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ABSTRACT

Information retrieval techniques have been traditionally ex-
ploited outside of relational database systems, due to storage
overhead, the complexity of programming them inside the
database system, and their slow performance in SQL im-
plementations. This project supports the idea that search-
ing and querying digital libraries with information retrieval
models in relational database systems can be performed with
optimized SQL queries and User-Defined Functions. In our
research, we propose several techniques divided into two
phases: storing and retrieving. The storing phase includes
executing document pre-processing, stop-word removal and
term extraction, and the retrieval phase is implemented with
three fundamental IR models: the popular Vector Space
Model, the Okapi Probabilistic Model, and the Dirichlet
Prior Language Model. We conduct experiments using ar-
ticle abstracts from the DBLP bibliography and the ACM
Digital Library. We evaluate several query optimizations,
compare the on-demand and the static weighting approaches,
and we study the performance with conjunctive and disjunc-
tive queries with the three ranking models. Our prototype
proved to have linear scalability and a satisfactory perfor-
mance with medium-sized document collections. Our im-
plementation of the Vector Space Model is competitive with
the two other models.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications;
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Languages, Algorithms

Keywords
SQL, Documents, Ranking, Query Optimization

1. INTRODUCTION

There exists extensive research in multiple Information
Retrieval (IR) applications that work outside the database.
Most of these solutions are developed frameworks and imple-
mentations in non-restrictive languages, such as the Lemur
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Project, Mallet or Libbow [19, 13, 12]. Still, the need for in-
tegrating database and information retrieval technologies,
while taking into consideration the strengths of both re-
search communities [20] continues to grow. According to
this perspective, some module extensions were added to per-
form queries in text by commercial vendors, allowing full-
text searches in modern major DBMS. However, these ex-
tension modules offer constrained functionalities for rank-
ing documents, such as the incapability of changing certain
parameters that depend on the properties of the collection
or even relaxing or extending the scoring functions. Due
to these limitations and several advantages of in-database
work, such as data security, recovery management, memory
management and data transfers avoidance, among others, an
in-database implementation appears as an alternative for an
uncompromised solution to the database’s performance, se-
curity, and extensibility for collections already existing in a
relational database system.

Despite the advantages above, SQL and the Relational
Model have not been a “traditional” approach to informa-
tion retrieval models. This is due to the complexity of im-
plementing ranking models in SQL and non-existing vector
operations, constrained element manipulation, lack of in-
tegration with existing libraries, storing overhead and low
performance. Therefore, the objective of the project is to
offer similar capabilities of a search engine in a SQL and
User-Defined Function (UDF) based implementation in a
Relational Database Management System (DBMS), an idea
which has been poorly explored, even though this can be ex-
ploited with index-organized tables, clustered registers, re-
cursive queries, UDFs and SQL queries optimizations [3]. In
this project we focus on ranking, a capability that is not part
of DBMS for querying text databases, where the results can
be retrieved based on “matching a pattern,” but not on the
relevance of the finding. Also, the search engine is intended
to be used as an auxiliary tool for ranking, and not as a
specialized system for information retrieval. Hence, we fa-
vor portability over reliability. This framework includes the
pre-processing, storing, indexing and retrieval of documents,
mostly done in SQL. We retrieve the documents using pop-
ular scoring methods: the Vector Space Model (VSM), the
Okapi Probabilistic Model (OPM), and the Dirichlet Prior
Language Model (DPLM) in a DBMS.

The article is organized as follows: Section 2 introduces
definitions used during the document pre-processing, storage
and retrieval models. Section 3 describes the framework for
the storage and retrieval phases, and their implementation.
Section 4 presents the results of the SQL performance and
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Figure 1: IR in a DBMS.

a discussion of the results. Section 5 shows previous and
related work in the area. Section 6 presents conclusions and
directions for future research.

2. DEFINITIONS

In our explored scoring techniques, we focused on storing
and ranking “a set of terms” in the database. Each collection,
or corpus, contains di, da, ..., dy documents, and every docu-
ment contains a set of words w, which are later pre-processed
to obtain the relevant words of a document, called keywords.
Later, these keywords are stemmed to obtain a term ¢ (root
of the word). During this weighting phase, the frequency of
a term in a document ¢f(¢,d;) will be needed, such as the
number of documents containing a term in the collection
df (t), the number of terms in a document |d|, the average
number of terms of a document in the collection avglen, the
norm of a document (vector term weights) |d|, and some spe-
cific parameters depending on the ranking functions. Also,
the same notation applies for a given query by the user, but
instead of using d in the notation, we introduce ¢ to refer to
the query. The score or rank of a document is represented
by a similarity Sim(q, d;) or a probability P(q, d;) function.

3. OVERVIEW OF IRIN THE DBMS

We separate the general IR framework into two phases:
the storage phase and the retrieval phase (see Figure 1).
The flow of the operations for the three ranking models is
related to the desired optimizations or selected parameters.
The three models have a uniform pre-processing phase, then
the term weighting step varies depending on the retrieval
model. Later, the retrieval section may contain a weighting
task, too, and then it applies the ranking formulas.

The document pre-processing step takes every document
and creates a descriptor vector, in a “bag of words” way,
which is the result of removing stop-words and applying the
Porter Algorithm [17] to every non-stop word. This algo-
rithm has been adopted regularly as the default choice for
stemming, although there exist other options such as Lovins,
Dawson, and Paice, among others [17]. The main purpose
of using a stemming approach is to lower the number of
dimensions (words) in a document and still be capable of
“describing” the document using a reduced descriptor vector
while losing as little information as possible.

We use the Baseline Inverted File technique for weighting
and indexing the terms [21, 14]. This technique consists of
two principal structures. The first of these is a search struc-
ture (vocabulary or dictionary) that stores every distinct
term ¢ in the collection, and a pointer, or a pair of primary
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Figure 2: Entity-Relation model.

and foreign keys in the relational model, in a correspond-
ing inverted list. The second structure is the inverted list
structure in which each entry stores t terms and the associ-
ated set of frequencies ¢f(t,d;) of the terms in a document
[10]. This implies the storage of a descriptor vector of ev-
ery document d; in a huge matrix of M different number of
terms and N number of documents in the collection. The
main advantage of using an Inverted Files technique relies
on the fact that the frequency of every term has already
been stored. It can then be easily manipulated into several
ranking strategies. Storing vectors in the relational model
is difficult, and we will assume a vector as a single column
relation for the relational model.

The schema in the database (see Figure 2) included a ta-
ble “stopword” which contains the collection of indexed un-
desired words. A table “document” stores the metadata of
the document, indexed by the document’s unique identifier
(docid) selected as the primary key. The table “parame-
ter” includes the corpus statistics as a requirement for some
ranking strategies. The table “termFrequency” contains the
terms of each document and its frequency. The “termFre-
quency” table is indexed by term and docid, and the terms
are clustered by docid, because ordinarily they are retrieved
together to be compared in any of the chosen ranking mod-
els. For OPM and VSM models, we compute the weight of
each term in the collection with an inverse frequency table
“termInverseFrequency,” indexed by term. In the Dirich-
let Prior Language Model, the probability of each term ap-
pears in the “maxLikelihoodDocTerm” table. For OPM and
DPLM ranking strategies, we had to collect data from the
documents and those values were stored in “documentData”.

3.1 Document Storage

The pre-processing phase takes place for every document
from the collection (already stored in a DBMS), and extracts
a descriptor vector, which is the result of applying a parsing
recursive function that we created to guarantee portability
in several DBMS. The resulting words are then purged of
special characters and punctuation in a SQL/Replace imple-
mentation. Then, for each word in the remaining d; vector,
all non relevant stop-words are removed from the original
document, and finally, the Porter’s algorithm is applied to
the whole table to obtain the terms.

The “term weighting phase” needs to generate, initially, a
summarized table with the frequency of a term in a docu-
ment. Thus, the remaining terms after the pre-processing
phase are grouped and counted, and inserted into the term
frequency matrix. The main advantage of using a Baseline
Inverted Files technique relies on the fact that the frequency



of every term has already been stored, and can then be eas-
ily manipulated for weighting the terms for different ranking
strategies (inverse frequency computation or probability of
a term).

3.2 Term Weighting

The VSM and the OPM require the computation of the in-
verted frequency of a term, which corresponds to a variation
of the form In(N/df (t)), depending on the ranking strategy.
We studied two techniques for computing this inverted fre-
quency table or probability of a term: static and on-demand.
The static technique is well extended for non-relational infor-
mation retrieval implementations, and the on-demand tech-
nique is a newly studied technique for minimizing the cost
of computing all of the weights or probabilities in a collec-
tion for RBDMS. The selection of either technique requires
some slight changes in the IR phases described in previous
sections. The first three steps for pre-processing, and ob-
taining the term frequencies remain unchanged, but in the
static weight computation, the computation must occur at
the end of the storage phase, and can be done in parallel
with the corpus statistics computation.

The on-demand technique works as a lazy policy, depen-
dant upon the idea that just a few terms in the query and the
related documents will be included in most of the searches,
and performing the computation only when a term is re-
quired in a query. Thus, this weighting must be executed
during the ranking phase. In the static frequency compu-
tation technique, the table must be computed entirely after
every document is added to the collection (or a group of
documents), but in an on-demand technique, the table is
updated by insertions.

When the inverse of one or several terms is required by a
ranking operation involving those terms, a search is executed
to solve for which terms are required to compute its weights.
If in the “partial” inverted frequency or probability table, the
weight for the terms have not already been computed, then
it inserts all the missing terms in a single operation. Thus,
an incomplete weight table is maintained every time, and
when the collection changes, such as in the static approach,
the inverse frequency table must be deleted. We decided
not to apply updating techniques in the relational database
model, because this proved to be more time consuming than
dropping the table and recomputing all the weights (or just
a few in the on-demand technique). This implementation
is specific for the relational model and in a “traditional” in-
formation retrieval implementation, may be observed as a
“non-conventional” technique.

The weighting term phase is the slowest operation in the
overall process, especially when the number of terms is higher
than 10000, because it must be executed taking into con-
sideration all of the elements and their uniqueness relative
to the collection. Normally, the choice between these two
techniques is based on the nature of the collection and the
requirements of the frequency of insertion of new documents
and the “diversity” of searched terms. The inverse frequency
for the VSM corresponds to the basic In(N/df(t)) equation,
but in the Okapi implementation, the weight is slightly ad-
justed (see Equation 1). Okapi’s representation can address
a problem with the scoring of negative values, as discussed in
[2], and normally is solved by modifying the weighting func-
tion. The Dirichlet Prior Language Model approach bases
the term weight in a probability instead of an inverse fre-

quency, such as VSM or OPM.

N —df(t) + 0.5

wf() = In af(t) + 05

(1)

3.3 Document Retrieval

The document retrieval phase shares the term frequen-
cies with the scoring strategies independently of the desired
ranking functions, and just certain additional computations
such as the average length of the documents, and the size of a
document, among others, are computed to complement cer-
tain models. Here, we study three well-known approaches,
much more complex than the Boolean models, focusing our
research on the Vector Space Model (VSM), Okapi Prob-
abilistic Model (OPM) and the Dirichlet Prior Language
Model (DPLM). We implement the VSM, OPM and the
DPLM because these are the primary models for vector
space, probabilistic or language model ranking approaches.
Also, they all share properties such as relevance feedback,
and the ranking and pre-processing phase require the same
presented techniques. The VSM tries to order the retrieval
of the documents based on their relevance. The OPM was
designed to work on short records, preferably abstracts, with
a consistent length, and it works primarily in the estimation
of a document’s relevancy. The Dirichlet Prior Language
Model is close to the OPM, but it finds the probability of a
document to form a given query.

Vector Space Model

Our system implements the Vector Space Model [18], which
takes all documents related to the given query and then
obtains the rank of all of these related documents. This
ranking is generated by taking the stem vector of the given
query and every document containing any searched stem
and then applying the Similarity Formula (see Equation 2)
in SQL. In this formula, the stemmed term vectors of the
given query (¢q) and the it" document (d;) are computed
with a dot product between them and then divided by the
norm of the ||q|| vector and the d; vector. The ¢ vector is a
table with the terms given by the user in the query.

Sim(g,di) = L% @)

Il ||d:

Okapi Probabilistic Model

This scoring function has been recognized as a very effective
retrieval method (see Equation 3), although it has to be
adjusted with some constants: ki and ks as presented in
[2]. This formula may produce negative values when the
frequency of the term in the collection is greater than half
of the number of total documents in the collection.

) (k1 +1) x tf(t,d;)
ezd AT k(1= b) + b o) + £ (¢, di)

ks +1 x tf(t, q)

Dirichlet Prior Language Model

The Dirichlet Prior Language Model (DPLM) is a language
model scoring method that is based on the probability that a

®3)



WITH TERM( i, word, g, k , j ) AS
( SELECT i, word, g, k, j FROM T
UNION ALL
SELECT TERM.i+1
,CAST (SUBSTRING(T.word, TERM. i-TERM.k
,TERM.k+1) AS text)
,CASE WHEN SUBSTRING(T.word, TERM.i,1 )
THEN TERM.g+1
ELSE CASE
WHEN TERM.g=1 THEN TERM.g+1
ELSE TERM.g END
END
,CASE WHEN SUBSTRING(T.word, TERM.i,1 )
THEN O ELSE CASE WHEN TERM.g=1
THEN 1 ELSE TERM.k+1 END END

, 1
FROM T
INNER JOIN TERM
ON ( TERM.j = T.j )
WHERE TERM.i < DATALENGTH(T.word)+2
)
INSERT INTO RESULT
SELECT i, word, g, k, j
FROM TERM;

Figure 3: ParseArray recursive view.

document will “form” a given query (see Equation 4). There-
fore, it takes into consideration the probability of occurrence
of a term in the collection, even though, as in Okapi, DPLM
has a p parameter to adjust the method based on the char-
acteristics collection [2, 7).

L (t, di) + pP(C)
Zz tf(t7 dl) +p

P(q|di) = H

teqnd;

(4)

3.4 Implementation

We designed a web interface to interact with the digital
collection, which sends standard SQL queries and retrieves
the results for the user. The SQL queries are designed on-
the-fly in our web interface to match the preferences of the
users, such as using on-demand weighting, conjunctive or
disjunctive queries, and parameter selection.

Sorage Queries

In the storage process, we proposed a recursive function [15]
for portability and for performing the stripping task (see
Figure 3), which normally has been solved using external
implementations, language DBMS specific implementations
or n-gram parsing [8]. We started with the initial text to
be parsed in a temporary table, we use “term” as the table
that makes the recursion possible, and then we selected the
cumulative word before the “word splitter.” In this case, we
decided to use a blank space as the separator, but this could
be replaced with any other character. Then, we stored the
final result in a term temporary table for future use.

When the parsing step was concluded, the resulting words
in the table were stemmed using the implementation pre-
sented in [9], but before this, the stop-words were removed,
as described clearly in [8]. These tasks have been executed
normally with a NOT-IN operator. Based on previous re-

search, we decided to modify the stop-word removal query
by selecting all the non-matching values in a LEFT-JOIN
query. This optimization was explored in [16], and has not
been presented as an alternative technique for comparing
and eliminating stop-words from the original document.

SELECT keyword AS term

FROM ParseArray(’{Query String}’)
LEFT JOIN stopword

ON word = keyword

WHERE word is NULL;

Retrieval Queries

The pre-selection of the documents to rank can be achieved
for conjunctive or disjunctive queries as well. The idea is
to reduce the number of terms and documents to work with
in the on-demand weighting and ranking models. Querying
a collection for disjunctive or conjunctive operations tradi-
tionally requires building a query dynamically for searching
for terms in the frequency table. Then these selections are
constructed by adding “AND” or “OR” operations at the end
of a selection. With this optimization, we re-use the previ-
ous framework for parsing and pre-processing a query, by
purging the user query and then parsing it in the ParseAr-
ray temporary table. In a disjunctive query, the selected
documents are the result of a LEFT-JOIN optimization.

SELECT DISTINCT docid
FROM termFrequency tf
LEFT JOIN ParseArray(’{Query String}’) pa
ON PorterAlgorithm(pa.keyword) = tf.term;

The conjunctive query corresponds to a division operation
in the database, including the “termFrequency” table and the
query table, for finding all the documents that contain all the
query terms. Thus, we execute an optimization discussed
previously in [16], where we execute this division operation
by adding a GROUP-BY, to remove duplicates and to count
how many unique terms each document contains from the
query. Finally, we store in a temporary table the number
of words in the query. As part of the implementation, we
assume a single occurrence of a term in a user query.

SELECT docid

FROM termFrequency tf

LEFT JOIN ParseArray(’{Query String}’) pa
ON PorterAlgorithm(pa.keyword) = tf.term
WHERE pa.keyword IS NOT NULL

GROUP BY docid

HAVING COUNT(*) = {# Query Wordsl};

The retrieval functions for three models imply a sequence
of natural joins with the termFrequency and the “weight”
table. The objective when designing both implementations
was to reduce the size of the term tables as soon as possible.
Thus, we created several temporary tables, such as the ta-
ble “doc”, which contains the pre-selected documents from
the disjunctive or conjunctive query, but represents the set
of all the documents that contain the desired terms. This
temporary table is used as part of the on-demand technique
to verify if the termInverseFrequency table contains all the
required terms. Finally, we assume that the norm of the
query has already been pre-computed.

In order to space in the queries, we decided to present
them in relational algebra (instead of larger SQL). For the



Vector Space Model (see Equation 5) we compute a series
of aggregations in the “tmpd” and the “tmpqd” temporary
table. The first one represents the norm of the documents
that contain the desired terms and “tmpqd” stores the dot
product between the query table and each document. At
the end, we join the three tables to obtain the score of each
document without the need to perform an aggregate function
in this operation.

The ranking function involves several joins, including the
term frequency table and the inverse frequency table. The
first part of the query computes a join between the “query”
table and the inverse frequency table, and this query is com-
puted once. Then, the rest of the query computes the norm
of the term vector of every selected document, which in-
cludes a join operation between the frequency table of the
terms involved in the operation and the inverse frequency ta-
ble. Then, using the selected documents, the norm of each
document is computed with an inner join between the term
frequency table and the inverse frequency table. The last
part of the query is a join with the selected document norm
and the “tmpqd” table and the already computed “query”
table norm. The ranking function includes five joins for
obtaining those results, but some tables are just obtained
once and reused (i.e. the doc table). Also, as explained
previously, in the static frequency table technique, the in-
verted frequency table is already pre-computed. But, in the
on-demand technique, every term that is needed for its fre-
quency must be searched in the term frequency table and if
it is found in the term frequency table but not in the inverse
frequency table, then its term inverse frequency must be in-
serted into the table. The “termFrequency” table is stored
in a cluster, based on the docid keeping the terms in the
descriptor vector together. This is in order to obtain better
performance upon implementation in the DBMS.

pterm (doc <1 term Frequency)
Pempd(docia Fsum(qa) ((term b Query)
1 termInverseFrequency)

)

)

Ptmpqd (docidFsum (a) (term > termInverseFrequency)
(%)

The Okapi Probabilistic Model (see Equation 6) requires
additional information compared to the Vector Space Model,
by requiring the length of the document (considered with-
out stop-words) and the average size of a document in the
collection.

Haocid,qa/(axq) (tmpd > tmpgd

Pterm (doc X1 term Frequency)
docidFsum(rank) (termInverseFrequency

> (documentData <1 (Query < term))) (6)

The implementation of the Okapi formula in SQL is per-
formed with three inner joins. The deepest query involves
the matching documents of the desired queries, as in the
Vector Space Model. Then we perform another inner join
with this temporary document table and the termFrequency
table to obtain the second and the third part of the formula,
leaving a last inner join operation to multiply each document
term by its inverse frequency and then apply an aggregation
operation on docid with a SUM on the final score of each
term and a GROUP-BY.
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Figure 4: Retrieval Web Interface.

The Dirichlet Prior Language Method (see Equation 7),
is very close to the implementation in SQL of the OPM,
performing joins in tables with similar size. Despite this,
the ranking elements and the results of the aggregation are
very different, due to the weight term product, the term
weighting and the ranking equation.

Prerm (doc < termFrequency)
docid Fproduct (rank) (max LikelihoodT ermDoc
i (documentData < (Query < term))) (7)

The DPLM implementation is performed very similarly to
the Okapi Probabilistic Function, but instead of performing
a SUM in the aggregation, we obtain a product and we apply
the given formula. The overall execution time is very similar
to the OPM.

4. EXPERIMENTAL EVALUATION

We developed a digital library search engine, with a web
interface in ASP .NET, that sends SQL queries to a DBMS,
with the desired optimizations or query options, when exe-
cuting the program for storing or querying. The test engine
is divided into a web interface (see Figure 4) and an IR en-
gine. The web interface interacts with the user and displays
the results and the total elapsed time, and the IR-engine
receives the commands, generates the queries and sends the
workload. Also, we collect time measurements for several
steps of the IR process.

The IR-engine manages the queries, via OBDC, between
the client and the DBMS. The engine has been designed to
send all the tasks to the server via SQL, and just serves as an
SQL builder for the desired optimizations. All of the opera-
tions take place in the server. Also, the IR-engine manages
the user configurations (that can be modified by the user),
the test bed specifications, the file workload (if desired), the
database source table, and server connection strings. The
system that we used for the experimental evaluation of the
IR engine was an Intel Core DUO E8400 CPU of 3.0 GHz,
4 GB in RAM and 300 GB in disk space, running Microsoft
Windows XP SP2 and SQL Server 2005.

4.1 CorpusPreparation

The collection of documents was prepared using the pub-
licly available DBLP bibliography and ACM Digital Library



abstracts by an automated program (crawler) for preparing
the corpus (see Table 1). In some cases, the abstracts were
larger than expected and were reduced to less than one thou-
sand characters. In order to proceed with the experimental
section, we decided to work with two collections: a smaller
collection from a corpus larger than 18000 documents, cre-
ating test runs of 500, 1000, 2000, 4000, 8000 and 18442 sets
of documents, and a larger collection, where we repeated
the original corpus 10 times for testing the search models
with more than 180000 documents. We assumed for the
rest of the tests that the documents, abstracts from our test
bed, were already loaded into the database. Then we pre-
processed these strings and stored them with the Baseline
Inverted File technique, as presented in the entity relation-
ship model in section 3.

The selected test workload was designed with five terms
based on the maximum, average and minimum frequencies,
the selected keywords were: design, simulation, cumulativ,
disjunctiv and circumferenc to perform conjunctive and dis-
junctive queries (see Table 2). The workload was designed
for querying all the possible combinations with any of these
terms, in order to measure the performance of querying a
term in the collection, although the combination with all
the terms was ignored for measurement purposes. We con-
sidered in these experiments all the retrieved documents as
relevant, and we ignored, for the time being, the precision
and recall measurements, while focusing our experiments on
performance. All the measurements in the experimental part
are given in seconds.

Table 1: Documents in the collection.
Docs Dif. Terms Word Avg Term Avg Std dev
18442 782421 98.43 55.7 24.94

Table 2: Search terms.

Keywords Frequency

design 8914

simulation 1442

cumulativ 17

disjunctiv 16

circumferenc 1
4.2 Storage

We studied the performance of our implementation for
document pre-processing with a recursive query, and the re-
sults (see Table 3) showed that the performance for parsing
documents is approximately 3690 words per second on av-
erage, and the implementation can be extended to work in
parallel for a much better ratio, as showed in similar research
by [6, 4]. The optimization analyzed in the storage phase
corresponds to the NOT-IN and LEFT-JOIN operands for
eliminating the stop-words from the document temporary
table. The results showed a reduction between 1-6% in the
total time of removing the words and storing them in the fre-
quency table (see Table 3). The optimization always proved
to be faster than using a NOT-IN operation, but the im-
provement percentage depends on the number of elements
in both tables. Although these optimizations, the parsing

and the stop-words removal, represent more than 80% of
the total storage time (see Table 4).

Table 3: Stop-word removal & parsing in seconds.

Docs NOT-IN LEFT-JOIN | Parsing total time
500 9 8 12
1000 18 17 26
2000 37 35 53
4000 7 73 107
8000 160 150 227
18442 345 328 492

Table 4: Storage time for on-demand in seconds.
Docs LEFT-JOIN % Parsing % Total time

500 34 50 24
1000 35 53 49
2000 35 53 100
4000 35 52 206
8000 34 51 441

18442 35 52 949

4.3 Term Weighting

For the term weighting step, we analyzed the on-demand
and static techniques for computing the inverse frequency,
or the probability, of the desired terms. Surprising results
(see Table 5), that were computed for the Okapi inverse
frequency, included a high overhead when verifying the exis-
tence of the required terms in the partial inverse frequency
table. Thus, the time for executing this background check
and then inserting the required terms is higher than weigh-
ing the whole collection in one pass.

Although at some point (see Figure 5), if no new terms are
searched, the time consumption of the on-demand technique
will remain with just the overhead cost of the LEFT-JOIN
operation to search for missing terms in the partial term
weight table. The performance remains steady when the to-
tal number of different terms has already been reached. On
the other hand, time consumption of the static inverse fre-
quency or probability computation will surpass that of the
on-demand technique as the number of terms keeps increas-
ing. Thus, deciding which strategy to apply depends on the
workload and the number of different terms that are part of
the collection.

Table 5: Weighting techniques for Okapi in seconds.

Documents On-demand Static

500 <1 <1
1000 1 <1
2000 1 <1
4000 2 1
8000 3 1

18442 3 2

44 Retrieval

We tested our document pre-selection in our three rank-
ing models. The performance with conjunctive queries is
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faster than the performance for disjunctive queries for the
premature reduction of the number of terms. The search
for documents that contain all the searched terms is a time
consuming operation. However, the limited number of find-
ings speeds up the overall execution of a conjunctive query,
except in the first case, when obtaining all the documents
that contain all the queries proves to be a more time con-
suming operation than the disjunctive query. After more
keywords are added into the query, the disjunctive opera-
tion involves a larger number of matches and therefore, a
slower performance. According to the results that we ob-
tained (see Table 6), the VSM implementation is slower
than OPM and the DPLM implementations, except in the
first case when just one keyword is involved in the search.
In general, due to the number of operations that the VSM
must perform, Okapi and DPLM appear as much better op-
tions. Also, it is well-known that Okapi is a good model for
fixed-length documents, and due to the similarity amongst
the join operations between OPM and DPLM, we observe a
similar behavior. Also, the conjunctive query by itself is the
most time consuming operation (GROUP-BY) in the scor-
ing, but this early implementation in the document selection
retrieves much fewer documents than the disjunctive oper-
ation. Thus, in the overall time for the ranking operations,
the conjunctive operation appears as a much faster option.

Table 6: Conjunctive (C) & disjunctive (D) queries.

180000 documents
VSM OPM
Terms | C D | C D

DPLM
C D

115 518 4|10 4
214 7|2 4| 2 4
314 8|2 4| 2 4
414 102 4| 2 4

45 Discussion

We consider these results promising for future optimiza-
tions, and they proved to reduce the SQL overhead that
has been assumed as one of the principal issues when work-
ing with a declarative language such as SQL. Also, these
experiments helped us to explore and build an application
with this SQL alternative taking advantage of indexes, clus-
tered storage of related terms, User-Defined Functions, and
faster SQL operations. As a result, we obtained results that
showed over which circumstances any of these optimizations

can be applied, taking into consideration the nature of the
collections and the workloads.

In particular, the recursive query described as part of the
stripping tasks of the documents, proved to be a very ef-
fective option for breaking up the documents and storing
them, pivoted and purged, in a temporary table in a stan-
dard SQL implementation. Contrary to previous research,
our solution is not attached to the DBMS proprietary func-
tions, or suited for extracting n-grams. The LEFT-JOIN
operation gives an improvement of 1-6% instead of using a
“traditionally proposed” NOT-IN operation. This saves a lot
of time in the overall process. This task has to be executed
for every document, parsed and stored into the collection.
The same idea was used also as part of the on-demand term
weighting step, reducing the total overhead of verifying the
existence of terms in the inverse frequency or probability
table.

For the static and on-demand techniques, we observed
that normally a static ranking will be a much faster ap-
proach, but when we know that the collection includes mil-
lions of different terms, and the queries are over a few of
these terms, we do not need to rank all of the terms in
the collection. We also observed, that for values greater
than 10000 different terms, the term weighting becomes the
most time consuming operation in the overall process of pre-
processing, storing and ranking. Lastly, the fact that we can
use previously studied query optimizations and take them
into the context of information retrieval to minimize the
limitations of a database as a search engine is an idea that
has not been previously explored, as we discuss later in the
related work section. Also, we consider the improvement
that we found significant, especially taking into considera-
tion that these operations run for thousands of documents
and terms in the database system.

5. RELATED WORK

The research in integrating IR systems with DBMSs is a
proposal that has been around for several years, but just
a few implementations have explored a SQL perspective.
This is especially true for metadata integration, federated
databases, multithreading and RAID systems [20]. Existing
C search engines and libraries for information retrieval, such
as Lemur Project, Mallet or Libbow [19, 13, 12] need to cre-
ate their own indexes and own data structures for managing
the text files, and they work completely independently from
any relational database system. As stated in [8], the con-
cept of using SQL to perform an IR search started with [1]
parsing text into words using a C implementation and then
storing them in a DBMS and performing operations in the
collection with indexed tables. The advantage of using an
SQL implementation, as described by [6], over existing solu-
tions, even vendor implementations such as Microsoft SQL
Server or Oracle, or “application specific” programs, is the
portability of the standard SQL and its independence from
the security model of the system, and fact that it does not
compromise the stability and performance of the database.
Even still, we accept that the overall performance continues
to be limited compared to non-restrictive language imple-
mentations, and we propose our framework as an alternative
option for processing documents already stored in DBMSs.

Subsequently, some authors [6, 4, 5] tried to extend their
systems by applying the Vector Space Model without con-
sidering pre-processing or query optimizations of clustered



databases, or by assuming multi-node processing or par-
allel computing. The OPM [11] and word stemming and
parsing were developed [8], but differ from our research, be-
cause they did not address completely the problem of doc-
ument pre-processing in the database, and different query
optimizations are ignored precisely because they used dis-
tributed or parallel computation, which disguised their per-
formance results. We additionally explored and tailored the
the Dirichlet Prior Language Model to a relational database
management system. The costly NOT-IN operation in the
stop-word removal was ignored, as well as different inverse
frequency computation strategies. Because of these limited
numbers of approaches in the previous literature review, es-
pecially in the document pre-processing section, we decided
to explore those problems without using a computer cluster,
which has helped to improve the performance in many of
these applications, and support our findings with some time
experiments that were discussed in the previous sections.

6. CONCLUSIONS

Our system is an implementation of an IR framework
mostly in standard SQL. In particular, we take advantage of
recursive queries, SQL optimizations and a UDFs for docu-
ment pre-processing, storing, ranking, and retrieving. Our
framework has not been compared in performance to ex-
isting IR-engines, but we are working on some benchmarks
with non-restrictive language implementations and RBDMS
commercial modules. The parsing recursive query presented
an alternative SQL approach for breaking up the documents
without using pre-loaded tables or DBMS specific implemen-
tations. Optimizations in the stop-word removal step proved
to be highly effective, the computation of a temporary table
when we retrieved the relevant documents for conjunctive or
disjunctive queries showed a fast retrieval mechanism for the
tested collection, and using static and on-demand techniques
gives alternatives for implementation depending on the col-
lection. The scalability of the solution proved to be linear,
and we consider that these performance results will be simi-
lar between different DBMS, and even better for multithread
systems. We also observed a satisfactory performance for a
medium-sized digital library, and that our implementation
of the VSM is competitive with the other two models.

Part of future work is to improve the time needed to load
documents into the DBMS, which has become a bottleneck
for an implementation of an IR system. We want to add data
mining functionalities to explore the existing parsed docu-
ments, such as terms data cubes, and also implement other
storing techniques and experiment with different indexes.
The retrieval part proved to be fast enough to consider com-
paring the results with some benchmarks, but loading and
pre-processing large amounts of text was reaching the lim-
its of the DBMS capabilities. Also, we observed that our
optimizations performed better than some other commonly
used techniques for building IR-engines in SQL, and we are
considering comparing our SQL application with a similar
engine using just User-Defined Functions instead. Finally,
we would like to explore how the research in DBMS for im-
plementing text searching models can give acceptable perfor-
mance in document processing and retrieving by exploiting
the database’s strengths in structured data management.
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