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Abstract—OLAP tools for distributed data warehouses gener-
ally assume underlying replicated tables are up to date. Unfortu-
nately, maintaining updated replicas is difficult due to the inher-
ent tradeoff between consistency and availability. In this paper,
we propose techniques to evaluate OLAP queries in distributed
data warehouses assuming a lazy replication model. Considering
that it may be admissible to evaluate OLAP queries with
slightly outdated replicated tables, our technique first efficiently
computes the degree of obsolescence of replicated local tables and
when such result is acceptable, given an error threshold, then
the query is evaluated locally, avoiding the transmission of large
tables over the network. Otherwise, the query can be remotely
evaluated less efficiently with the master copy of tables, provided
they are stored at a single site. Inconsistency measurement is
computed by adapting distributed set reconciliation algorithms
to efficiently compute the symmetric difference between the
master and replicated tables. Our improved distributed database
algorithm has linear communication complexity and cubic time
complexity in the size of the symmetric difference, which is
expected to be small in a replicated data warehouse. Our
technique is independent of the method employed to propagate
data warehouse insertions, deletions and updates. We present
experiments simulating distributed databases, with different CPU
and transmission speeds, showing our method is effective to
decide if the query should be evaluated either locally or remotely.
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I. INTRODUCTION

Fault tolerance is an important reason to keep distributed
data warehouses continuously available at different sites. An-
other important reason is the existence of multiple sources of
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large amounts of data in today’s data warehouses. Today it
is common to use distributed techniques in order to place a
data warehouse in several computers under a single conceptual
schema. To assure efficient response times to OLAP users
increasing local access and reducing network loads and to
achieve a high level fault tolerance, replication techniques are
used in the implementation of distributed data warehouses.
The replication has been proposed in several ways such as
horizontal or vertical fact replication, complete or partial
dimension table replication [3]. A data mart, for example, is a
data repository that may derived from subsets of data in a data
warehouse. It is common that all these techniques turn the sys-
tems complex and difficult to manage [1]. Replication brings
up different problems such as storage overhead and replica
inconsistency due to, for example, asynchronous updating,
system failure or data corruption. Replication can be done by
replacing all the dataset or by changing only updated records,
however there is always a risk to lose replica consistency.
Although the ETL process takes care of the integrity errors,
the on going management processes can bring inconsistency
to the data warehouse.

In this work we propose a strategy to be included in OLAP
tools that work over distributed data warehouses that follow
a lazy master replication model where the replicated tables
could be outdated. A user may request a currency evaluation
of replicated tables involved in an OLAP query. Also, the tool
may automatically compute a query evaluation with tables that
meet a certain currency threshold resulting in a local or a
remote query evaluation. Our tool is useful also in active data
warehouse environments where near real-time data freshness
is needed but also mission critical data availability. In these
environments, knowing the freshness condition of the replicas
becomes critical. Our strategy is based on set reconciliation
algorithms that compute efficiently the symmetric differences
between the master and slave table replicas. Our techniques are
especially suitable when comparing large sets, in our context
large tables, with relatively few differences, as in our context,
when comparing two supposedly equal replicas.

The article is organized as follows. Section II introduces
basic definitions. Section III introduces our approach to com-
pute replica consistency in a distributed data warehouse and
identifies query optimization issues. Section IV provides an
extensive evaluation of our technique to compute our proposal.
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Related work is discussed in Section V. Section VI concludes
the article.

II. DEFINITIONS

Let D = {D1, D2, . . . , Dn} be a set of n replicas of a data
warehouse at n sites, where D1 is the primary copy at the
master site, and each Di, i = 2 . . . n is a secondary copy of
the primary copy at a slave site. To have a uniform framework,
all replicas have the same table names (i.e. same structure),
but potentially different content (i.e. inconsistent replicas).

Let Di be defined as Di({T1, T2, . . . , Tm}), where each
Tp, p = 1 . . . m is a table. Since we deal with outdated replicas
we assume Di.Tp may contain rows different from Dj .Tp,
where i 6= j and Di, Dj ∈ D.

Let Di.Tp be a replica of table T in the local data warehouse
Di. Each local secondary replica table Di.Tp, i = 2 . . . n is
periodically refreshed according to the updates at the primary
replica table D1.Tp. We define replica consistency as follows:

Definition 1 Replica consistency. Let Di, i = 2 . . . n be a
secondary replica of data warehouse D. Di meets the replica
consistency constraint if it is an identical copy of the primary
replica D1. That is: ∀ Tp ∈ Di, D1.Tp = Di.Tp. The primary
replica is always (trivially) replica consistent.

A subset of tables in Di can meet this type of consistency.
In this case, the subset of tables should be identical copies of
their corresponding primary copies.

The following metric is used to know if a replica of a given
table, say Di.Tp, meets the replica consistency constraint (i.e.
if it is current).

cur(Di.Tp) =
|Di.Tp 	D1.Tp|
|D1.Tp|

(1)

where Di.Tp 	D1.Tp is the symmetrical difference between
tables Di.Tp and D1.Tp. That is, the records that are in Di.Tp

but not in D1.Tp with the records that are in D1.Tp but not
in Di.Tp:

Di.Tp 	D1.Tp = (Di.Tp −D1.Tp) ∪ (D1.Tp −Di.Tp)

we denote the size of the symmetrical difference by d. That
is d = |Di.Tp 	D1.Tp|.

The metric shown in Equation 1 gives a close idea of the
table replica consistency. That is, it gives an idea of how
similar the secondary replica is compared to the primary
replica. Observe that this metric will be close to zero if
the secondary replica is nearly identical compared to the
primary replica. Also, it gives an idea of how different the
involved tables are. As the quotient grows, the number of
different records is greater. Observe that D1.Tp − Di.Tp is
the set of records that are not yet propagated to Di.Tp. That
is, the records inserted in D1.Tp not yet in Di.Tp. As for
Di.Tp − D1.Tp is the set of records not yet deleted from
Di.Tp. As for the updated records in D1.Tp, we will consider
an update as two operations, i.e. a delete and an insert of a
record.

We can assume then that to update/repair a replicated
table, say Di.Tp, we need to propagate the insert and delete
operations from D1.Tp to Di.Tp.

Definition 2 Repaired table with respect to replica consis-
tency. We say a replicated table, say Di.Tp, is repaired with
respect to replica consistency if

Di.Tp = (Di.Tp ∪ (D1.Tp−Di.Tp))− (Di.Tp−D1.Tp) (2)

III. EFFICIENT COMPUTATION OF
REPLICA CONSISTENCY

We start by presenting alternatives to maintain consistency
in replicated data warehouses. We then motivate the use of
set reconciliation distributed algorithms to efficiently measure
consistency. We explain step by step our approach with a
small example. Our main technical contribution is a distributed
algorithm that extends existing set reconciliation algorithms
to work in a distributed database assuming a lazy master-
slave replication model. We show our algorithm is efficient
assuming replicas have a small number of missing records:
communication complexity is proportional to the symmetric
difference of a master table and its replica, and not to their
sizes. We conclude this section discussing several practical
considerations.

A. Alternatives to Maintain Consistency

Observe that the number of records in a table could be
very large as in a data warehouse environment. However,
the number of differences between the primary replica and
a secondary replica is expected to be relatively low. That
is d << |D1.Tp| ≈ |Di.Tp|. An alternative to compute the
operations involved in Equation 1 could be to transfer to the
slave site the primary replica involved and then compute the
operations. This alternative could be very expensive in terms
of communication complexity since the operands could be
tables with millions of records. Once the data is transferred
to the slave site, computing the operations involved is also
expensive. An advantage of this alternative is that it does not
depend on a given propagation process. On a given time, it
could the triggered in order to verify replica consistency. Other
strategies to maintain consistency assume first as starting base
that a given replicated table is repaired. In the master site they
keep track of the updated records in a propagation set. At a
transfer timepoint the master site sends its propagation set to
the slave site. Upon receiving the propagation set the freshness
condition may be updated taking the previous, consistent state
into account. The problem with these strategies is that they
assume an initial consistent state or a periodic one if the
strategy includes repairing of the slave replicated table. If the
system looses track of these cyclic evaluations, for example,
because of a communication problem, the precision of the
freshness evaluation may be compromised. To return to a
consistent state, the table has to be repaired by other methods
that match both master and slave replicas. In other words,
these strategies are not self-contained.

B. Set Reconciliation Approach to Measure Consistency

Computing Equation 1 is challenging considering the size of
the replicas in a data warehouse environment. We are assuming
a lazy master replication model [5]. In each slave site, the
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most important operation is the symmetrical difference. Our
techniques focus on optimizing this operation. We adapted to
our problem set reconciliation [8] techniques. We assume the
cost to transfer a large table is high as in a data warehouse
environment, and we assume the size of the symmetrical
difference is low compared to the size of the tables involved,
since the tables are supposed to be replicas. In our approach we
are assuming that in the primary replica records are inserted,
deleted and updated.

The amount of data to be transferred may be dramatically
reduced and the computations may be simplified considering
the ideas we will present next. The question that remains now
is how can we efficiently compute the symmetrical difference
shown in Equation 1 in a given slave site without transferring
or broadcasting large amounts of data and/or without assuming
a consistent initial state. How can we compute in site i the
differences D1.Tp−Di.Tp or Di.Tp−D1.Tp without transfer-
ring from the master site the primary replica. To accomplish
this goal, we propose to adapt techniques used to reconcile
sets whose differences are small [8], that avoid the need to
transfer large amounts of data. The amount of data transferred
depends on the number of differences rather than on the size
of the tables involved. That is, the communication complexity
is O(d) instead of O(|D1.Tp|). This is a great difference
considering that in a data warehouse context d << |D1.Tp|.
On the other hand, once the data is transferred, the compu-
tational complexity of the algorithms that compute the actual
different values could be cubic in the number of differences,
O(d3). To the best of our knowledge, these techniques for
set reconciliation have never been proposed to discover differ-
ences between replicated tables in a distributed data warehouse
environment. Determining the replica consistency of tables in
a distributed data warehouse where we deal with big sets
with proportionally small differences is a scenario specially
adequate for the use of these techniques.

Once Equation 1 is computed, replica consistency may be
assessed and the user may decide at which site an OLAP query
can be computed or even decide to refresh the replica.

C. Adapting Set Reconciliation to Compute
Replica Consistency

To compute replica consistency, we adapted set reconcilia-
tion techniques. The following assumptions and actions were
taken into consideration:
• The sets to be reconciled (the records of two replicas) are

represented by their characteristic polynomials.
• A number of evaluation points mutually agreed, in our

case, between the master site and the slave site must
be used to evaluate the characteristic polynomials. The
number of points evaluated must not be less than the
maximum number of differences between the two repli-
cas.

• Instead of transferring one of the reconciling sets from
one site to the other, the evaluation points with their
corresponding characteristic polynomial evaluations are
transferred, this way minimizing the communication com-
plexity.

• Both sets of characteristic polynomial evaluations are
used to interpolate a rational function which will have as
roots of its numerator and denominator the symmetrical
difference between the sets of records of the two replicas.

The following example gives an overview of how the
mentioned technique can be used to repair a table with respect
to replica consistency, although it is not our intention to give
here all the technical details of the set reconciliation algorithm
(See [9] for details ).

Example 1 Suppose table T , with 100 records is replicated at
two sites, say site c and site r in an asynchronous master-slave
replication configuration, being c the master site and r the
slave site. To simplify exposition, assume a unique attribute,
the primary key K, which holds positive integers stored in a
8-bit signed integer. Suppose the number of elements in the
symmetrical difference between the two sets of primary key
values is no more than 20. To reconcile both replicas, first
both sites agree in 20 evaluation points, one for each possible
different value. At each site the characteristic polynomial, that
is, the polynomial whose roots are all the primary key values
of the corresponding replica, is evaluated in each one of the
20 evaluation points. Let ki, i = 1 . . . 100 be the primary key
values of the replica at site c. The corresponding characteristic
polynomial would be then Π100

i=1(x− ki). Let ke be one of the
20 evaluation points. The evaluation of ke using the mentioned
characteristic polynomial is Π100

i=1(ke− ki). To avoid working
with large numbers while computing the evaluations of the
characteristic polynomials, we need to work in a finite field
with an order not less than v = (27 − 1) + 20 = 147
in order to map the primary key values and the evaluation
points. The selected field could be then Fq , q= 149, being
the value of q the lowest prime greater than v. Observe
we can fix the value of q since the domain of the primary
key values does not change as well as the upper bound of
the number of elements in the symmetrical difference. The
20 mutually agreed evaluation points may be the integers in
the closed interval [−20,−1]. Since these numbers are not
members of the set of possible primary key values, they will
never be zeros of the characteristic polynomials. Both sites
keep an updated vector, lets call it the evaluation point vector,
with 20 pairs of values containing each evaluation point
associated to its corresponding evaluation of the characteristic
polynomial. Also, both sites keep the cardinality of their
replica. To keep the vector updated, whenever a record with
a primary key value of say k0 is inserted/deleted, all the 20
current evaluations of the characteristic polynomial have to
be multiplied/divided (mod q) by (ke − k0), where ke is an
integer in [−20,−1]. The cardinality is updated as well by
adding/subtracting one to the current cardinality. Suppose that
in a given moment both replicas agree in all their primary key
values, and suppose these values are the positive integers in
the closed interval [1, 100]. In both evaluation point vectors
the value that corresponds to the evaluation point −1 is

110 = (−1− 1)(−1− 2)...(−1− 100) mod q

where q = 149

Suppose site c receives three records with values 101, 102,
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103 in its primary key K and the record with value 100 in
K is deleted. The updated evaluations of the characteristic
polynomial that correspond to the evaluation points −1 and
−2 are 15 and 129 respectively.

When the freshness evaluation is required in r, site c trans-
fers its evaluation point vector to r and the cardinality of its
replica. Observe that the size of the transferred data depends
on the number of symmetrical differences and not on the table
cardinality. At site r, with both vectors, at each evaluation
point, the two values of the evaluation of the characteristic
polynomials are divided (mod q) and the divisions are used
together with the cardinality of the functions, to interpolate
a reduced rational function which will have in its numerator
and its denominator characteristic polynomials whose roots
are the values that are in one set but not in the other. Take
for example the values of both vectors that correspond to the
evaluation point −1 above. The division between both values
gives (mod q)

15

110
=

(−1− 1)(−1− 2)...(−1− 99)(−1− 101)(−1− 102)(−1− 103)

(−1− 1)(−1− 2)...(−1− 99)(−1− 100)

=
(−1− 101)(−1− 102)(−1− 103)

(−1− 100)
=

7

−101
= 34

Observe that the common factors cancel out so the result
is the evaluation of a rational function whose zeros in the
numeration and the denominator are the values that are in
one set but not in the other.

D. Distributed Algorithm to Measure Replica Consistency

In case the maximum number of different values of one
replica with respect to the other is not known and we only
count with a global bound, the cardinality of the tables together
with the global bound can be used to determine the bounds
of the degrees of both characteristic polynomials in order
to interpolate and reduce the rational function. By finding
the zeros of the characteristic polynomials, the symmetrical
difference between the master and the slave replicas can be
determined in site r.

In case the keys are not integers, the key domain values
are mapped to the values of a finite field. This can be done
considering their binary representation. To handle tables with
more attributes, the attribute values can be concatenated and
the result mapped as mentioned above. If necessary, the table
can be fragmented keeping in each fragment the primary key
in order to rebuild the records that belong to the symmetrical
difference.

Next, in Algorithm 1 we show how to use the set reconcil-
iation techniques mentioned above in order to implement our
proposal. We will refer to this method as the Set Reconciliation
Approach - SRA. In each step we show if it is a computational
(pt) or a communication (ct) task and if it is performed by
the master site (c) or by a slave site (r).

E. Communication and Time Complexity

The communication complexity using the set reconciliation
techniques just described, SRA approach, depends on the
number of differences among the tables involved and the

Algorithm 1 Algorithm to determine symmetrical difference
(c - master site, r - slave site, pt - computational time, ct -
communication time).
0. (asynchronously): Sites agree in the maximum number

of total different records between the two replicas, say d′,
and in the same number of evaluation points. At each
site, the characteristic polynomial formed with the
records of T is updated in a table, say E, in each one
of the d′ evaluation points when an insert or delete
takes place. Table E is the evaluation point vector.
The cardinality of T , |T |, is also updated.

1. (ct): Site c broadcasts |Dc.T | and table Dc.E.
Dc.E has the characteristic polynomial of Dc.T
evaluated in each one of the d′ evaluation points as
explained above.

2. (pt): Site r receives |Dc.T | and Dc.E and together with
|Dr.T | and Dr.E interpolates a reduced rational
function and computes the symmetrical difference
between the two replicas
(Dr.T −Dc.T ) and (Dr.T −Dc.T )

size of the records, O(d′b), step 1 in Algorithm 1. At the
slave site, the computation to interpolate the rational function
using the evaluation point vectors by Gaussian elimination
and the Euclidean algorithm to reduce the rational function,
has complexity O((d′)3) [9]. We are assuming that the tasks
described in step 0 are done asynchronously. If this was not
the case, we have to add to the computational complexity the
cost to evaluate the evaluation point vector, O(|T | ∗ d′).

F. Issue: Unknown Upper Bound on
Symmetric Difference Set Size

There are cases where an upper bound of the maximum
number of records of the symmetrical difference between any
two replicas, d′, cannot be determined. We present an overview
of a method to apply the techniques proposed without knowl-
edge of an upper bound, considering tables Dc.T and Dr.T .
This method is an adaptation of the probabilistic verification
presented in [9].

We estimate a maximum number of differences between any
two replicas above which it would be unfeasible to use this
method. Observe that the real number of differences could be
bigger. We determine a first set of evaluation points mutually
agreed between the involved sites with this number of points.
Lets call this set Q. Next, we need to determine a number of
additional evaluation points that will be used to test with a
given probability if an interpolated rational function is indeed
the function we are looking for. To do this, we determine a low
probability, p, representing the maximum probability we can
tolerate for the case where we erroneously interpolate a ratio-
nal function different from the correct rational function having
as roots of the numerator and the denominator the values
of the symmetrical difference. According to this probability
we determine a second set of points mutually agreed drawn
randomly from a subset of the field of the rational function we
are willing to determine. We will use these random evaluation
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points to find out if the computed rational function is indeed
the desired one with certain probability. Lets call this set S.
Now our evaluation point vector, the one that corresponds to
table E in the variant presented in the last section, will hold
the evaluations of the characteristic polynomials of Q and S.

When the freshness evaluation is required, the slave site,
r, receives the evaluation point vector of its counterpart, site
c, with |Q| + |S| evaluation points and its cardinality, and
compute the corresponding divisions. Next, the interpolation
of the rational function takes place, assuming the number
of symmetrical differences is |Q| and the test to see if this
function is in fact the rational function we want with a
probability of failure of p. This is done by comparing the
divisions that correspond to the points in S against the values
of the interpolated function evaluated at those same points. If
the test is successful, then the current interpolated function is
reduced and the zeros are obtained. If at least one point fails,
then this method is not feasible to determine the differences.
Each time the set S of random points is used for this purpose,
the sites involved compute another mutually agreed random
set. Observe that this can be done asynchronously. Also,
since normally S is small, several sets can be maintained
simultaneously. Since the interpolation is done once, and |S|
is fixed, the computational complexity in site r is O(|Q|3)
and the communication complexity is O(|S| + |Q|). Bearing
in mind this complexity we can better estimate the size of
Q. It only remains to show how to compute the size of S
from p. Observe that if the values of a key can be mapped
to a field of values of size b-bits we can add an additional
bit to enlarge the field and we have 2b more values of size
b-bits, where we can take the values of Q and S. Since Q is
a fixed set of values, the random values may be chosen from
a set of 2b − |Q| values. According to Theorem 4 in [8] and
considering the field described above, the probability that two
monic rational functions with the sum of their numerator and
denominator less than B agree in one randomly selected point
although they are different is no more than

p = (B − 1)/(2b − |Q|).

where B = |Dc.T |+max(|Dr.T |), 1 ≤ r ≤ n−1, or another
upper bound of the maximum number of different values
between any two replicas, say for example, the maximum
number of inserts and deletes (recall we are considering an
update as if a delete and an insert had taken place) in a period
of time.

Observe that since the rational function is generated from
the division of the characteristic polynomials the way it
was described, two different rational functions cannot agree
in more than the number of points equal to the size of
the symmetrical difference of the involved sets minus one.
Observe that if the two rational functions agree at more than
this number of points, then they are equivalent. With these
ideas in mind, we can determine that the probability that two
rational functions are different after agreeing at e consecutive
randomly selected evaluation points is no more than Bpe. Let
this probability be p, then the size of S is

|S| = dlogp(p/B)e ≥ dlogp(p/d)e

where d is the real number of the maximum number of total
different values between the two replicas.

G. Technical Considerations

Our approach offers a compromise among the following
criteria: replica freshness, modern requirements to compute
OLAP queries with updated data, communication efficiency
and self containment in the computation of replica consistency.
The user of an OLAP tool or a data warehouse application
wishing to perform the computation of the replica consistency,
only needs to determine the threshold d′, the maximum size
of the admissible symmetrical difference. This value is trans-
mitted to the master and slave replicas in order to determine
the number of evaluation points, according to Algorithm 1.

All the arithmetic operations to compute the characteristic
polynomials and to obtain the roots of the rational function
are done in a finite field to avoid working with large numbers.
In case that the concatenation of the binary representation
of the attribute domain values is too big to be computed,
the table can be vertically fragmented. Each fragment should
keep the primary key value in order to eventually assemble
the records that belong to the symmetrical difference. Each
fragment is treated as a different table and the computations
needed to obtain the characteristic polynomials and the roots
can be done in parallel in the corresponding site. Note that the
computations to update the evaluations of the characteristic
polynomials are done asynchronously locally in each of the
corresponding site limiting the need to communicate with
other sites.

An important contribution of our work is the proposal of
a technique to measure replica consistency in a distributed
data warehouse context with a communication complexity that
depends on the size of the symmetrical difference between the
replicas. Efficient computations to compare data warehouse
tables have been proposed, for example, in the context of the
snapshot differential problem [6]. However, these techniques
in the distributed context have a communication complexity
that depends on the size of the tables. Our computations lead
also to a method to repair the slave replica in a way that is
independent to the propagation method used by the distributed
data warehouse system. A distributed data warehouse where
we deal with big sets with proportionally small differences is
a scenario specially adequate for the use of these techniques.
The computational complexity in the slave site using the set
reconciliation techniques to obtain the symmetrical difference
between replicas, although it is cubic in the number of
differences, which, however, is expected to be low, it does
not depend on the size of the tables.

IV. EXPERIMENTAL EVALUATION

The main goal of our experimental evaluation is to compare
our proposal to measure replica consistency based on set
reconciliation techniques computing the characteristic poly-
nomials (we will refer to this method as the Set Reconcili-
ation Approach - SRA), with other methods that require the
transmission of the master replica to the slave site, here the
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Algorithm 2 General algorithm for complete transfer approach
(c - central site, r - remote site, pt - computational time, ct -
communication time).
1. (ct): c broadcasts Dc.T .
2. (pt): r receives Dc.T , and computes

Dr.T 	Dc.T (this could be done with, for example,
an SQL expression inside the DBMS, or a
Java function outside the DBMS), and generates
tables Dr.T −Dc.T and Dc.T −Dr.T .

Complete Transfer Approach - CTA algorithms. Algorithm 2
shows the basic framework of the CTA algorithms.

With the CTA algorithms, computing the symmetrical dif-
ference in the slave site could be useless since in the lazy
master replication model, the master replica is the correct
replica so the slave one simply could be substituted. However,
determining the symmetrical difference could be useful for
quality assurance purposes. Nevertheless, the CTA algorithms
have a communication complexity that depends on the size of
the replica.

In our experiments we want to show how both approaches,
SRA and CTA, behave differently. We stress that we are
not using the best CTA algorithms that require at least a
table scan to obtain the evaluation of the replica consistency.
However, what is important here is that the communication and
computational complexity of these algorithms depend on the
size of the evaluated table. We present here our experiments
done with sizes of tables that highlight the efficiency of our
SRA methods even in scenarios where tables are not so large.

A. Setup

We conducted our experiments on four database servers.
Two of them with one Intel Core 2 Duo CPU at 1.66 GHz
with 1 GB of main memory and 120 GB on disk. The other
two servers with two Intel Core Duo CPU at 1.66 GHz with 2
GB of main memory and 160 GB on disk. We identified both
types of servers as SS and FS servers respectively (slow and
fast servers). We used two networks one with a transmission
speed of 0.1 MB/s, and the other one with a transmission
speed of 10 MB/s. We identified both types of networks
as SN and FN respectively (slow and fast networks). We
installed Fedora 8 in all servers with gcc 3.6 and java 1.6.
We adapted the reconciliation functions available from [14].
We simulated a Master-Slave configuration with the relational
DBMS PostgreSQL 8.2.

Our synthetic databases were generated by the TPC-H DB-
GEN program, [15], with scaling factors 1 and 2. The results
we present in this section, unless stated otherwise, use a default
scalefactor 1. We decided to present these results in order to
highlight that even with data warehouses with tables not so big,
our techniques still perform better compared with techniques
that require the transmition of an amount of data proportional
to the size of the evaluated table. The tables we replicated
without loss of generality were projections of the primary
key of the tables customer, orders and lineitem, denoted
here by pkcustomer, pkorders and pklineitem respectively,

with the following sizes: 150k, 1.5M and 6M respectively and
the following primary keys: c custkey, o orderkey and a
compound primary key
(l orderkey, l linenumber) respectively. Each experiment
was executed five times, we eliminated the fastest and slowest
execution and reported the average of the rest. Elapsed times
are indicated in seconds.

In every experiment, we recorded separately the total
elapsed time to execute our Algorithms in the servers (com-
putational time - pt) and the total time for the communication
(communication time - ct).

B. Complete Transfer Approach vs. Set Reconciliation Ap-
proach

In this section we compare the CTA approach against the
SRA approach. To compute the symmetrical difference in the
slave site with the CTA approach first the master replica was
transmitted to the slave site. Once in the slave site, we used
a Java function that computed an antijoin operation between
the two replicas. For the SRA approach set reconciliation
techniques were adapted to the replica comparison.

Figure 1 shows several executions of the CTA and the SRA
variants with the FS servers and the SN network. We can see
that the computational time of the SRA variant depends on
the maximum number of differences between any two replicas
(d′). See also that with the SRA variant the computational
time is not affected by the size of the replica since all three
lines overlap in Figure 1, meaning the performance is similar
in the three cases. However, see how the time increases
as d′ increases. Since the evaluations of the characteristic
polynomials in each evaluation point is done asynchronously,
this time is not considered in this experiment. On the other
hand, the computational time of the CTA variant depends on
the size of the tables. Since the sizes of the symmetrical
differences in the experiment are marginal compared to the
size of the tables, the computational times of each table
is almost constant. Observe that the points where the lines
that correspond to the SRA variant cross with the ones that
correspond to the CTA variant, indicate the borderline values
of d′ where one variant turns to be better than the other.
Specifically, we can see that for table pklineitem, for values
above 2, 000 differences, the CTA variant turns to be better
compared to the SRA variant.

Table I shows the computational and communication times
of the CTA and the SRA variants computed considering
several d′ values. All the computations are done with replicas
of table pklineitem executed with the FS servers and the
FN networks. The purpose is to show the specific elapsed
times of several tasks. The first three columns refer to the
specific tasks of the SRA variant. The columns show the time
for the evaluation of the characteristic polynomials (CP), for
the transfer of the evaluation point vector, (Com.), and for
the interpolation of the reduced rational function to obtain
the roots of the numerator and denominator (Roots). As for
the CTA variant, the next two columns show the time to
transfer table Dc.T (Com.), and the time to evaluate the Java
function. The CP time is shown even though these values may
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Fig. 1: Comparison between CTA variant vs. SRA variant.

TABLE I: Computational and communication times of CTA
and SRA variants.

SRA CTA
d’ CP Com. Roots Com. Java funct.

(antijoin)
100 42.0 0.2 1.0 7.8 5.7
200 77.8 0.2 1.5 8.1 6.0
300 117.0 0.2 2.2 8.2 6.5
500 188.2 0.2 7.4 8.4 6.5

1,000 374.0 0.2 46.2 8.6 6.8
1,500 559.7 0.2 144.8 8.7 7.4
2,000 745.5 0.2 352.9 8.9 10.7
2,500 810.4 0.2 661.9 9.2 11.4
CP: characteristic polynomial; Roots: interpolation of reduced ratio-
nal function; Java funct.: computation of Java function - antijoin;
Com: communication

be computed asynchronously while updating the replica, not
necessarily when the replica consistency is evaluated.

We highlighted the approximate value of d′ where it is
better to use one or the other approach (not all times are
considered). The two lines that are highlighted indicate that for
d′ values below 200, the SRA variant is better than the CTA
variant if the elapsed times to evaluate of the characteristic
polynomials (CP) are considered. However, if this last time is
not considered, then the approximate value of d′ that bounds a
better performance of the SRA variant is 1, 000. Contrast this
result with the past experiment. We can see that if we have a
faster network, the results change.

Contrast in Table I the communication times. Observe that
the SRA variant has a much lower communication time.
However, contrast the computational times. With the SRA
variant, computing the roots of the rational function becomes
very much expensive as d′ grows.

V. RELATED WORK

Replica consistency has received much attention in recent
years. In [13] the authors propose two update propagation
strategies that improve freshness, a concept that supposes that

replica consistency in a distributed database can be relaxed.
These strategies are based on immediate propagation, without
waiting for the commitment of the update transaction in
Master-Slave configurations. In [12] the authors propose a
refreshment algorithm to maintain replica consistency in a
lazy master replicated database based on specific properties of
the topology of replica distribution across nodes. Both works
propose strategies towards maintaining replica consistency
in a database in a Master-Slave configuration. Our work
supposes an a posteriori scenario where replica inconsistency
violations are probably present and the user wants to measure
the problem. Our work is oriented towards highlighting the
benefits to use our methods in a distributed data warehouse, in
a Master-Slave configuration. In [2] the authors propose two
lazy update protocols that can be used in a distributed data
warehouse, that guarantee serializability but require that the
copy graph be a directed acyclic graph. The authors propose a
solution to prevent the lazy replication inconsistency problems
in a particular distributed configuration. In [10] the authors
propose a new class of replication systems called TRAPP
(Tradeoff in Replication Precision and Performance). Instead
of storing stale exact values in the slave site, the system stores
ranges that are guaranteed to bound the updated data values.
Users give a quantitative precision constraint along with their
query and the system selects a combination of locally cached
bounds and current data stored in the master site. The system
delivers a bounded answer consisting of a range that is no
wider than the specified precision constraint that contain the
precise answer and is computed as quickly as possible. In
contrast, our system delivers imprecise values that meet the
user precision constraints or exact precise values, where a low
cost is paid in terms of data transmition.

In [4] the authors introduced a coherency index to measure
replica consistency (coherency). They examine the trade off
between consistency and performance, and show that in many
situations a slight relaxation of coherency can increase perfor-
mance. In our work, we focus on efficiently diagnosing replica
consistency in a data warehouse scenario. In [16] and [17]
the authors proposed several metrics to measure the quality of
replicated services where the access to a replicated database is
included. They show a middleware layer that enforces consis-
tency bounds among replicas allowing applications to dynam-
ically trade consistency for performance based on the current
service, network, and request characteristics. They measure
availability while varying the consistency level, the protocol
used to enforce consistency, and the failure characteristics of
the underlying network. However they measure the quality of
the service (access) and not the quality of, as in our case,
the replicated data. In [7] the authors propose an approach to
repair a crashed site in a distributed data warehouse that uses
data replication to tolerate machine failures. Their approach
uses timestamps to determine which records need to be copied
or updated. Our strategy is an on demand technique, that also
queries sites but does not require timestamps. It measures the
quality of the data warehouse when the user needs a diagnosis
of the inconsistencies. It is based in the efficient computation
of the symmetrical differences among replicas.

A related problem deals with detecting and extracting modi-
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fications from information sources, in particular, detecting dif-
ferences between snapshots of data. In [6] the authors propose
several algorithms in order to solve this problem, known as the
snapshot differential problem. The algorithms perform com-
pression of records and one of them, the window algorithm,
works specially well when the number of differences is small.
However, the time complexity of the algorithms depends on
the size of the snapshots. In particular, the window algorithm,
needs to read the snapshots once. In contrast, our method
using set reconciliation techniques based on the computation
of the characteristic polynomials depends on the size of the
symmetrical differences, considering that the computation of
the evaluation points can be done asynchronously.

To close our discussion on related work, in [11] we proposed
referential integrity metrics in distributed databases.

VI. CONCLUSIONS

We proposed techniques to efficiently measure replica con-
sistency in distributed data warehouses. We identified research
issues on evaluating replica consistency in a lazy master
replication model. Specifically, we studied how to quickly
compute the symmetrical difference between the master table
and the slave replica, adapting set reconciliation techniques to
a distributed database. Our techniques are applicable when the
symmetric difference between the master table and a replica
is small, since communication complexity is proportional to
the number of different records; computational complexity is
relatively high since it is cubic in the number of different
records. However, in a distributed data warehouse where tables
are large and the symmetric differences between replicas
are expected to be small, our techniques represent a good
alternative to measure replica consistency. Thus an OLAP
tool can efficiently evaluate replica consistency at a remote
slave site before evaluating a query as follows. If replica
freshness is acceptable, the OLAP tool can continue with local
query evaluation, avoiding a replica refresh computation, sav-
ing time and computer resources. Our experiments compared
the set reconciliation strategy against the Complete Transfer
Approach, which is based on full table scans, simulating
distributed databases. In contrast to the set reconciliation
approach, the Complete Transfer Approach is inefficient for
large tables because both communication and time complexity
are linearly dependent on the size of replicated tables.

There are several research issues for future work. We
need to analyze time and communication complexity in
more depth considering the relational database system
operators used to compute the symmetric difference in
SQL. We would like to develop new database algorithms to
maintain consistency measures up to date, as new records are
inserted. We need to develop a cost model that considers a
non-uniform distributed database with computers running at
different speeds and different network speeds between pairs
of nodes. We plan to explore methods where the user gives
thresholds related to the precision of aggregate functions over
measure attributes, together with the size of the symmetrical
difference between replicas. We would like to explore
how set reconciliation techniques can solve other problems

in distributed data warehouses, beyond measuring consistency.
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