cluster dimensions where the
point dimension value is 1.

Based on the improvements described in the previous sec-
tion we present a one pass K-means algorithm. This is a
high-level description. The input is the set of transactions
D ={T\,Ts,...,T,}. and k, the desired number of clusters
as defined in Section II. The output is © = {W, C}, describing
the model and a partitioning of D into k subsets. A constant o
is used to seed C based on d and k. The global statistics x4 and
X can be quickly computed from a sample. Standard deviations
are computed as o;; = v/%;;. The cluster membership step is
executed for every transaction (n times). Since this is the most
frequently executed step the optimization for sparse matrix
operations is essential to achieve good performance. These
sparse operations include sparse distance computation for §
and sparse matrix addition to update L. d;; is efficiently
computed using A ;. The M step is periodically executed every

((zi) = Ciy)? = CF. ©)

Input: D = {T1,T>,..
Output © = {W, C}
a «— 1/(dk),y < log(n)
FOR j =1 TO k£ DO /* Initialize */
Cj «— p £ ar diag[o], W; — 1/k
A; =6(0,C5) = CJ.TCj
L; —Cj, Nj —1
ENDFOR

.,Tn} and k.

FOR i =1 TO n DO
FOR j =1 TO k DO
8 — 6(T3,Cy)
ENDFOR
Let Jbest 6y <6;,j=1...k
Ly« Mj+ x; /* sparse operation */
Ny— Nj;+1
IF( ¢ mod (n/v) = 0) THEN
FOR j =1 TO k DO
Cj — M;/N;
Wy = Ni/ 32 Ng
Aj — C]TC]'
ENDFOR
ENDIF
ENDFOR

/* distances */
/* sparse operation */

/* update model */

Fig. 4. One pass K-means for binary data.

n /-~y transactions (y times). W, C' are updated using Eq. (1) and
Eq. (2). Dimensions (items) are ranked within each cluster by
their value in C; to make output easier to understand.

C. Bounds on Support

The following theoretical results are important to use the
model to obtain bounds on association support. The support
of an itemset in one cluster (s(X, D;)) must be less or equal
than the minimum support of any item, as shown in [32].

Lemma 3.2: Let D; be one cluster from D. Let X =
{i1,12,...,1p} be some p-itemset. Let C; be the mean of
transactions that belong to cluster j. Then s(X,D;) <
min((C);,, (C))i,, - -5 (Ch)y )-

Proof: (sketch) Induction on p. |

The following theorem links clustering results with associ-
ations. Let the upper bound of s(X) be defined as follows:

k
u(X) =Y Wimin((C;);,, (C)i,» - (C)i,)- (©
j=1

Theorem 3.2: Let D be a set of n transactions. Let C, W
be the matrices containing the means and weights respec-
tively on some clustering of D into k subsets of transactions
Dq,Dso,...,Dg. Let X be any p-itemset given by X =

{i1,12,...,1p}. Then s(X) < u(X).

Proof: (sketch) By Lemma 3.2 we can sum k inequalities
corresponding to each subset D;, s(X, D;) < u(X, D;) to get
s$(X) <u(X) on D. [ |

Theorem 3.2 asserts C' and W can be used to mine all
potential frequent itemsets, thereby eliminating the need to
scan D. Nevertheless, the theorem does not guarantee that
only true frequent itemsets are above the minimum support
threshold. We may find some false-positive itemsets whose
exact support is actually lower than that indicated by the



model. The following result, based on Theorem 3.2, is applied
to prune the lattice search space if associations are being mined
from the clustering model using u(). Now we introduce a
lower bound for the support of an association.

k P
(X)) =Y Wymax(0,1+) ((C);, = 1), (D
j=1 =1
where max() is used to get a non-negative lower bound per
cluster.

Theorem 3.3: Let X,C,W,{D,..
Theorem 3.2. Let X be a p-itemset X = {iy, i, .
I(X) < s(X).

Proof: (sketch) The sum in Equation 7 computes a lower
bound on the fraction of transactions that do not contain X
for cluster j. [ |

Since w() and I() are guaranteed bounds on the exact
support of any association their average is a good estimator:

., Dy} be as stated in
..,ip}. Then

a(x) = AU ®)

D. Downward Closure Property

The following result proves our metrics preserve the down-
ward closure property (e.g. a subset of a frequent itemset is
frequent).

Theorem 3.4: Let X be a p-itemset and let Y C X, Y =
{hi,...,hg}, ¢ < p. Then: (1) I(X) < I(Y), 2) u(X) <
u(Y), (3) a(X) < a(Y).

Proof: The proof follows by considering the extra items
in X, which may decrease the bounds on Y. ]

Theorem 3.4 guarantees a complete set of associations with
respect to any of the metrics using the standard bottom-up
search algorithm. This result generalizes bottom-up search
algorithms to work with a clustering model instead of the data
set.

As explained above, upper support (u()) is safe in the sense
that it produces a superset of all frequent itemsets, but it
may generate infrequent (false positive) itemsets. In general,
a subset of C; entries close to zero indicate itemsets that are
unlikely to be frequent. To solve such limitation, we propose to
use a A parameter which is used to filter out itemsets unlikely
to be above 7 (i.e. not frequent): clusters whose upper support
for one specific itemset fall below 7 do not contribute to the
support estimation used for pruning. Therefore, we get an
adjusted upper support for pruning below 7. The spectrum
for A is [0,1]. At one extreme A = 0 does not eliminate
any itemset: all frequent itemsets are discovered, but there
are additional itemsets whose support is actually below the 7
threshold. At the other extreme, A = 1 allows only dimensions
with zero variance in each cluster to participate in itemset
generation; in this case all itemsets that are generated are
frequent (there are zero false positives), but there may be many
itemsets whose support was actually above the 7 threshold
(there are false negatives).

TABLE I

DATA SETS.
Data set type d n
Chess real 75 3196
Mushroom real 127 8124
Votes real 17 435
T10I14D100k | synthetic 100 100k
T1014D1M synthetic 100 1000k

IV. EXPERIMENTAL EVALUATION

We first discuss our experimental setup and data sets.
Experiments study two major aspects. First, we study relative
error on support estimation and model accuracy to discover
frequent itemsets varying the number of clusters and the
minimum support threshold. Second, we evaluate speed and
scalability.

A. Setup

Experiments were performed on a workstation with a 2.4
GHz CPU, 2 GB of memory and 160 GB on disk. The
algorithms were programmed in the C++ language. The data
sets were stored as text files. The clustering model matrices
were stored on a binary file after their computation. The
model was loaded into main memory before mining frequent
itemsets. Each experiment was repeated five times and average
measurements are reported. In general, elapsed times are
reported in seconds.

B. Data Sets

Experiments use real and synthetic data sets. The real data
sets were obtained from the UCI Machine Learning Repository
[4] and are widely used in the research literature on association
rule mining. Synthetic (transaction) data sets were created
running the well-known IBM transaction data generator [3].
All data sets were transformed and converted to transaction
format (itemset representation), as required by our proposal.
Table I provides a summary of data sets.

We now explain how synthetic data sets were generated
with the IBM transaction data generator [3]. This generator
has seven parameters (indicating our notation in parenthesis):
number of transactions D (n), number of items (d), number
of patterns P (frequent itemsets), average transaction length T,
average pattern length I, average correlation corr and average
rule confidence con f. Test files are named after the parameters
with which they were created. The standard way [3], [15]
is to use T, I and D to label files since those are the three
most common parameters to change and the ones which play
a more important role in performance (e.g. T10I4D100k).
The transaction files we used had defaults D=1M (n=1000k),
d = 100, T=10, I=4, P=100, corr = 0.75 and conf = 0.75.

C. Clustering Model Accuracy
Deafult Parameters Setting

Each data set has a different optimal setting for k. Therefore,
there is no default value for k. On the other hand, we set
A = 0.2; Recall X is used to filter out itemsets unlikely to be
frequent.



Relative error on support was used to measure accuracy.
For an itemset X it was computed as es(X) = |a(X) —
s(X)|/|s(X)|, where average support a(X) is obtained from
the clustering model and s(X) is the exact support value, as
computed from D.

We focus on analyzing error for support estimation. The
problem of choosing the best £ is called model selection [23],
[17]. A low k produces a simple, but probably inaccurate
model, a high & will produce a more complex, but accurate
model. We made a few runs to determine a good k for the real
data sets, considering that when k is too high some clusters
tend to have almost zero points. Therefore, we set k high
enough so that relative error reached less than 10% and we
did not get zero-weight clusters. In general, there was a slight
variation in the cluster model quality from run to run. We
selected the run that produced best clustering results out of five
runs in order to estimate support bounds. This is a reasonable
approach because in practice a data mining user picks the best
model.

Error varying the number of clusters

Figure 5 analyzes error behavior varying k. The left graph
shows error behavior for real data sets at 7 = 0.2, whereas
the right graph analyzes error for the synthetic data set for
two 7 values. We discuss results for real data sets. As can be
seen error rapidly decreases as k grows. The trend indicates
asymptotic behavior. Despite the difference in data set sizes
and dimensionality in all cases error goes below 5% when k
reaches 80. On the other hand, error is high when k is low. We
now turn our attention to the synthetic data set, where we built
models with much higher k. In this case error shows a slower
rate of decrease. The trend also seems asymptotic. We can also
see there is a clear gap between 7 = 0.05 and 7 = 0.10; error
roughly grows 100% when 7 decreases by 50%. Interestingly
enough, results are much better for real data sets than for the
synthetic data set.

Error decreasing minimum support

Figure 6 shows error growth as 7 decreases. The left graph
analyzes error for real data sets. We can see error growth shows
different behavior for each data set. Error growth is slow for
the Votes data set. Error grows almost linearly for the Chess
data set. Error grows fast for the Mushroom data set. The trend
indicates we need to build more accurate models with higher
k for Mushroom, probably not for Chess and not necessary
for the Votes data set. The right graph analyzes error growth
for the synthetic data set. The first model at £ = 800 is twice
as accurate as k = 400. We can see error grows linearly for
high 7 values, but it start growing faster at 7 = 0.1. The
trend indicates the growth is not linear, but it does not seem
exponential.

D. Comparing Speed and Scalability

We first compare our proposal versus the standard algorithm
to mine association rules. We then study time complexity and
scalability.

TABLE II
COMPARING MODEL AND A-PRIORI.

7 | from model clustering+model  A-priori
0.20 1 1672 24
0.15 1 1672 43
0.10 1 1672 156
0.05 3 1674 645
0.02 11 1683 3347
0.01 36 1708 14806

Comparing clustering and A-priori

Table II compares the efficiency of the model with the
standard A-priori algorithm. We must stress our proposal
does not intend to substitute fast association rule algorithms
[32], [16], but we include these comparisons to provide a
relative performance benchmark. We used the synthetic data
with n = 1M. The clustering model used had the number
of clusters set to & = 100. These times include the time
to compute exact support on a final pass. The first column
varies 7 (the minimum support threshold). The second column
shows the time to discover frequent itemsets from the model,
excluding the time to compute the model. The third column
adds the time to compute the clustering model and the time
to mine frequent itemsets. Finally, the fourth column shows
the time for the traditional algorithm. As can be seen, the
clustering model represents an efficient mechanism to produce
all frequent itemsets, assuming the model is already tuned and
stored. That is, we assume the model is computed a few times
or even once. The second column shows clustering the data
set takes most of the time. In this case, the standard algorithm
is faster at high support levels, but the model becomes faster
at low support levels. Notice the third column represents a
pessimistic case in which the model is recomputed every time.
Finally, we can see the A-priori algorithm suffers scalability
problems due to the exponential growth of patterns. The basic
reason the model is faster is because it uncovers long itemsets
and it is efficiently manipulated in main memory.

Time Complexity and Speed

We now evaluate scalability and speed with large, high
dimensional, data sets to only compute the models, as shown
in Figure 7. The plotted times include the time to store models
on disk, but exclude the time to mine frequent itemsets. We
experimentally prove: (1) Time complexity to compute models
is linear on data set size. (2) Sparse vector and matrix compu-
tations yield efficient algorithms, whose accuracy was studied
before. (3) Dimensionality has minimal impact on speed,
assuming average transaction size T is small. Transactions
are clustered with Incremental K-means [26], introduced on
Section III. Large transaction files were created with the IBM
synthetic data generator [3] having defaults n = 1M, T=10,
I=4.

Figure 7 shows time complexity to compute the cluster-
ing model. The first plot, on the left, shows time growth
to build the clustering with a data set with one million
records (T10I4D1M). As can be seen times grow linearly
as n increases, highlighting the algorithms efficiency. On
the other hand, notice d has marginal impact on time when
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Fig. 7. Time complexity for clustering large data sets with K-means.

it is increased 10-fold on both models due to optimized
sparse matrix computations. The second plot, on the right,
in Figure 7 shows time complexity to compute clustering
models increasing £ on T10I14D100k. Remember £ is the main
parameter to control support estimation accuracy. In a similar
manner to the previous experiments, times are plotted for two
high dimensionalities, d = 100 and d = 1,000. As can be
seen time complexity is linear on k, whereas time is practically
independent from d. Therefore, our methods are competitive
both on accuracy and time performance.
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E. Summary

The clustering model provides several advantages. It is a
descriptive model of the data set. It enables support estimation
and it can be processed in main memory. It requires the user
to specify the number of clusters as main input parameter,
but it does not require support thresholds. More importantly,
clusters can help discovering long itemsets appearing at very
low support levels.

We now discuss accuracy. In general, the number of clusters
is the most important model characteristic to improve accu-
racy. A higher number of clusters generally produces tighter



bounds and therefore more accurate support estimations. The
clustering model quality has a direct relationship to support es-
timation error. We introduced a parameter to improve accuracy
when mining frequent itemsets from the model; this parameter
eliminate “spurious” itemsets unlikely to be frequent. The
clustering model is reasonably accurate on a wide spectrum of
support values, but accuracy decreases as support decreases.

We conclude with a summary on time complexity and
efficiency. When the clustering model is available, it is a
significantly faster mechanism than the A-priori algorithm
to search for frequent itemsets. Decreasing support impacts
performance due to the rapid combinatorial growth on the
number of itemsets. In general, the clustering model is much
smaller than a large data set: O(dk) < O(dn). A clustering
model can be computed in linear time with respect to data
set size. In typical transaction data sets dimensionality has
marginal impact on time.

V. RELATED WORK

There is a lot of research work on scalable clustering
[1], [30], [28] and efficient association mining [24], [16],
[40], but little has been done finding relationships between
association rules and other data mining techniques. Sufficient
statistics are essential to accelerate clustering [7], [30], [28].
Clustering binary data is related to clustering categorical data
and binary streams [26]. The k-modes algorithm is proposed
in [19]; this algorithm is a variant of K-means, but using only
frequency counting on 1/1 matches. ROCK is an algorithm that
groups points according to their common neighbors (links)
in a hierarchical manner [14]. CACTUS is a graph-based
algorithm that clusters frequent categorical values using point
summaries. These approaches are different from ours since
they are not distance-based. Also, ROCK is a hierarchical
algorithm. One interesting aspect discussed in [14] is the
error propagation when using a distance-based algorithm to
cluster binary data in a hierarchical manner. Nevertheless, K-
means is not hierarchical. Using improved computations for
text clustering, given the sparse nature of matrices, has been
used before [6]. There is criticism on using distance similarity
metrics for binary data [12], but in our case we have proven
K-means can provide reasonable results by filtering out most
itemsets which are probably infrequent.

Research on association rules is extensive [15]. Most ap-
proaches concentrate on speeding up the association genera-
tion phase [16], [1]. Some of them use data structures that
can help frequency counting for itemsets like the hash-tree,
the FP-tree [16] or heaps [18]. Others resort to statistical
techniques like sampling [38], statistical pruning [24]. In [34]
global association support is bounded and approximated for
data streams with the support of recent and old itemsets; this
approach relies on discrete algorithms for efficient frequency
computation instead of using machine learning models like
our proposal. Our intent is not to beat those more efficient
algorithms, but to show association rules can be mined from a
clustering model instead of the transaction data set. In [5] it is
shown that according to several proposed interest metrics the
most interesting rules tend to be close to a support/confidence

border. Reference [43] proves several instances of mining max-
imal frequent itemsets (a constrained frequent itemset search)
are NP-hard and they are at least #P-hard, meaning they will
remain intractable even if P=NP. This work gives evidence it is
not a good idea to mine all frequent itemsets above a support
threshold since the output size is combinatorial. In [13] the
authors derive a bound on the number of candidate itemsets
given the current set of frequent itemsets, when using a level-
wise algorithm. Covers and bases [37], [21] are an alternative
to summarize association rules using a combinatorial approach
instead of a model. Clusters have some resemblance to bases
in the sense that each cluster can be used to derive all subsets
from a maximal itemset. The model represents an approximate
cover for all potential associations.

We now discuss closely related work on establishing re-
lationships between association rules and other data mining
techniques. Preliminary results on using clusters to get lower
and upper bounds for support is given in [27]. In general, there
is a tradeoff between rules with high support and rules with
high confidence [33]; this work proposes an algorithm that
mines the best rules under a Bayesian model. There has been
work on clustering transactions from itemsets [41]. However,
this approach goes in the opposite direction: it first mines
associations and from them tries to get clusters. Clustering
association rules, rather than transactions, once they are mined,
is analyzed in [22]. The output is a summary of association
rules. The approach is different from ours since this proposal
works with the original data set whereas ours produces a model
of the data set. In [42] the idea of mining frequent itemsets
with error tolerance is introduced. This approach is related
to ours since the error is somewhat similar to the bounds we
propose. Their algorithm can be used as a means to cluster
transactions or perform estimation of query selectivity. In [39]
the authors explore the idea of building approximate models
for associations to see how they change over time.

VI. CONCLUSIONS

This article proposed to use clusters on binary data sets to
bound and estimate association rule support and confidence.
The sufficient statistics for clustering binary data are simpler
than those required for numeric data sets and consist only of
the sum of binary points (transactions). Each cluster represents
a long itemset from which shorter itemsets can be easily
derived. The clustering model on high dimensional binary data
sets is computed with efficient operations on sparse matrices,
skipping zeroes. We first presented lower and upper bounds
on support, whose average estimates actual support. Model-
based support metrics obey the well-known downward closure
property. Experiments measured accuracy focusing on relative
error in support estimations and efficiency with real and
synthetic data sets. A clustering model is accurate to estimate
support when using a sufficiently high number of clusters.
When the number of clusters increases accuracy increases. On
the other hand, as the minimum support threshold decreases
accuracy also decreases, but at a different rate depending on
the data set. The error on support estimation slowly increases
as itemset length increases. The model is fairly accurate to



discover a large set of frequent itemsets at multiple support
levels. Clustering is faster than A-priori to mine frequent
itemsets, without considering the time to compute the model.
Adding the time to compute the model, clustering is slower
than A-priori, at high support levels, but faster at low support
levels. The clustering model can be built in linear time on
data size. Sparse matrix operations enable fast computation
with high dimensional transaction data sets.

There exist important research issues. We want to analyti-
cally understand the relationship between the clustering model
and the error on support estimation. We need to determine
an optimal number of clusters given a maximum error level.
Correlation analysis and PCA represent a next step after
the clustering model, but the challenges are updating much
larger matrices and dealing with numerical issues. We plan to
incorporate constraints based on domain knowledge into the
search process. Our algorithm can be optimized to discover
and periodically refresh a set of association rules on streaming
data sets.
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