
Efficient computation of PCA with SVD in SQL

Mario Navas
University of Houston

Dept. of Computer Science
Houston, TX 77204, USA

Carlos Ordonez
University of Houston

Dept. of Computer Science
Houston, TX 77204, USA

ABSTRACT
PCA is one of the most common dimensionality reduction
techniques with broad applications in data mining, statis-
tics and signal processing. In this work we study how to
leverage a DBMS computing capabilities to solve PCA. We
propose a solution that combines a summarization of the
data set with the correlation or covariance matrix and then
solve PCA with Singular Value Decomposition (SVD). De-
riving the summary matrices allow analyzing large data sets
since they can be computed in a single pass. Solving SVD
without external libraries proves to be a challenge to com-
pute in SQL. We introduce two solutions: one based in SQL
queries and a second one based on User-Defined Functions.
Experimental evaluation shows our method can solve larger
problems in less time than external statistical packages.

Categories and Subject Descriptors
G.1.3 [Mathematics of Computing]: Numerical Linear
Algebra—Singular value decomposition; G.3 [Probability
and Statistics]: Multivariate statistics; H.2.4 [Database
Management]: Systems—Relational databases; H.2.8 [Da-
tabase Management]: Database Applications—Data min-
ing

General Terms
Algorithms, Performance, Theory

Keywords
PCA, SVD, SQL, DBMS

1. INTRODUCTION
Principal component analysis or PCA is a popular tech-

nique in statistics and data mining for dimensionality reduc-
tion. It is a valuable tool to reveal hidden patterns, compress
and extract relevant information from complex data sets.
Several applications for image processing [6], data compres-
sion [3], pattern recognition [23], clustering [5], classification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DMMT’09, June 28, 2009, Paris.
Copyright 2009 ACM 978-1-60558-673-1/06/09 ...$10.00.

[9] and time series prediction [22] have developed over time
around PCA. By successfully applying linear algebra, PCA
finds the optimal linear scheme, in sense of least square er-
rors, to reduce dimensions of a data set. Traditionally PCA
is computed by exporting data as flat files compatible with
statistical tool specifications. Since the complete data set is
uploaded into main memory, handling large amount of in-
formation is a major concern for analysis. Few proposals
have taken into account the integration of statistical meth-
ods into the DBMS, due to its limitations to perform com-
plex matrix and vector operations. Constructing statistical
models efficiently inside the DBMS is a key factor to add
data mining capabilities into the DBMS [16]. Previous re-
search has used user defined functions (UDFs) to enrich the
DBMS with PCA [20]. We have extended past work by suc-
cessfully implementing all steps participating in PCA with
SQL statements. Compared with UDFs, SQL is portable
among DBMS providers. Also the query optimizer manipu-
lates disc and memory I/O operations to run without data
size limitations. Additionally this article includes a compre-
hensive analysis of implementation alternatives to optimize
execution time without affecting correctness of the results.
Our focus is to deal with large amount of data and overcome
limitations of statistical applications.
The article is organized as follows. Section 2 presents def-
initions. Section 3 presents our contributions, how PCA is
solved inside the DBMS with SQL statements, along with
some implementation choices. Section 4 presents experi-
ments comparing different methods of correlation analysis,
SVD implementation inside and outside the DBMS, SVD
optimizations to reduce execution time. Section 5 includes
related work. In Section 6 we present conlusions and future
work.

2. PRELIMINARIES
In this section we explain PCA, the relation with SVD and

the algorithm to solve the eigen-problem. The initial step is
to compute the correlation matrix used as input for PCA.
Next, we explain the fundamentals of dimensionality reduc-
tion, together with the connection to the eigen-problem. We
show how the QR algorithm performs the Householder tridi-
agonalization of the correlation matrix and iteratively the
QR decomposition, returning the principal components.

2.1 Definitions
Let X = {x1, ..., xn} be the input data with n points,

where each point has d dimensions. X is a d × n matrix,
where the point xi is represented by a column vector (equiv-



alent to a d × 1 matrix). We use the subscripts i and j to
indicate position of a value in a matrix, thus xij is the value
at the row i and the column j of X. The subscripts k and
s are used to identify the number of the current execution
step. Matrix transposition is denoted by T , likewise norm of
a vector as ||xi||. The matrix Q, from the summary matrices
L and Q, is not to be confused with Q from the QR decom-
position. The storage of the data set X and table definitions
in a DBMS, can be found in Section 3.1.

2.2 Data Preprocessing
In order to perform PCA, the first step is either to com-

pute the covariance or the correlation matrix of the input
data set with data centered on the mean (substracting µ).
The covariance matrix of X is a d× d matrix with measures
of how the dimensions change together and a main diagonal
of variances. It is defined as follows:

CX =
1

n− 1
XXT (1)

Correlation coefficients are more desirable because they
indicate the strength and direction of the linear relationship
between two variables in the range [−1, 1]. Therefore, a cor-
relation matrix is normalized, symmetric d×d and populated
with the degree of correlation among dimensions. Such ma-
trix can be calculated using the summary matrices: L and
Q [16]. Let L (see Equation 2) be a column vector d×1 with
the linear sum of points with elements of the form Li where
i = 1, 2, .., d. At the same time, let Q (see Equation 3) be
the quadratic sum of points, in the sense that the d× d ma-
trix with values Qij is the sum of the cross-products of each
point with its transpose. These summary matrices allow us
to compute several statistical techniques efficiently, due to
its small size compared to X when d << n. Thus, elements
in the correlation matrix are given by Equation 4.

L =
∑

xi (2)

Q =
∑

xixj
T (3)

ρij =
nQij − LiLj√

nQii − L2
i

√
nQjj − L2

j

(4)

2.3 PCA Overview
In PCA the objective is to find a change of basis with fewer

attributes while retaining as much of the variations present
in the original data set as possible. The transformation UT

that maps the original data X into a new dimensionally re-
duced space UT X is called the principal components of X.
Such projection of the sample space is defined by a linear
basis where the variance of each direction is maximized and
the covariance between directions is minimized. Therefore,
each linear transformation or column vector of U is asso-
ciated to the variance of its projection. After sorting the
linear transformations accordingly to variance, we can pick
the kth most representative vectors to be the principal com-
ponents [11]. Moreover, PCA can be used to identify the
most representative features in the data set [1] by solving
the column subset selection problem.
The singular value decomposition (SVD) is used to solve

PCA. The duality of change of basis establishes the relation-
ship between the right, the left eigenvalue decompositions
and the input data set. Given a matrix X the equation for
the SVD is as follows,

X = UEV T (5)

Solving the SVD of X produces two orthogonal basis, one
defined by the left singular vectors U , and the second given
by the right singular vectors V . Since UT is the linear trans-
formation of PCA, we need to solve the left eigenvalue de-
composition problem as shown in Equation (6). The equa-
tion is obtained by substituting X by its SVD (5), where E2

is the diagonal matrix of eigenvalues.

XXT = UEV T V EUT = UE2UT (6)

Let us consider the covariance matrix of the projection
UT X given by (7). As UT = U−1 (U is orthogonal), we can
use the eigenvalue decomposition (6), such that UT XXT U =
UT UE2UT U = (U−1U)E2(U−1U) = E2. Consequently,
the variance of the dimensions in the projection UT X are
proportional to the eigenvalues in E2 and for the algebraic
solution of the decomposition, the covariance measures be-
tween dimensions are zero. Such characteristics explain the
selection of the eigenvectors in UT as the principal compo-
nent scores of X.

CUT X =
1

n− 1
UT X(UT X)T =

1

n− 1
E2 (7)

Solving PCA is equivalent to solve the eigen-problem for
the covariance or the correlation matrix. In our experiments
we use correlation as it is already normalized and it re-
quires minimum preprocessing. The eigenvalue decomposi-
tion method is performed by using Householder tridiagonial-
ization and QR factorization. Such algorithm is explained
next.

2.4 QR algorithm to solve PCA
Here we present in detail the steps of a QR based algo-

rithm to solve the eigen-problem. Given either the correla-
tion or the covariance matrix as an approximation of XXT ,
the eigenvectors U and E2 are computed. In Section 3, we
will match every step in the algorithm with optimized op-
erations in the DBMS, revealing guidelines to implement
efficiently QR based algorithms for the eigenvalue decom-
position problem. To solve SVD and PCA the approach
applied in our system (see Figure 1) uses Householder tridi-
agonalization followed by the QR algorithm [21].

1 Compute summarization matrices
2 Calculate correlation matrix
3 Perform Householder tridiagonalization
4 Execute QR algorithm

Figure 1: Solving PCA with SVD overiew.

The summary of steps is as follows: (1) Start by comput-
ing a correlation matrix of X, A0 = XXT , the correlation
matrix on the d space. (2) Apply Householder method by
reducing the correlation matrix to an equivalent tridiago-
nal matrix, with a linear transformation T . B0 = T T A0T ,
where T−1 = T T . (3) Find the eigenvalue decomposition
of the tridiagonal matrix B0 = CsBsC

T
s by applying the

QR factorization method, where the diagonal of Bs is the



matrix of eigenvalues, Cs is the orthogonal matrix and s
is the number of iterations taken to satisfy the error crite-
ria. (4) Finally, we can combine both decompositions to get
XXT = (TCs)Bs(TCs)

T . As a result, the diagonal matrix
of eigenvalues E2 is constructed by the diagonal elements of
Bs and columns of U = TCs are the eigenvectors of XXT .
As shown in Section 2.3, the computation of SVD can be
done by solving the eigenvalue decomposition of the correla-
tional matrix. Given A0 = XXT , the Householder tridiago-
nalization is done in d−2 steps. A rotation Pk is generatated
to obtain Ak = PkAk−1Pk, where k = 1, 2, .., d − 2. Conse-
quently, we have that T = P1P2...Pk−2. The name of QR
algorithm is due to the iterative use of the QR decompo-
sition. Thus it finds values for the matrices Qk and Rk,
given a matrix Bk−1, such that Bk−1 = QkRk. Starting
from B0 = Ad−2, in every iteration a value Bk = RkQk

is computed; where k = 1, 2, .., s and s is the iteration
at which the error criteria is overcome. Once the algo-
rithm has converged, the eigenvectors of B0 are the rows
of the matrix Cs = Q1Q2...Qs. Finally, the matrices E2

and U are computed as E2 = diag(Bs) and U = TCs =
P1P2...Pd−2Q1Q2...Qs.
The implementation receives XXT as a parameter and com-
putes E2 together with U . The matrix E2 is calculated by
performing transformations over the original input correla-
tion matrix getting a tridiagonal matrix and later the di-
agonal matrix of eigenvalues, this matrix will be called A.
Meanwhile, the matrix U is computed at the same time,
starting from an identity matrix. These two tables will keep
their names during the execution of the algorithm, and they
will use the subindex k to specify the step counter.

1 For k=1 to d-2

2 α = −sign(ak+1,k)(
∑d

j=k+1(ajk)2)
1
2

3 r = ( 1
2
α2 − 1

2
αak+1,k)

1
2

4 w1 = w2 = ... = wk = 0

5 wk+1 =
ak+1,k−α

2r

6 wj =
ajk

2r
for j = k + 2, k + 3, ..., d

7 Pk = I − 2wwT

8 Ak = PkAk−1Pk

9 Uk = Uk−1Pk

10 End

Figure 2: Householder Implementation.

The linear transformation defined by Householder [21] is
composed by d − 2 rotations Pk derived with the scalars α
and r, and the vector w of n cardinality. Initially A0 = XXT

and U0 = I where I is the identity matrix. The implemen-
tation is shown in Figure 2.

1 Do
2 Find Qk and Rk for Ak−1 = QkRk

3 Uk = Uk−1Qk

4 Ak = RkQk

5 While(error > ε)

Figure 3: QR Algorithm Implementation.

For the QR algorithm (see Figure 3), the number of steps
required to reach a solution depends on an error criteria
ε, which is computed out of the diagonal elements of Ak.
The loop starts with k = 0 and at each step Ak−1 = QkRk

is calculated using the QR Factorization (see Figure 4), it
becomes a nested loop of the iterative QR algorithm [21];
initially Qk = Ak−1 = {v0, v1, ..., vd}, and the values of Rk

are given by Rk = {ri,j}. Notice that Householder is finished
before the QR algorithm starts, therefore their step counters
k are not the same.

1 For i = 1 to d
2 rii = ||vi||
3 vi = vi/rii

4 For j = i + 1 to d
5 rij = vi · vj

6 vj = vj − rijvi

7 End
8 End

Figure 4: QR Factorization Implementation.

After completion of the main steps the eigenvalues need
to be positive. Thus for every negative value ai,i in the
diagonal of A, ai,i = −ai,i and uj,i = −uj,i; where j =
1, 2, ..., d. Finally, E2 = {ai,i} and E−1 = { 1√

ai,i
}. In

the next sections the detailed implementation of the main
steps of SVD with SQL statements as well as the technical
overview of the coding inside the database is exposed.

3. SVD IN SQL
In this section we explain the techniques for matrix multi-

plication, matrix transposition, along with the fundamental
operations used in our SQL implementation. The detailed
explanation of the steps of the algorithm can be found in
Section 2.4, our SQL implements such definition. Further
analysis of space, I/O and complexity of our SQL queries is
performed for each step of the algorithm.

3.1 Table Definitions
In order to represent matrices as tables in a DBMS, we

can define the columns as dimensions and rows as records.
For the input matrix X the storage table, tX, contains the
attributes {X1, X2, ..., Xd}. This matrix is used to compute
the input correlation matrix of the algorithm in order to find
its decomposition (see Section 2.4). Matrix operations, such
as multiplication, can be performed with this representation
by pivoting the left or the right operator to pair rows of one
matrix with columns in the other and obtain the resulting
table with an AGGREGATE statement.
Another way to store matrices is vertically [14]. Vertical
layout matrices {i, j, val} are implemented to perform mul-
tiplications and other matrix operations needed to solve the
eigen-problem. There is no need to pivot multiplying ma-
trices and it is a very convenient method to implement op-
erations in the algorithm steps. For instance, the multi-
plication of a pair of matrices A and B, which are stored
with vertical layout, could be done in one SQL statement
with one JOIN condition and an AGGREGATE function.
Moreover trivial values are not required to be stored, such
as, zero values of an sparse matrix or values which can be
computed from or are equal to other elements in the same
matrix. We also exploit the fact that for a multiplication
result, the element {i, j, val} can only exist if there exists
at least one element {i, k, val}} for the left operator and at
least one match {k, j, val} for the right operator. This is



used to avoid unnecessary pairing and to reduce the num-
ber of values involved in the AGGREGATE. Notice that the
computation of a value during multiplication of two d × d
matrices will have the cost of joining (pairing), a product
operation and an aggregation of d values. Pursuing to al-
leviate the computation time of JOINs, which are the most
expensive computation in SQL, our code uses constraints
that cut down the unnecessary records during operations.
For PCA (see Section 2.4), the resulting principal compo-
nents and their associated variances will be stored on tables
tU and tA respectively. Table 1 has the summary of tables
used for storage and their scope. In the QR factorization
the tables tQ and tR have an extenal scope in the sence that
they exist outside the loop, then the QR algorithm uses them
to compute new values for the tables tA and tU. Therefore,
tables tQ and tR are not needed beyond the scope of an
iteration of the QR algorithm. Thus, even though names
overlap for local table definitions, the only common tables
between steps are tU and tA.

Table 1: Summary of tables in SQL.
Step Global Local
Correlation tX, tA tL, tQ
Householder tA, tU tW, tP, tH, tT
QR algorithm tA, tU tQ , tR, tT

Further optimization is done to take advantage of SQL when
performing Householder and QR factorization. The details
about how SQL statements and tables map the steps of the
algorithm will be shown in the next sections.

3.2 Correlation Computation
The computation of n, L, Q are sufficient statistics to

compute the correlation matrix (see Section 2.2). When the
data set is in vertical layout, the table stores one correlation
value per row as {i, j, ρij}. Since the matrix is symmetric,
it is sufficient compute a triangular matrix with the number
of rows of the resulting matrix equal to the total number of
correlation pairs (d(d+1)/2). The number of INSERT state-

ments to compute n is 1, L is d and Q is d(d+1)
2

. Retrieving
every singular value with an AGGREGATE function involv-
ing a scan of tX, can be avoided with a more conservative

approach [15, 17]. It is a single SELECT with 1+d+ d(d+1)
2

AGGREGATE statements using tX.

SELECT sum(1.0) AS n

,sum(X1),sum(X2)...,sum(Xd) /*L*/

,sum(X1 ∗X1) /*Q*/

,sum(X2 ∗X1),sum(X2 ∗X2)
...

,sum(Xn ∗X1),sum(Xn ∗X2),...,sum(Xn ∗Xn)

FROM tX;

The resulting query is stored on a temporary table and then
inserted with vertical layout in the tables tL and tQ. Finally,
the values of the correlation matrix are computed from the
summary matrices without performing more scans on the
original data set. The final table storing the correlation co-
efficients, tA, has 3 columns and (d(d + 1)/2) records.

3.3 Householder Transformation
Our implementation of Householder in SQL uses vertical

matrices to exploit the storage of sparse matrices, and also
other optimizations of operations. The resulting tables tA

storing Ak−2 and tV storing Vd−2 are obtained using only
INSERT statements. We use the auxiliary table tH to store
the part of the matrix Ak that will be rotated during fol-
lowing iterations and the table tT to store the sub matrix
of Vk that will continue to be involved in further opera-
tions. Such implementation is possible as the matrix Pk is
composed of a diagonal identity matrix of k elements and a
square matrix starting at the position (k + 1, k + 1). Conse-
quently, the values of Pk that are not trivial have the form
{[k +1, d], [k +1, d], val} and stored on the table tP. During
each iteration instances of the tables tH, tT, tP and tW are
computed, along with the variables alpha and r. Meanwhile
the values inserted in tA and tV are never updated.
First tH is instantiated with the input correlation matrix.
Values for the variables alpha and r are computed with SE-
LECT and AGGREGATE statements over the table tH. The
table tW, storing the vector w, has the form {[k + 1, d], val},
not including zero values. Since tW has d− k− 1 values and
the table tP is symetric, only the upper or bottom diagonal
matrix is stored. tP has size ((d− k + 1)(d− k + 2)/2) + 1,
which is calculated with two statements: one to insert the
record {k, k, 1}, necessary to include the column and the
row k in our operation results, and other to compute the
difference between I and the cross product of the values in
tW. As shown in Figure 5, during iteration k only the sub



a a 0 . . . 0 0 0 . . . 0
a a a . . . 0 0 0 . . . 0
0 a a ... 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . ak,k ak,k+1 0 . . . 0
0 0 0 . . . ak+1,k h h . . . h
0 0 0 . . . 0 h h . . . h
...

...
...

...
...

...
...

. . .
...

0 0 0 . . . 0 h h . . . h


Figure 5: Storage of matrix A at step k, in tA:{i, j, aij}
and tH:{i, j, hij}.

matrix {[k, d], [k, d], value)} changes from Ak−1 to Ak. The
rotation tP of tH from the previous iteration with the form
{[k, d], [k, d], val} has the elements ak,k, ak+1,k and ak,k+1 of
the final matrix An−2 to be stored on tA, also the sub ma-
trix {[k + 1, d], [k + 1, d], val} to be the new instance of tH.
The matrices stored on tH, tP, tA are symetric, therefore
only the triangular upper or lower matrix is stored, moreover
computations are cut down only for such values. Neverthe-
less, it is important to include the values not stored at the
moment of doing the aggregations of matrix multiplications.

Since Pk is applied as a transformation at the right side
of Uk−1, it only alters values for the columns of the range
[k + 1, d]. At each iteration a new instance for the table tT

is generated, which stores a sub matrix of Uk (see Figure
6) with tuples of the form {[2, d], [k + 2, d], val} obtained
from the multiplication between the instance of tT at it-





1 0 0 . . . 0 0 0 . . . 0
0 u u . . . u2,k+1 t t . . . t
0 u u . . . u3,k+1 t t . . . t
...

...
...

. . .
...

...
...

...
...

0 u u . . . uk+1,k+1 t t . . . t
0 u u . . . uk+2,k+1 t t . . . t
...

...
...

...
...

...
...

. . .
...

0 u u . . . ud,k+1 t t . . . t


Figure 6: Storage of matrix U at step k, in
tU:{i, j, uij} and tT:{i, j, tij}.

eration k − 1 and the values in tP . The remaining tuples
{[2, d], k + 1, val} are to be inserted in tU.

3.4 QR Factorization
As described in Section 2.4, the QR factorization is iter-

atively called by the QR algorithm. In each step, a row of
Rk is computed and the columns vj of Qk where j ≥ i are
modified. As shown in Figure 7, Qk is stored on tT and tQ.
The table tT is initiated with a copy of the input matrix
Ak−1. For the step i, vi and ri,i are computed, both to be
inserted in tQ and tR respectively. Vertical matrix repre-
sentation allows us to compute the internal loop with three
SQL statements. One for the column of Rk {[i], [i, d], val},
with the AGGREGATE of the JOIN between vi and tT

on the row value. The second to compute the new in-
stance of tT, with a join between the previous tT, vi and
tR. Notice that this matching will result on records of the
form {[1, i + 1], [i + 1, d], val}, consequently the remaining
{[i + 2, d], [i + 1, d], val} from the old tT is inserted with a
third statement. Given @i = i and @r = ri,i, the SQL is as
follows,

/*New values for tQ*/

INSERT INTO tQ

SELECT tT.i, tT.j, tT.val / @r
FROM tT

WHERE tT.j = @i;

/*New values for tR*/

INSERT INTO tR

SELECT @i, @i, @r
UNION ALL

SELECT tQ.j, tT.j, sum(tQ.val * tT.val)

FROM tQ,tT

WHERE tQ.j=@i AND tT.j>@i AND tQ.i=tT.i

GROUP BY tQ.j, tT.j;

/*New instance of tT*/

INSERT INTO new_tT

SELECT tT.i, tT.j, tT.val - tQ.val * tR.val

FROM tQ, tT, tR

WHERE tT.j>@i AND tQ.j=@i AND tR.i=@i AND tR.j=tT.j

AND tQ.i=tT.i

UNION ALL

SELECT i, j, val

FROM tT

WHERE tT.j>@i and tT.i>@i+1

Finally, we have that no UPDATE statement is required
to obtain Qk and Rk. Which is very close from the database
point of view. And the only table that needs to be recom-
puted per iteration is tT.



q q q . . . q1,i t t t . . . t
q q q . . . q2,i t t t . . . t
0 q q . . . q3,i t t t . . . t
...

...
...

. . .
...

...
...

...
...

...
0 0 0 . . . qi,i t t t . . . t
0 0 0 . . . qi+1 t t t . . . t
0 0 0 . . . 0 t t t . . . t
0 0 0 . . . 0 0 t t . . . t
...

...
...

...
...

...
...

...
. . .

...
0 0 0 . . . 0 0 0 0 . . . t


Figure 7: Storage of matrix Qk at step i, in
tQ:{i, j, qij} and tT:{i, j, tij}.

3.5 QR Algorithm
During each iteration of the QR algorithm, there is a QR

factorization, two matrix multiplications and an error com-
putation. Since the convergence iteration is not known be-
forehand, new solution tables tU and tA are computed each
stage. The SQL for QR factorization was explained in Sec-
tion 3.4. As for the multiplications, only optimization of the
computation Ak is feasible. Since Ak is a tridiagonal sy-
metric matrix, the SQL is constrained to calculate the main
and one of side diagonals of the multiplication between the
matrices in the tables tR and tQ, result to be stored on tA.
The table tU with the value of Uk is computed with a query
of the previous instance of tU and tQ. A value for the vari-
able error is computed with a SELECT of the maximum
difference of the diagonal elements between the tables stor-
ing Ak−1 and Ak. Finally, the loop will conclude when the
value of the error is less or equal the parameter ε.

3.6 Implementation Alternatives
Data access and manipulation in a DBMS could be done

using different tools, hence, PCA is not restricted to SQL
statements. Here we explain how external libraries, UDFs
and Database Connectivity APIs are used to implement
the main steps of PCA: correlation computation and eigen-
value decomposition. Even though external libraries are spe-
cialized pieces of software that have been developed over
time to optimize execution time of their algorithms, most
of them are not designed to overcome memory heap con-
straints. Such limitation is evident when attempting to ap-
ply large data sets to these external libraries for statistical
and data mining analysis [7]. APIs, like JDBC or ODBC,
allow the user to access and manipule data from external
programs. This collection of libraries grant data mining ap-
plications connectivity to data sources from different DBMS
providers and they can be used to minimize memory usage.
Database connectivity components are extremely portable,
for most of them few properties need to be changed along
with the driver to switch the DBMS. Since the execution
speed depends on the communication channel and for secu-
rity reasons, it is desirable to minimize the amount of data
transmitted through the network. Other exploitable feature



of a DBMS are user defined functions or UDFs, which are
compiled to be embedded into the DBMS and can be called
using SQL statements. Therefore, a UDF executes inside
the DBMS without delay transmitting information. On the
other hand, UDFs depend on the DBMS specification, mak-
ing them not portable among providers and sometimes not
feasible due to access constraints. Our focus is to optimize
performance of PCA computation for large data sets by min-
imizing memory allocation and execution time, without al-
tering correctness of the results.
So far we have explained how to perform each step of SVD
with SQL statements(see Section 3). To avoid redundancy,
the structural components of the other implementation al-
ternatives besides SQL are generalized with pseudo-code.
The correlation matrix can be computed with one pass over
the original data set [16]. Reading one record in the table
at a time, the summary matrices are computed as an ag-
gregation. Thus, a data structure is used to store n, L and
Q, where the values obtained by combining attributes of
the current record are accumulated. After finished over the
whole or part (sampling) of the table, the correlation matrix
is generated as specified in Section 2.2. Finally, the steps for
eigenvalue decomposition, given the correlation matrix as an
array of two dimensions, are mapped for most programming
languages [19, 4, 10]. For our experiments we use the algo-
rithm specification in Section 2.4.

3.7 Time and Space complexity
For the computation of the summary matrices L and Q,

along with the covariance matrix, the complexity of opera-
tions in the algorithm (Section 3.2) are O(dn) and O(d2)
respectively, the same complexity is shared by the SQL,
Java and the UDF implementations. In the other hand,
for the SVD (Section 2.4) all implementations maintain the
same steps for the algorithm. However, for SQL operations,
we need to take into account the complexity of cross prod-
uct and joins. This problem is alleviated with reduction of
records participating in computations by constraints and by
not physically represent elements with predictable values.
Complexity of the SVD [19] is analyzed by operation and
iteration. Solving Householder is O(d3), with n− 2 steps of
O(d2) each. Table 2 shows the number of operations for Java
and the UDF, along with the records involved in operations
for SQL. Even though each step of the QR factorization is
O(d2) (see table 3), after completion of d steps the over-
all complexity is O(d3). Once again the representation in
SQL incorporates equal or less records for operations. The
QR algorithm includes matrix multiplications besides the
QR factorization, preserving complexity of O(d3) per step.
However, with the number of iterations for convergence s,
the QR algorithm is O(sd3). In table 3 we observe that
eventhough the records for U are not reduced in SQL, only
the elements on the three diagonals of A are computed.
As for the implementation alternatives to SQL, space re-

Table 2: Householder I/O per step.
Matrix UDF & Java SQL

A (d+1)(d)
2

(d−k+2)(d−k+1)
2

U d2 (d− k + 1)2

quirements are static. Operations of matrices are done by
changing values already allocated in memory. In SQL the
space requirements are closely related to the number of records
used in operations or query statements. Therefore, tables
in Householder and the QR factorization reduce on size
when the step counter increases. Reducing the numeros-
ity of records taking part in the join statements, improves
the execution speed of this approach when compared to the
counter scenario were every single value is computed for each
step of the algorithm.

Table 3: QR algorithm I/O per iteration.
Matrix UDF & Java SQL

Qk

∑d
i=1 d(d− i) + d

∑d
i=1 i(d− i) + d

A d× d 2d− 1

U d× d d× d

4. EXPERIMENTAL EVALUATION
In this section we present the experimental evaluation on

SQL Server DBMS. The server had an Intel Dual Core CPU,
2.6GHz, 4GB of memory and 1TB on disk. The DBMS ran
under the Windows XP operating system and has imple-
mentations of the UDFs compiled. We also used a work-
station with a 1.6 GHz CPU, 256 MB of main memory and
40GB on disk with JDBC connection, a SQL script gen-
erator, an implementation of SVD, JAMA and the R ap-
plication for comparison purposes. We implemented three
UDFs: one to compute the correlation matrix, a second to
compute the SVD given a matrix and a third that computes
the correlation matrix together with its SVD decomposition
to return the principal components of the given table. Our
optimizations combine UDFs and SQL to improve execution
time. Likewise, the optimizations are also implemented with
JDBC by executing some operations inside the DBMS with
SQL statements and others in the workstation (see Section
3.6). For R, all the data sets were transformed into flat files,
the time of exportation was not taken into account during
speed measurements. JAMA has a JDBC connection to ac-
cess data in the DBMS, therefore measurements include time
taken to import data.
We used three real data sets from the UCI Machine Learn-
ing Repository. This information comes from different back-
grounds which require dimensionality reduction. The first
data set contains general information on Internet users with
a combination of categorical and numerical data(n=10000,
d=72). A second data set is of cartographic variables for for-
est cover type prediction of 30 × 30 meter cells (n=100000,
d=54). The last data set is of US Census Data with numeric
and categorical attributes (n=100000, d=62).
We varied the number of dimensions d for time performance
comparisons and to test scalability. Since the results are nu-
merical approximations, we use the maximum expected rela-
tive error δ of the most representative eigenvalue as measure
of precision. Notice that the only parameter for execution
is the convergence criteria ε which can be modified to war-
ranty any desired expected maximum error. The external
Java package JAMA (A Java Matrix Package) and R do not



Figure 8: PCA with SQL relative error (δ).

require to set any parameter to compute the eigenvalue de-
composition. Considering that all the implementations con-
verge to the same direction, yet all solutions are numerical
approximation, we report correctness based on the maxi-
mum error expectation. Given an input table of d × n, the
resulting principal components or eigenvectors matrix will
have size d × d. Finally, we have that each experiment is
repeated 5 times and the average is reported.

4.1 Result Correctness
Our goal is to minimize the execution time without af-

fecting the correctness of solutions. In Section 3, we showed
the implementation of our QR algorithm (see Section 2.4)
in SQL, without modifying any step or main operation. Op-
timizations are required not only to minimize the storage
requirements of the matrices, but also to reduce accumu-
lated error; since trivial or known zero values are cut off
the operations. As expected, roundoff errors can swamp the
process from the true solution. Also in SQL we are bound
to work with the floating point operation precision of the
DBMS. However, results show that the optimizations effi-
ciently help to prevent accumulated roundoff and floating
point operation errors.
Convergence of the SQL implementation solving SVD over
the US Census data set (n = 1000) is presented in Figure 8.
The plot shows how the relative error of the eigenvalue diag-
onal rapidly decreases during the first steps of the algorithm
eventually converging bellow the desired error criteria. As
presented in Figure 9 the execution time of the SQL imple-
mentation quickly increases with the number of dimensions
d. Since SVD operates over a d × d matrix, the eigenvalue
decomposition is not affected by any change on the number
of instances in the data set. We explained in Section 3.1
how the implementation reduces the number of values to be
computed during each iteration to the minimum. Also how
we take advantage of SQL and our matrix representation to
acomodate matrix operations in such a way that only sub
matrices interact during each step. Moreover, a value com-
puted will only be used no more than two times before the
table where it is contained is replaced by a new instance.
However, the volatile nature of the matrices and the num-
ber of cross joins performed during every execution are not

Figure 9: PCA with SQL time.

to be avoided. The remarkable advantages of an SQL imple-
mentation is to be linearly scalable with n and not to have
a memory heap limitation. Therefore, this approach can be
used to compute PCA for a table of any size. Finally, more
analysis needs to be done comparing the results against dif-
ferent external tools. From our experiments we have that
our implementations and external libraries converge to the
same direction, yet all the values vary on decimal places.
Such analysis would focus on the impact of roundoff errors
in the SQL floating point operations and how different al-
gorithms to solve SVD perform better for certain datasets.

4.2 Implementation comparison
Based on the algorithm, the first step is to compute the

correlation matrix. Table 4 shows a computation time of
the correlation matrix in SQL and the time required by an
external library to generate the same matrix in main mem-
ory. The JAMA package outperforms SQL for all the cases
of n = 10. Since L requires d and Q a number d× (d + 1)/2
INSERT queries, it is not beneficial to use SQL when the
number of records is relatively small. However, for all the
cases with n ≥ 100, the advantage of executing operations
inside the database is evident. The database not only over-
came the memory issue, but also surpassed Java execution
time. When correlation is computed vertically, the num-
ber of scans done to the original data set increases with d.
For convenience we improved our vertical correlation matrix
computation using one horizontal aggregation query with all
the values for n, L and Q (see Section 3.2). Therefore, no
more than one scan of the data is needed. The time of in-
serting the resulting attributes of the query, one at a time
in the vertical result table, is insignificant when compared
to the multiple scans of a table with a large number of rows.
SQL Server limits the number of columns based on the total
size of the row, which is capped at 8KB. As a result, when
only using floating point columns, the maximum number of
dimensions that can be computed with one scan is 42. A
larger number of dimensions would require additional scans
on the original table because we need to split the aggregate
in order to fit the maximum row size allowed by the DBMS.



This explains why the horizontal aggregate is outperformed
by the vertical aggregate when n = 10 and d ≥ 50. The
UDF implementation (see Section 3.6) looks promising in
comparison to the SQL when n ≤ 100, yet not enough to
have faster results than JAMA if the data set is relatively
small n = 10. Finally, we have that the horizontal aggre-
gate dominates for n ≥ 100, due to DBMS optimizations to
perform aggregates fast on large tables.

Table 4: Correlation computation time in seconds
with JAMA using JDBC (*out of memory).

Vertical Horizontal
n× 1000 d aggregate aggretate UDF JAMA

10 30 7 2 3 5
10 50 20 21 16 11
10 70 40 59 34 12

100 10 3 1 2 13
100 20 10 7 7 25
100 30 23 16 16 32
100 50 57 53 47 *

1000 20 >1K 33 72 *
1000 40 >1K 154 261 *

Table 5 compares the execution time of SVD for our SQL
and UDF implementations. They use the correlation ma-
trix from the previous step to generate a numeric SVD de-
composition. The relative error δ with respect to the most
representative eigenvalue is set the same to compare speed.
Since both implementations overcome the error criteria af-
ter certain number of steps s, there is no precision lost when
executing operation in SQL. However, the price to pay is on
the number of iterations executed. Considering that all the
operations are done in main memory, it was expected for
the UDF implementation to surpass SQL in speed. Notice
that the time to compute the correlation matrix matrix was
not taken in account during measurement. In order to opti-
mize execution speed of PCA, we can combine the different
implementations, this comparison is analyzed bellow.

Table 5: SVD computation time in seconds with s
iterations for convergence.

n× 1000 d δ SQL s UDF s

10 30 3.76−3 92 78 1 80
10 50 3.65−3 481 146 3 115
10 70 2.92−3 978 172 5 122

100 10 3.49−5 6 34 <1 34
100 20 2.71−4 30 66 2 66
100 30 2.52−3 82 77 4 76
100 50 2.44−3 506 174 10 126

1000 20 2.07−4 39 84 <1 84
1000 40 1.15−3 113 64 2 62

4.3 Optimizations
In this section we present strategies to improve the compu-

tation of PCA. For comparison purposes we used the statis-
tic package R and the Java library JAMA. Since the exe-
cution of R is independent from the DBMS and data files
are used as input, there is no importation cost or connection
delay with the database. R is dominant as long as memory
limitations are not reached. It has the reading cost from

the hard drive and I/O operations at memory level which
increases linearly with the data size n× d. Our results show
that we can get similar execution speed with minimal mem-
ory requirements and without compromising solutions. In
the other hand, JAMA is used with a JDBC connection to
import the data into main memory before execution. It has
I/O operation cost of the JDBC connection, plus execution
time in main memory. Such implementation point up the
main limitation of data mining applications, to find the ap-
propriate way to manipulate data inside the DBMS. Like R,
JAMA has memory heap allocation constraints. It is impor-
tant to analyze the strength of each implementation since an
optimal configuration depends on environment constraints
and data set size. Table 6 presents total execution time of
our implementations. The first of them has every step of
PCA with SQL statements. We also combined the SQL cor-
relation computation with SVD as a UDF in the DBMS, and
outside with JDBC and Java. Furthermore, PCA is imple-
mented as a UDF which receives an input table and returns
its principal components as tables in the DBMS.

Table 6: PCA execution time comparison in seconds
against R without flat file creation time cost, and
JAMA with JDBC (*out of memory)(*/* for hybrid
methods).

n× SQL/ SQL/
1000 d SQL UDF Java UDF R JAMA

10 30 96 3 6 3 3 8
10 50 501 22 23 17 4 11
10 70 1020 47 50 34 6 13

100 10 7 2 4 2 5 14
100 20 37 9 9 8 8 27
100 30 98 20 20 17 13 34
100 50 559 62 67 47 21 *

1000 20 72 34 39 72 * *
1000 40 267 156 158 262 * *

The implementation that uses JDBC and JAMA outper-
formed our approaches when the data set size is relatively
small n = 10. However, for larger data sets, the external li-
braries suffer because the memory limitation prevents them
from analyzing these data sets. Likewise, time difference
with R is more evident for the same data set when d = 50
and d = 70. The reason for this results is that we focused
on improving execution time for large data, with the flaw of
not performing so fast for small data sets.
The main weakness of our SQL implementation is data set
dimensionality. To solve this issue, we also implemented
a version of the program with DBMS connection. It uses
JDBC to execute queries that compute the correlation ma-
trix, extracts it from the database and solves the eigen-
value decomposition. The combination of this two tech-
niques yields a desirable implementation for a data mining
implementation which performs remarkably for large data
sets. Results show growth that is similar to the SQL/UDF
implementation, which uses a similar procedure to calculate
PCA with correlation computation inside the DBMS and the
UDF to compute SVD. The difference between both imple-
mentations is due to the transmission velocity of the data
containing the correlation matrix. SQL/Java requires the
transmission of data through the communication network.
Unlike our dedicated server for experiments, transmition



time can increase on a concurrent network. The two imple-
mentations assume the correlation matrix can be stored on
main memory. Therefore, computations of SVD, the O(sd3)
numerical iterative process, execute extremely fast. PCA
implemented as UDF has better result for data with moder-
ate size. With the data set of n = 100 its results are similar
to our SQL implementation. Having the UDF to perform
only one scan of the data set is efficient and has fewer speed
impact when the number of dimensions increases. However,
optimizations inside the DBMS to execute aggregate queries
are the more efficient approach for large data sets. Our re-

Table 7: Execution time percentage (%) of PCA
computation (*/* for hybrid methods).

Correlation SVD
n× SQL/ SQL/ SQL/ SQL/

1000 d SQL UDF Java SQL UDF Java
10 30 2 67 33 98 33 67
10 50 3 95 91 97 5 9
10 70 3 85 80 97 15 20

100 10 14 50 25 86 50 75
100 20 19 78 78 81 22 22
100 30 43 56 56 57 44 44
100 50 9 85 79 81 15 21

1000 20 45 97 85 55 3 15
1000 40 58 99 97 42 1 3

sults show performance, along with a guideline to select the
best combination, for speed and correctness, depending on
the data set characteristics. Since we present the impact of
the data set size n and dimensionality d on the options avail-
able to perform PCA over information stored on a DBMS.
The current work gives a precise perspective of the weak-
nesses and strengths of each implementation alternative to
solve SVD and PCA.

5. RELATED WORK
There is a wide range of sucessful applications based on

PCA for image processing [6] and pattern recognition [23].
Data mining has also exploited dimensionality reduction for
data compression [3], clustering [5] and classification [9]. Al-
though there has been considerable amount of work in ma-
chine learning and data mining to develop efficient and ac-
curate techniques, most data mining work has concentrated
on proposing efficient algorithms assuming the data set is a
flat file outside the DBMS. Statistics and machine learning
have paid little attention to large data sets, whereas that
has been the primary focus of data mining.
Most research work has focused on modifying existing al-
gorithms for sparse data, and to optimize methodologies to
solve SVD [4]. One of the recent research extensions of PCA
is feature selection [1], to define a subset of the original set
of attributes that represents characteristics of the data with
minimal information lost. Considering that nowadays most
of the information is captured using a DBMS, this method-
ologies lack tools to appropiatetly do the preprocessing re-
quired to execute its algorithms.

There are some research in databases involving visualiza-
tion [12] and text mining using PCA. SVD has been used in
database research to perform Collaborative Filtering (CF)
[18] and information retrieval [2]. PCA [8] and correlation

analysis are two common techniques to analyze data. In-
vestigation has been done to get statistical models of the
data inside the DBMS fast [16, 13, 17]. In order to add
PCA capabilities to a DBMS, a recent approach was to use
UDFs to implement the complex matrix operations involved
in SVD for microarray data analysis [20]. We have gone be-
yond integrating such methodologies with UDFs in a non
declarative programming language such as C++ or Basic.
Our approach is to implement efficiently every operation in
PCA with SQL statements, providing guidelines of time per-
formance, correctness and scalability of the alternatives to
incorporate PCA into the DBMS.

6. CONCLUSIONS
Our proposal is about integrating PCA computation ca-

pabilities with a DBMS using SQL queries and UDFs. We
focus on solving PCA with singular value decomposition
(SVD). We explored techniques in order to improve execu-
tion time, get correct results and achieve scalability. Since
memory size is a limitation of statistical packages, our meth-
ods overcome memory limitation without compromising ac-
curacy and improving performance. To build a summariza-
tion of the data set the number of scans was reduced down
to one, and the resulting summarization is used to com-
pute the correlation matrix. Computing a decomposition of
the correlation matrix to find the principal components is
a complex methodology that requires several matrix oper-
ations. We studied how efficiently compute SVD with dif-
ferent alternatives, including SQL statements, UDFs and
external libraries. We proposed some optimizations for each
alternative to improve time performance, we tested several
combinations to overcome limitations of our implementation
alternatives. The results show that our scheme can execute
fast for large data sets compared to statistical packages and
to find solutions when they have reached memory limita-
tions. In order to test the data mining client experience, our
experiments are done from a workstation with a database
connectivity API to execute operations outside the DBMS.
We experimentally compared all the alternatives, we found
that computing the correlation matrix with SQL statements
is faster for large data sets, due to sufficient summarization
matrices. UDFs are faster to compute SVD, since the algo-
rithm used is iterative. Consecuently, the hybrid method of
computing the correlation matrix with SQL and SVD with
a UDF, has the best time performance for large data sets.
The scalability is linear in data set size and cubical in di-
mensionality. Our solution can work efficiently completely
inside the DBMS.
These are several issues for future research. Statistical and
data mining techniques can benefit from our approach to
compute PCA inside the DBMS. Deep analysis of how to
best implement numerical methods with minimal I/O against
the DBMS. The column subset selection problem is to find
a subset of the most important attributes of a data set, this
can be done exploiting our scheme to compute PCA, more
analysis of SQL and UDFs to compute the NP-complete pro-
cedure is still required. Moreover, we have only considered
the problem when the input data set has more records than
dimensions, and focused on optimizing performance for large
data sets. Future work must include number of dimensions
greater than records, for which our implementations are not
efficient in execution time.
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