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Abstract
Association rules require models to understand their relationship to statistical properties of the data

set. In this work, we study mathematical relationships between association rules and two fundamental
techniques: clustering and correlation. Each cluster represents an important itemset. We show the
sufficient statistics for clustering and correlation on binary data sets are the linear sum of points and the
quadratic sum of points, respectively. We prove itemset support can be bounded and approximated from
both models. Support bounds and support estimation obey the set downward closure property for fast
bottom-up search for frequent itemsets. Both models can be efficiently computed with sparse matrix
computations. Experiments with real and synthetic data sets evaluate model accuracy and speed. The
clustering model is accurate to estimate support, given a sufficiently large number of clusters and it
is more accurate than correlation, except for sets of two items. Accuracy increases as the number of
clusters grows, but decreases as the minimum support threshold decreases. Once built, the clustering
model represents a faster alternative than the traditional A-priori algorithm and the correlation model
to mine associations. The correlation model is faster to compute than clustering, but it is less accurate.
Time complexity to compute both models is linear on data set size, whereas dimensionality marginally
impacts time when analyzing large transaction data sets.

Keywords: association rules; clustering; correlation; approximation

1 Introduction

Association rules describe frequent patterns found in large binary data sets [26, 16, 8]. Research on as-
sociation rules has become extensive since their introduction in the article [2]. There has been significant
research on developing fast algorithms [3, 33, 16] to discover association rules, generalizing association
rules to use taxonomies [36], constraining [40] and applying them in different domains [9]. However, little
has been done on understanding relationships between them and common statistical and machine learning
techniques. Clustering [11, 27] finds groups of similar points according to some similarity metric, generally
distance. On the other hand, correlation analysis [11, 17] is a basic method to understand relationships be-
tween two numeric variables and it is generally the first step towards building multivariate statistical models.
In this work we show clustering and correlation analysis can be a statistical complement to association rule
mining.

Even though association rules are a well researched topic, most work has focused on developing fast al-
gorithms or proposing variations of association rules (constrained, quantitative, predictive, taxonomy-based
and so on [15]). Studying their relationships to other techniques has received less attention. In this work
we study relationships between association rules and two well-known techniques: clustering and correla-
tion. We study how to bound and approximate association rule metrics based on a binary data clustering
model. The relationship between clustering and association rules is important because clustering, on one
hand, looks for global patterns producing in general a few disjoint subsets of points, whereas association
rules uncover many local patterns referring to overlapping subsets of points. In general, it is hard to compare
different association rules because it is not known if they refer to the same data points. We also study how
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to bound and approximate association rule metrics based on the correlation matrix. The correlation matrix
goes beyond co-occurrence of items showing the presence of an item may imply the absence of another
item, or explaining relationships between two items in a more precise manner. Correlation can help under-
standing if the presence of one item is related to the presence or absence of another item. A pair of highly
correlated items may suggest potential association rules. Correlations can explain why certain rules have
low confidence and can help validating rules with high confidence but low support. In short, our proposal
can be used to explore and understand a binary data set from a statistical perspective to discover association
rules.

The article is organized as follows. Section 2 presents unified definitions on clustering and association
rules. Section 3 explains the relationship of clusters to itemsets and discusses how to exploit binary data
clusters to bound and estimate association metrics. Similarly, Section 4 explains how to bound association
metrics from a correlation matrix. Section 5 presents experiments with real and synthetic data sets, evaluat-
ing approximation accuracy, speed and scalability. Section 6 discusses related work. Section 7 contains the
conclusions of the article.

2 Definitions

This section provides definitions used throughout the article. Definitions on clustering [7, 30, 29] and
multivariate statistics [17] are adapted to association rules [2, 3, 33]. The intuition behind definitions is that
items are used as dimension subscripts.

2.1 Clustering and Correlation

Let n be the number of points in the data set X and d its dimensionality. Let X = {x1, x2, . . . , xn}, where
each dimension Xl is a binary dimension (or item). That is, xi is a binary vector. The data set X is formally
a d× n binary matrix, where Xli = 1 if item l is present in point i, and 0 otherwise.

In our work we use the K-means algorithm as the basis to build clusters, where k is a user-specified
number of clusters. The K-means clustering algorithm partitions the data set into k disjoint groups such
that points in the same group are similar to each other and points across groups are different from each
other according to Euclidean distance. The output is a model represented by matrices W,C,R, containing
the weights, the centroids (means) and the radiuses (variances) respectively for each cluster and a partition
of X into k subsets. Matrices C and R are d × k and W is a k × 1 matrix. To refer to a column of
C or R we use the j subscript (i.e. Cj, Rj). Therefore, Cj refers to the jth cluster centroid, Rj refers
to the jth diagonal covariance matrix and Wj is the fraction that cluster j represents from X . Matrix Rj

can be informally understood as a vector containing squared radiuses per dimension. We use the following
convention for subscripts. For transactions we use i; i ∈ {1, 2, . . . , n}. Note that i alone is a subscript to
index transactions, whereas ij refers to item j defined below. For cluster number we use j; j ∈ {1, 2, . . . , k}
and to refer to one dimension we use l: l ∈ {1, 2, . . . , d}. Let Y1, Y2, . . . , Yk be the k disjoint subsets of X
induced by clusters s.t. Yj ∩ Yg = ∅ for j 6= g. The diag[] notation will be used as a generic operator to
obtain a diagonal matrix from a vector, or to convert the diagonal of a matrix into a vector. For matrix/vector
transposition we use the T superscript; for instance CT

j is the jth centroid as a row. Subscripts and matrices
are summarized in Figure 1.

For correlation analysis the output is a d× d matrix ρ containing entries between -1 and 1. The number
ρij is also called the Pearson coefficient of items i and j. Matrix ρ will be computed from two summary
matrices L and Q we will introduce later.
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Size value
k # of clusters
d dimensionality
n data set size

Matrix size contents
C d× k centroids
R d× k variances
W k × 1 weights

Figure 1: Matrices names and subscripts.

Ti Items
1 1 3
2 2 3 4
3 1 2
4 2
5 2 4

xi 1 2 3 4
1 1 0 1 0
2 0 1 1 1
3 1 1 0 0
4 0 1 0 0
5 0 1 0 1

Figure 2: Input transactions d = 4, n = 5.

2.2 Association Rules

The following paragraphs provide definitions for association rules. We must introduce some notation for
transactions given the sparse nature of transactions, understood as binary vectors. Let Ti = {l|Xli = 1, l ∈
{1, 2, . . . , d}, i ∈ {1, 2, . . . , n}}. That is, Ti is the set of non-zero coordinates of xi; Ti can be understood
as a transaction or an itemset to be defined below. Since transactions represent sparse vectors we have
|Ti| << d.

Let I be a set of d integers identifying d items, I = {1, 2, . . . , d}. Each dimension of S corresponds to
one item out of d items and vice-versa. The presence or absence of an item in a transaction is indicated by
the presence or absence of its identifier. A set of items is called an itemset. An itemset A containing p items
is called a p-itemset and we will refer to it as A = {i1, i2, . . . , ip}, where il ∈ I . We will use the vectorial
notation (Cj)il with the following interpretation: ”access the mean of dimension il in cluster j”. In other
words, the item itself is used as a dimension index to access the means from a certain cluster; an equivalent
notation based on matrices isCilj , but it is harder to understand. The (Cj)il notation will be used throughout
the article whenever items refer to clusters. The intuition is that only the items given in an association are
relevant to access the dimensions of some cluster.

Going back to common notation for association rules, we add the following definitions. An itemset
has a measure of statistical significance called support. For an itemset A ⊆ I , s(X) = |{Ti|A ⊆ Ti}|/n
for i = 1 . . . n (i.e. support is the fraction of transactions in X containing A). An association rule is an
implication of the form A ⇒ B, where A,B ⊂ I , and A ∩ B = ∅, where A and B are itemsets. The
A itemset is called the antecedent and B is the consequent of the rule. The rule A ⇒ B has a measure
of strength called confidence defined as c(A ⇒ B) = s(A ∪ B)/s(A). The problem of mining frequent
itemsets is defined as finding all itemsets that have support above a minimum support threshold τ . The
problem of mining association rules is to generate all rules that have support and confidence greater or equal
than τ and ψ thresholds, respectively. Searching for all frequent itemsets is considered the most challenging
problem [3, 15].

Example 2.1 Figure 2 shows a small input database X , where I = {1, 2, 3, 4}, d = 4, n = 5. Figure 1
provides a summary of the k = 2 clusters. Cluster 1 contains transactions 2 and 5 and cluster 2 contains
transactions 1,3 and 4. In Figure 3 we show the output from a clustering run having as input X and k = 2.
Figure 1 provides a nice summary of clusters that is easier to understand than matrices C and R, which
have floating point numbers. Items appear grouped in ranges according to their Cj value relative to the
cluster where they appear. Those Cj entries are the supports of each item with respect to each cluster. Items
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W =

[

0.4
0.6

]

C =











0.00 0.66
1.00 0.66
0.50 0.33
1.00 0.00











R =











0.00 0.22
0.00 0.22
0.25 0.22
0.00 0.00











Figure 3: Clustering model; d = 4, k = 2.

Table 1: Clustering model summary and itemsets.

Cj range for items Itemsets
j Wj 0.8-1 0.6-0.8 0.4-0.6 0.2-0.4 0-0.2 at λ = 0.4

1 0.4 2 4 3 1 2 3 4
2 0.6 1 2 3 4 1 2

in Cj ranges closer to 1 (left side) are more likely to appear together. That is, they suggest frequent itemsets
(associations). The cluster weight Wj gives an idea about association support on the entire data set. The
cluster summary is not telling us the exact support values, but it is evident they can be approximated from
W and C .

It is noteworthy clusters help us suggesting potential associations regardless of any pre-specified mini-
mum support threshold. Certain item combinations may appear only in one cluster. Other item combinations
may appear in several clusters. Given the similarity of cluster item combinations and associations, can we
estimate association rule metrics based on a model instead of the data set X? This is studied in Section 3
for clustering and Section 4 for correlation.

3 Clustering

We consider clustering and correlation as the fundamental techniques to build models for association rules.
This section explains how to efficiently cluster binary data sets and how binary clusters can be exploited to
bound and approximate association metrics.

3.1 Fast Clustering of Binary Data Sets

In our work we use K-means [7, 32, 25, 17] as the base clustering algorithm. There are several important
reasons behind choosing K-means. First and foremost, K-means produces good solutions under a variety of
challenging conditions [30], like constant values, zero variance and skewed probabilistic distributions. On
the other hand, K-means is one of the most widely used clustering algorithms in machine learning [25] and
statistics [17]. Insights on K-means can be applied with similar clustering algorithms inspired by or based
on K-means. K-means is deeply related to the Expectation-Maximization (EM) [10, 17, 32] algorithm
for mixtures of Gaussians [32, 31]. Therefore, K-means opens up the possibility of exploiting maximum
likelihood estimation methods with binary data sets. K-means has a simple interpretation of clusters as
multidimensional spheres, which enables visualization of clusters on two or three dimensions. Even though
K-means is a “flat” algorithm in the sense that it finds the best solution given a number of clusters, it is
feasible to build hierarchical algorithms using K-means as a building block. Since the number of clusters
is set by the user this enables the exploration of alternative solutions. From a scalability point of view, it is
possible to derive fast incremental versions [27, 30] which can get a good solution in a few passes over the
data set.
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In this work a fast K-means algorithm is used to cluster high dimensional binary data sets. This algorithm
is an improvement of the incremental K-means algorithm for binary streams [27]. In this section we present
the main features that make it suitable to cluster binary data sets and introduce useful theoretical results. K-
means is significantly accelerated with sparse distance computation, sparse matrix addition and simplified
sufficient statistics.

3.2 Sufficient Statistics

As mentioned in Section 2, K-means receives k, the number of clusters, as input. Our K-means variant
[27], like other scalable clustering algorithms [7, 46], uses sufficient statistics, which are summaries of
Y1, Y2, . . . , Yk represented by matrices L,Q,N that contain k sums of points, k sums of squared points
and number of points per cluster respectively. In the following discussion L is a d × k matrix, such that
each column Lj is computed as Lj =

∑

xi∈Yj
xi. Each column of Q is a diagonal matrix Qj computed as

Qj =
∑

xi∈Yj
xix

T
i . Matrix N is k × 1 defined as Nj = |Yj|. The update formulas for W,C,R based on

sufficient statistics are:

Wj =
Nj

∑k
g=1Ng

(1)

Cj =
1

Nj

Lj (2)

Rj =
1

Nj

diag[Qj ] −
1

N2
j

LjL
T
j (3)

However, sufficient statistics can be simplified for clustering transactions. The following result states
that the sufficient statistics for the problem of clustering binary vectors are simpler than the sufficient statis-
tics required for clustering numeric vectors.

Lemma 3.1 Let Y1, Y2, . . . , Yk be k subsets representing a partition of X . Then the sufficient statistics
required for computing C,R,W are only N and L because L = Q.

Proof. Based on the fact that xi is a binary vector:
∑

xi =
∑

xix
T
i . Therefore, L = Q. 2

The practical application of this result is that the equations used to update C,R,W are only the equations
for W and C . Matrix Rj can be directly computed from Cj .

Lemma 3.2 Rj = diag[Cj ] − CjC
T
j .

Lemma 3.2 leads to the following simple criteria that can be used to assess cluster quality.

Theorem 3.1 (1) Rlj has a minimum if and only if Clj = 0 or Clj = 1. (2) Rlj has a maximum if and only
if Clj = 0.5.

Proof. By Lemma 3.2 Rj = diag[Cj ] − CjC
T
j . Then each entry Rlj = Clj − C2

lj . Let x = Clj and
q(x) = Rlj = Clj − C2

lj . To prove (1) we proceed as follows. Since q(x) is a sum of squared distances it
can never be negative. Then q(x) = 0 is its minimum value. Then x− x2 = 0. This equality can only hold
when x = 1 or x = 0.

To prove the only if part of (2) we need to resort to some simple calculus computations. Then dq(x)

dxl

=

1 − 2x = 0 to find its maximum or its minimum. The solution to this equation is x∗ = 0.5. Differentiating

again d2
q(x∗)

dxl

= −2. This tells us that the maximum of q(x) happens when x = 0.5. These steps can be
reversed to prove the if part. This result holds for all d dimensions. 2
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The practical application of Theorem 3.1 is that the closer Cj entries are to either 0 or 1 the better, with
the ideal case when Clj = 0 or Clj = 1. On the other hand, the closer Cj entries are to 0.5 the worse. When
Clj = 0.5 Rlj reaches its maximum value: Rlj = 0.25.

Example 3.1 Going back to the example from Table 1 and Figure 2, observe cluster 1 suggests {2, 4} is
very likely to be a valid association since it is in the “top” Cj range. Cluster 1 also suggests {2, 3, 4} as
a potential association, but since 3 is in the middle 0.4-0.6 range this 3-itemset is much less unlikely to
be valid. According to Theorem 3.1 cluster 1 is optimally clustered on dimensions 1,2,4, cluster 2 only on
dimension 4 and cluster 1 on dimension 3 makes R31 reach the maximum. Cluster 1 is accurate to estimate
metrics for associations involving items 1,2,4.

The “itemsets” column on Table 1 shows the itemsets represented by each cluster at a minimum centroid
threshold λ = 0.4. The λ parameter is used to eliminate itemsets that are likely to be infrequent and will be
explained in detail later. These two itemsets represent two maximal itemsets from which almost all frequent
itemsets at minimum support τ = 0.2 can be derived: only itemset {1, 3} cannot be derived from these two
itemsets. If we lowered λ = 0.2 then we would get all itemsets in D, but we would also include itemsets that
are not frequent. This is a tradeoff we will study in the experimental section.

3.3 Bounds on Support

The following theoretical results are important to use the model to obtain bounds on association support.
The support of an itemset in one cluster (s(A, Yj)) must be less or equal than the minimum support of any
item, as shown in [33].

Lemma 3.3 Let Yj be one cluster from X . Let A = {i1, i2, . . . , ip} be some p-itemset. Let Cj be the mean
of transactions that belong to cluster j. Then s(A, Yj) ≤ min((Cj)i1 , (Cj)i2 , . . . , (Cj)ip).

Proof. The proof is by induction on p = |A|. First, it is verified for p = 1. The quantity s(A) is by definition
the fraction of transactions that contain A. Since A contains only one item, say i, then i appears inNj×s(A)
transactions. Therefore, (Cj)i = s(A). Hence the proposition holds for p = 1. Now assume the proposition
holds for i = p − 1. Let A = {i1, i2, . . . , ip} be a p-itemset and let B ⊂ A s.t. B = {i1, . . . , ip−1}. By
induction hypothesis s(B) ≤ min((Cj)i1 , (Cj)i2 , . . . , (Cj)ip−1

). Now the itemset B ∪ {ip} appears only
in transactions where both B and {ip} appear. Therefore, s(A) ≤ s(B) ≤ min((Cj)i1 , . . . , (Cj)ip−1

) and
s(A) ≤ s({ip}) = (Cj)ip , and the lemma follows. 2

The following theorem links clustering results with associations. Let the upper bound of s(A) be defined
as follows:

us(A) =
k

∑

j=1

Wjmin((Cj)i1 , (Cj)i2 , . . . , (Cj)ip). (4)

Theorem 3.2 Let X be a set of n transactions. Let C,W be the matrices containing the means and weights
respectively on some clustering of X into k subsets of transactions Y1, Y2, . . . , Yk. Let A be any p-itemset
given by A = {i1, i2, . . . , ip}. Then s(A) ≤ us(A).

Proof. Let s(A, Yj) be the support of A referred to Yj . Let count(A, Yj) be the number of times A appears
in Yj . By Lemma 3.3 s(A, Yj) ≤ min((Cj)i1 , (Cj)i2 , . . . , (Cj)ip), for j = 1 . . . k. Both sides of each in-
equality can be multiplied byWj = |Yj|/n ≥ 0. Then s(A,Xj)|Yj |/n ≤Wjmin((Cj)i1 , (Cj)i2 , . . . , (Cj)ip).
Now the k inequalities for each j can be added side by side:
(1/n)

∑k
j=1 s(A, Yj)|Yj | ≤

∑k
j=1Wjmin((Cj)i1 , (Cj)i2 , . . . , (Cj)ip). Now simplifying, s(A, Yj)|Yj| =

count(A, Yj). But Yi∩Yj = ∅ for i 6= j and
⋃k

j=1 Yj = X . Therefore,
∑k

j=1 count(A, Yj) = count(A,X).
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Substituting the formula on the left hand side of the last inequality with this latter expression proves the the-
orem. 2

Theorem 3.2 guarantees that C and W are enough to know all potential frequent itemsets thereby avoid-
ing making several passes overX . However, this theorem does not guarantee that only true frequent itemsets
are above the minimum support threshold. There may be itemsets whose support is lower than that indicated
by the model. The following result is based on Theorem 3.2 and is used to prune the lattice search space if
associations are being mined based on the clustering model using us(). Now we introduce a lower bound
for the support of an association.

ls(A) =
k

∑

j=1

Wjmax(0, 1 +
p

∑

l=1

((Cj)il − 1)), (5)

where max() is used to get a non-negative lower bound per cluster.

Theorem 3.3 LetX,C,W, {Y1, . . . , Yk} be as stated in Theorem 3.2. LetA be a p-itemsetA = {i1, i2, . . . , ip}.
Then ls(A) ≤ s(A).

Proof. The proof is by induction on itemset size I . For I = 1 assumeA = {i}. Then ls(A) =
∑k

j=1Wj(Cj)i
= s({i}) (because (Cj)i provides exact support for {i} in Yj) and the equality holds. Without loss of general-
ity assume B ⊂ A, |B| = p−1 and B = {i1, . . . , ip−1}. By the induction hypothesis suppose the inequality
holds for I = p− 1 for B: ls(B) ≤ s(B). Let fa be the fraction of transactions where ip does not appear:
−fa =

∑k
j=1Wj[(Cj)ip − 1] (used to get ls(A)). Let fb be the fraction of transactions where ip does not

appear and B appears. It follows that fb ≤ fa. Then ls(A) = ls(B)−fa ≤ s(B)−fa ≤ s(B)−fb = s(A)
and the result follows. 2

Since us() and ls() are guaranteed bounds on the exact support of any association their average is a good
estimator:

as(A) =
ls(A) + us(A)

2
. (6)

3.4 Downward Closure for Support and Itemset Search Algorithm

The following result proves our metrics preserve the downward closure property (e.g. a subset of a frequent
itemset is frequent).

Theorem 3.4 Let A be a p-itemset and let B ⊂ A, B = {h1, . . . , hq}, q < p. Then:
(1) ls(A) ≤ ls(B),
(2) us(A) ≤ us(B),
(3) as(A) ≤ as(B).

Proof.
(1) The sum on the left hand side (ls(A)) contains all terms on the right hand side (ls(B)) and each extra
term ((Cj)il − 1) ≤ 0.
(2) Let C = A − B = {hq+1, . . . , hp}. Then A = B ∪ C . Then using the fact that min() is distributive:
us(A) = us(B∪C) =

∑k
j=1Wjmin((Cj)h1

, . . . , (Cj)hq
, (Cj)hq+1

, . . . , (Cj)hp
) ≤

∑k
j=1Wjmin((Cj)h1

, . . . , (Cj)hq
) =

us(B).
(3): as(A) ≤ as(B) follows from (1) and (2). 2
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Theorem 3.4 guarantees a complete set of associations with respect to any of the metrics using the
standard bottom-up search algorithm. It is interesting this result extends bottom-up search algorithms to
work with a clustering model instead of the data set.

As explained before upper support (us()) is safe in the sense that it produces a superset of all frequent
itemsets, but it may introduce some infrequent (false positive) itemsets. In general, a subset of Cj entries
close to zero indicate itemsets that are unlikely to be frequent. We introduce a λ parameter for the algorithm
that helps filtering out such infrequent itemsets: clusters whose upper support for one specific itemset fall
below τ do not contribute to the support estimation used for pruning. Therefore, we get an adjusted upper
support for pruning below τ . At one extreme λ = 0 does not eliminate any itemset: all frequent itemsets
are discovered, but there are additional itemsets whose support is actually below the τ threshold. At the
other extreme, λ = 1 allows only dimensions with zero variance in each cluster to participate in itemset
generation; in this case all itemsets that are generated are frequent (there are zero false positives), but there
may be many itemsets whose support was actually above the τ threshold (there are false negatives). In the
experimental section we study the whole spectrum for λ settings and justify a default value, which tends to
be close to τ .

3.5 Bounds on Confidence

Let A and B be two itemsets s.t. A ∩B = ∅. Let the lower confidence of a rule be defined as

lc(A⇒ B) =
ls(A ∪B)

us(A)
(7)

Let the upper confidence of a rule be defined as

uc(A⇒ B) = min(
us(A ∪B)

ls(A)
, 1) (8)

Note the symmetry between Equations 7 and 8. These equations lead to the following results that
estimate tight bounds for association rule confidence based on a clustering model.

Theorem 3.5 Let X be a set of transactions. Let C,W be a clustering model of X with k clusters. Let A
and B be two itemsets s.t. A ∩B = ∅. Then lc(A⇒ B) ≤ c(A⇒ B) ≤ uc(A⇒ B).

Proof. The proof follows from the definition of association rule confidence, Equations 7 and 8, Theorem
3.2 and Theorem 3.3. 2

3.6 Varying the Number of Clusters k

The number of clusters k controls model accuracy to estimate support bounds. Consider the relative error
of as() support for a set of associations A = {A1, A2, . . . , AN} based on the clustering model parameters
W,C . Let relative error be defined as r(A,W,C) = 1

N

∑N
I=1 |as(AI) − s(AI)|/|s(AI)|. At one extreme

k = 1 reduces the entire data set to one cluster. Such model is equivalent to computing only the global
mean. In general, r(A,W,C) will slowly grow as p (itemset length) increases. At the other extreme, k = n,
produces a complex model, where each input point becomes one cluster (without loss of generality points
in the data set are assumed to be unique). In such case the model can provide exact support estimation for
any p-itemsets since each cluster produces equal bounds. Therefore, r(A,W,C) = 0. However, a model
where k = n is impractical and produces no summarization of the data set. Therefore, the ideal value for k
will be somewhere between 1 and n, but closer to k = 1 to produce more concise models. If k is too high
it will produce empty clusters, but K-means will generally find good clusters [7]. As the minimum support
threshold τ is lowered many more longer p-itemsets will be found, since the number of associations grows
in a combinatorial manner. However, in general, there will be a point at which further increasing k will
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produce marginal or no improvement since model accuracy is asymptotic. There exist several clustering
validity indices to determine an optimal k for numeric data [24], but we do not use them since a sufficiently
high k will produce a small support estimation error. Studying validity indices is an aspect for future work.

4 Correlation

In this section we analyze transactions with correlation analysis, which is an alternative method available
from statistics to study a data set from a bi-variate perspective. Even though correlation is not strictly a
model by itself we refer to both clustering and correlation as models. In fact, dimensionality reduction
models like principal component analysis (PCA) [17] or maximum likelihood factor analysis [32, 17] are
models derived from the correlation matrix.

4.1 Sufficient Statistics

We refer to the d dimensions as X1, . . . , Xd (not to be confused with the n points xi, where x is in lower
case). The following definitions basically generalize the definitions for clustering considering all item pairs.
Let L be the linear sum of points, in the sense that each point is taken at power 1: L =

∑

i xi. L is a d× 1
matrix. In matrix (column-vector) form L is as follows:

L =













∑

X1
∑

X2
...

∑

Xd













Let Q be the quadratic sum of points, in the sense that each point is squared with a cross-product. Q is
a d× d matrix.

Q = XXT =
n

∑

i=1

xix
T
i . (9)

Matrix Q has sums of squares in the diagonal and sums of cross-products off the diagonal:

Q =













∑

X2
1

∑

X1X2 . . .
∑

X1Xd
∑

X2X1
∑

X2
2 . . .

∑

X2Xd

...
...

∑

XdX1
∑

XdX2 . . .
∑

X2
d













The correlation matrix ρ can be derived from matrices L and Q substituting each corresponding sum by
the appropriate entries from L and Q: ρab = (nQab − LaLb)/(

√

nQaa − L2
a

√

nQbb − L2
b).

Each correlation value ρab is also called the Pearson correlation coeficient [42]. The correlation matrix
has a straightforward interpretation. If ρab is close to 1 we say Xa and Xb have a strong positive correlation,
meaning that if item a appears then item b also appears in the transaction. If ρab is close to -1 we say Xa

and Xb have a strong negative correlation, meaning that if item a appears then item b does not appear in the
same transaction. Finally, if ρab is close to 0 items a and b are considered independent.

The following result links sufficient statistics and correlation, for items in a similar way to clustering
binary data.

Lemma 4.1 Let X represent a binary data set on d dimensions. Then the sufficient statistics to compute the
correlation ρab between any two dimensions a, b is only Q.
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Figure 4: Sufficient statistics for correlation.

Proof. The proof is similar to Lemma 3.1 based on the fact that xi is a binary vector. Then La = Qaa or
equivalently L = diag[Q]. 2

In practical terms, this means that whatever information we can infer from ρ we can infer it from Q.
Then we can get the simpler equation:

ρab =
nQab −QaaQbb

√

nQaa −Q2
aa

√

nQbb −Q2
bb

(10)

This represents a duality: We proved that for clustering since all needed information is in L then Q can
be ignored. But for correlation analysis, since L does not provide additional information about X compared
to Q then L becomes redundant. Since Q is symmetrical we can compute only the lower or upper triangular
submatrix; we will consider the lower triangular matrix, where b ≤ a for an entry Qab. Clearly, Q can give
us exact support for 1-itemsets with its diagonal and for 2-itemsets with entries off the diagonal.

We have shown we can go from Q to ρ. But if we only have ρ we cannot obtain Q because ρ has 1s
on the diagonal. However, if we have both L and ρ then we can easily go back to Q using the equation:
Qab = 1

n
(ρab

√

(nLa − L2
a)(nLb − L2

b) + LaLb).
This equation means Q provides more information about X than ρ. Therefore, we concentrate on

efficiently computing Q and using Q to derive bounds. That is, Q represents our fundamental correlation
model.

Since Q may be a large matrix for high d Q can be summarized by binning correlations into appropriate
ranges or using PCA or factor analysis techniques.

Example 4.1 In Figure 4 we show the sufficient statistics Q and correlation matrix ρ for our data set from
Figure 2. We can see from Q that there are several 2-itemsets with frequency 1 (s(A) = 0.2). However,
we can see their corresponding correlation is different. Conversely, a similar correlation figure does not
imply the corresponding support is similar. Thus the correlation matrix provides interesting information in
addition to frequent itemsets.

Sparse Computation of Q

For high d we can update Q in a sparse manner, similarly to efficiently updating N,L for clustering. That
is, we only increment 1 for every item pair in a transaction. For small transactions the time to incrementally
update Qwill be slightly higher than the time to read the transaction because disk I/O is slower than memory
access and Q can be maintained in memory. Therefore, time complexity is O(t2n) to compute Q, where t
is the average transaction size (number of items).

4.2 Bounds on Support

Bounds on support are derived from Q, and not from ρ. Let A be a p-itemset. We define an upper bound on
support as

us(A) =
1

n
min(Qab) (11)
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for every pair {ia, ib} ⊆ A. For 1-itemsets and 2-itemsets us(A) = s(A). This can be done in time
O(p2) for one association A. We define a lower bound on support as

ls(A) = max(0,−1 +
1

n
[min(Qab) + max(Qcc)])

for every pair, {ia, ib} ⊆ A s.t. a 6= b and for ic ∈ A. These definitions lead to the following results:

Lemma 4.2 ls(A) ≤ s(A) ≤ us(A)

Proof. s(A) ≤ us(A) follows from the downward closure of an itemset. The lower bound works as follows.
The first term (zero) is used to avoid negative bounds. We can rewrite the second parameter of max() as
min(Qab)/n − min(n−Qcc)/n = us(A) − min(n −Qcc)/n. Therefore, from us(A) we are subtracting
the minimum fraction of transactions that do not contain A. 2

An estimation of support can be defined in the same manner as clustering, with a bounds average as:
as(A) = (ls(A) + us(A))/2. Alternatively, us(A) can be used as an estimation for support since it is a
tight bound. The bounds for rule confidence can be derived in an analogous manner to clustering. It is
straightforward to prove downward closure: if B ⊂ A for two itemsets then ls(B) ≥ ls(A) and us(B) ≥
us(A).

4.3 Time and Space Complexity

The clustering model matricesW,C take spaceO(dk) and the correlation matricesQ takeO(d2). Therefore,
the clustering model matrices take linear space in d and the correlation matrix takes quadratic space in d.
Notice both models do not depend on n and therefore they can substitute the data set X . If k < d the the
clustering model takes less space than correlation. Clustering is computed in time O(tkn+ dk) = O(tkn)
and correlation in time O(t2n) for large n and average transaction size t (average number of items per Ti).
Since in general k > t and K-means makes several passes over X then correlation is faster than clustering.

5 Experimental Evaluation

This section includes experimental evaluation. The experiments are divided into two major sections: (1)
measuring model accuracy to estimate support from statistical models; (2) evaluating time performance and
scalability.

All experiments were performed on a computer running at 3 GHz with 2 GB of memory. This machine
had 160 GB on disk. Our algorithms were programmed in the C++ language. The data sets were stored
as text files and the models were stored on binary files after their computation. Models were loaded into
main memory for processing. Each experiment was repeated five times and average performance figures are
reported. In general, processing times are reported in seconds.

5.1 Data Sets

We conducted experimental evaluation with real and synthetic data sets. The real data sets were obtained
from the UCI Machine Learning Repository [4] and are widely used in the research literature on association
rule mining. Synthetic data sets were created with the well-known IBM transaction data generator [3]. All
data sets were converted to transaction format (itemset representation) for efficient processing. Data sets are
summarized in Table 2.

As mentioned above, synthetic data sets with high dimensionality were created with the IBM transaction
data generator [3]. This generator has seven parameters (indicating our notation in parenthesis): number of
transactions D (n), number of items (d), number of patterns P (frequent itemsets), average transaction length
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Table 2: Summary of data sets.
Data set d n Contents
Chess 75 3196 Chess moves to win/lose game
Mushroom 127 8124 Edible/poisonous mushrooms
Votes 17 435 Voting data set
T10I4D1M 100 1000k Synthetic transaction data set

Table 3: Real data sets: Accuracy varying k and τ (relative support error) at λ = 0.2.
Data set tau k = 10 k = 20 k = 40 k = 80

Chess 0.8 0.02 0.02 0.01 0.00
0.2 0.12 0.06 0.05 0.03

Mushroom 0.7 0.01 0.01 0.00 0.00
0.2 0.27 0.10 0.02 0.01

Votes 0.5 0.01 0.00 0.00 0.00
0.1 0.36 0.23 0.10 0.05

T, average pattern length I, average correlation corr and average rule confidence conf . Test files are named
after the parameters with which they were created. The standard way [3, 15] is to use T, I and D to label files
since those are the three most common parameters to change and the ones which play a more important role
in performance (e.g. T10I4D100k). The transaction files we used had defaults D=1M (n=1000k), d = 100,
T=10, I=4, P=100, corr = 0.75 and conf = 0.75. That is, we created a large synthetic data set with one
million binary points.

5.2 Accuracy

Parameters Setting and Experiments Overview

The clustering model has two parameters: k, the number of clusters and λ, the cluster centroid threshold (to
filter out itemsets unlikely to be frequent). Each data set has a different optimal setting for k. Therefore,
there is no default value for k. On the other hand, λ = 0.2; we justify this setting showing its spectrum from
0 to 1. The correlation model has no parameters.

The fundamental metric to evaluate accuracy was relative error, which for an itemset A it was computed
as |as(A) − s(A)|/|s(A)|, where average support as(A) is obtained from the clustering or the correlation
model.

Since rule confidence is an equation on support we concentrate on analyzing error on support estimation.
The problem of choosing the best k is called model selection [25, 17]. A low k produces a simple, but
probably inaccurate model, a high k will produce a more complex, but accurate model. We made a few runs
to determine a good k for the real data sets, considering that when k is too high some clusters tend to have
almost zero points. Therefore, we set k high enough so that relative error reached less than 10% and we did
not get zero-weight clusters. In general, there is a slight variation in the cluster model quality from run to
run. We selected the run that produced best clustering results out of five runs in order to estimate support
bounds. This is reasonable since in practice several trial and error runs are made before selecting the best
model.
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Table 4: Synthetic data set: Accuracy varying k and τ (relative support error) at λ = 0.2.
τ k =50 k =100 k =200 k =400 k =800

0.20 0.01 0.00 0.00 0.00 0.00
0.15 0.04 0.01 0.01 0.01 0.01
0.10 0.07 0.04 0.04 0.03 0.02
0.05 0.16 0.11 0.09 0.10 0.05
0.02 0.42 0.28 0.20 0.13 0.08

Varying the number of clusters (k)

Table 3 analyzes relative error as τ and k vary for real data sets with λ = 0.2. We picked two τ thresholds, a
high value that produced a small number of frequent itemsets and a low one which produced a large number
of frequent itemsets. As k increases relative error always decreases or remains constant. When k = 80 the
relative error becomes zero for the high τ threshold and it is always ≤ 5% for the lower τ threshold. In
short, the clustering model is fairly accurate at k = 80. Interestingly enough, k = 80 produces excellent
results from the three data sets, despite the fact that they have different d and statistical characteristics. In
general, relative error decreases in a linear fashion with respect to k. Later we will analyze how relative
error decreases as τ gradually decreases. From these results we conclude k, the number of clusters, is a
model parameter that can control support estimation accuracy.

Table 4 presents an analysis of relative error for the synthetic transaction data set. In this case we
vary both k and τ . Increasing k always decreases relative error monotonically, whereas decreasing τ always
increases relative error, highlighting the combinatorial growth on the number of itemsets. In this case relative
error quickly reaches zero for τ = 0.20; models of increasing number of clusters preserve this remarkable
accuracy. When τ = 0.15 relative error goes down to 0.01 and remains the same through k = 800, this also
represents a significantly high accuracy. For lower τ thresholds there is a steady decrease of relative error
as k increases. The decrease is more significant for the lowest τ threshold. Therefore, these results confirm
k is the main parameter to control accuracy of support estimation.

Varying the minimum support threshold τ

Table 5 provides a detailed analysis of relative error as τ decreases keeping k fixed. We set k = 80 for
the real data sets and k = 400 for the synthetic transaction data set. The table includes p, the length of
the longest frequent itemset and the total number of frequent itemsets discovered. For the Chess data set it
was not possible to generate frequent itemsets longer than 5 because their number reached over 1 million.
Therefore, we decided to set the length threshold at p = 5, which still produced an extremely large number
of frequent itemsets. For all data sets, the number of itemsets grows rapidly as τ decreases. On the other
hand, relative error grows relatively slow for real data sets ands it grows fast for the synthetic data set. The
growth of relative error is more related to the growth on the number of itemsets than their length.

Varying the centroid threshold (λ)

Table 6 shows accuracy behavior as λ varies. Recall that the main purpose of λ is eliminating spurious (false
positive) itemsets when generating itemsets from the model. First of all, relative error always decreases as
λ increases. For two data sets the effect of λ is outstanding. For the synthetic data set the decrease is
remarkable bringing down relative error from more than 90% at λ = 0 to 8% at λ = 0.2. For the Votes data
set the decrease is also significant going from 14% to 8% at the lowest λ levels. For the Chess and Mushroom
data sets relative error decreases much slower, but it was very low to start with. Second, the percentage of
itemsets that are indeed frequent after verifying their support shows a steady increase as λ increases. When λ
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Table 5: Real data sets: Accuracy and number of itemsets varying τ (relative support error) with k =
80, λ = 0.2.

Data set τ error p no. of itemsets
Chess 0.6 0.01 5 34672

0.4 0.02 5 173001
0.2 0.03 5 420878

Mushroom 0.6 0.00 5 51
0.4 0.00 7 565
0.2 0.01 15 45425

Votes 0.4 0.00 3 26
0.2 0.02 7 302
0.1 0.07 8 1014

T10I4D1M 0.20 0.00 2 21
0.10 0.03 6 184
0.05 0.09 8 842
0.02 0.13 9 2858
0.01 0.28 10 10566

Table 6: Accuracy varying λ.
Data set λ error no. of frequent discovered

itemsets
Chess 0.0 0.03 173309 58% 100%
k=80 0.2 0.03 172790 63% 99%
τ=0.4 0.4 0.03 169558 76% 98%

0.6 0.02 123687 97% 71%
0.8 0.02 41817 100% 24%

Mushroom 0.0 0.02 45439 86% 100%
k=80 0.2 0.02 45423 88% 99%
τ=0.2 0.4 0.00 43454 97% 96%

0.6 0.00 41803 100% 92%
0.8 0.00 41421 100% 91%

Votes 0.0 0.14 1028 50% 100%
k=80 0.2 0.08 1013 76% 99%
τ=0.1 0.4 0.05 891 90% 87%

0.6 0.04 596 98% 58%
0.8 0.02 338 100% 33%

T10I4D1M 0.0 0.90 1004 5% 100%
τ=0.05 0.2 0.08 835 96% 87%
k=400 0.4 0.08 769 98% 77%

0.6 0.07 696 98% 69%
0.8 0.06 559 100% 56%
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Table 7: Comparing accuracy: clustering versus correlation.
Data set Model p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 avg
Chess clustering 0.00 0.01 0.02 0.02 0.03 0.04 0.03
τ=0.4 correlation 0.00 0.00 0.02 0.11 0.25 0.38 0.33
Mushroom clustering 0.00 0.00 0.01 0.03 0.03 0.03 0.03
τ=0.2 correlation 0.00 0.00 0.15 0.24 0.42 0.54 0.44
Votes clustering 0.00 0.02 0.04 0.06 0.11 0.21 0.06
τ=0.1 correlation 0.00 0.00 0.31 0.39 0.69 0.88 0.65
T10I4D1M clustering 0.00 0.05 0.09 0.11 0.13 0.15 0.09
τ=0.05 correlation 0.00 0.00 0.30 0.69 0.88 0.96 0.76

reaches 1 100% of itemsets are frequent, highlighting good accuracy for items that cluster well. Third, since
λ prunes out some frequent itemsets we also analyze what % of itemsets are retained as λ increases. The
bottom value λ = 0 represents an unrestricted mining from the model where all itemsets are discovered (at
the price of some false positives). The maximum λ value represents a restricted mining process looking only
at items where the model behaves almost perfectly. We can see λ = 0.8 eliminates a significant fraction of
itemsets for all data sets, except Mushroom. On the other hand, λ = 0 maintains 100% of frequent itemsets,
but there are additional itemsets whose support is actually below the τ threshold. Clearly, there is a tradeoff
between the % of frequent itemsets and the % of discovered itemsets. The best λ thresholds are 0.2 and 0.4.
λ = 0.2 is a threshold that maintains about 90% of discovered itemsets and at the same time eliminates a
significant fraction of spurious itemsets. Therefore, λ = 0.2 is a good default value.

Comparing Clustering and Correlation Accuracy

Table 7 compares clustering and correlation for itemsets of increasing length on all data sets. The table
also includes the relative error average. These accuracy measurements were done at low τ values to test
the models under stringent conditions. Both models are perfectly accurate for 1-itemsets, as expected.
Clustering provides excellent results for 2-itemsets, slightly behind correlation, which is 100% accurate.
For itemsets of length 3 to 6 clustering is significantly more accurate than correlation, with a relative error
rate about five times better. For itemsets of length 6 correlation approaches 100% relative error for the Votes
and the synthetic data set, and it is around 50% for the two other data sets. Since the number of itemsets
grows in an exponential manner as p increases the relative error average favors clustering. These results
show clustering is a better model than correlation to find frequent itemsets. However, correlation represents
a fast alternative for itemsets up to length 3, where a higher error (around 30% in our case) may be acceptable
to the user.

5.3 Time Performance

Comparing clustering, correlation and A-priori

Figure 5 compares processing time for the models with A-priori on T10I4D1M, which has one million
records by decreasing τ (minimum support threshold). Notice these plots use a logarithmic scale for time:
differences among methods are one order of magnitude or more. For the clustering model we use k = 100 (a
medium accuracy model) and k = 400 (a highly accurate model). The left graph in Figure 5 compares both
models with A-priori to discover frequent itemsets, excluding the time to compute the respective models;
such time measurements do not include the time to build models based on the assumption that a model
is built once (or a few times), but association rules are mined frequently. In this case we only show the
clustering model at k = 400, which is four times slower than k = 100. These times to compute itemsets
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Figure 5: Time comparison with large transaction data sets decreasing τ .

includes the time to compute exact support on a final pass over the data set. As can be seen, the clustering
model is the fastest, followed by correlation, leaving A-priori far behind in the third place. The basic reason
for the speedup is that the clustering model represents a summarized (compressed), yet accurate, version of
the large data set, preserving its statistical properties.

The right graph in Figure 5 includes the overall time to find frequent itemsets, including the time to
build the models. That is, we evaluate time performance under pessimistic conditions. Since the time
to build the clustering model dominates the overall time for the clustering model its plots are practically
constant lines. On the other hand, the trend for the correlation model is practically the same as the trend to
find only frequent itemsets because the time contribution to build the correlation model is marginal. A-priori
is two orders of magnitude faster than the clustering model at high support levels, but it becomes slower at
low support levels. The trend indicates the clustering model will be the winner as the minimum support
threshold decreases. The combinatorial growth of itemsets impacts all methods, but the impact is more
significant for A-priori. We investigated why correlation was so slow at low support levels and it turned that
it generated an extremely large number of itemsets, most of which ended being below the τ threshold. That
is, loose support bounds impacted time performance. From these experiments we conclude that a clustering
model represents an efficient mechanism to discover frequent itemsets, even at low support levels, which are
particularly challenging. There is a high price to build an accurate clustering model, but in general that is
done only once, or a few times. On the other hand, the correlation model becomes inaccurate at low support
levels and such inaccuracy actually makes the process slower since most long itemsets are infrequent.

Time Complexity and Speed to Compute Models

In this section we evaluate scalability and speed with large, high dimensional, data sets to only compute
the models, as shown in Figure 6. The plotted times include the time to store models on disk, but exclude
the time to mine frequent itemsets. We experimentally prove: (1) Time complexity to compute models is
linear on data set size. (2) Sparse vector and matrix computations yield efficient algorithms, whose accuracy
was studied before. (3) Dimensionality has minimal impact on speed, assuming average transaction size T is
small. Transactions are clustered with Incremental K-means [27], introduced on Section 3. The sum of cross
products matrix Q for correlation is efficiently derived with with the sparse matrix computations introduced
in Section 4. Large transaction files were created with the IBM synthetic data generator [3] having defaults
n = 1M, T=10, I=4.

The left plot in Figure 6 shows times to build the clustering and correlation models with a data set
with one million records (T10I4D1M). As can be seen times grow linearly as n increases, highlighting
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Figure 6: Time to compute statistical models for large data sets.

the algorithms efficiency. Notice correlation is significantly faster than clustering: its elapsed times are two
orders of magnitude smaller. On the other hand, we can observe d has minimal impact on performance when
it is increased 10-fold on both models; sparse matrix computations take advantage of the small transaction
size, which remains constant on both data sets.

The right plot in Figure 6 shows time to get clustering models increasing k on T10I4D100k. Recall k
is the main parameter to control model complexity and support estimation accuracy. In a similar manner to
our previous analysis, times are plotted for two high dimensionalities, d = 100 and d = 1, 000. We can see
time complexity is linear on k and d has a marginal impact on processing time.

5.4 Summary

We draw the following general conclusions from accuracy experiments. Both clustering and correlation are
built without support thresholds, which helps uncovering patterns at low support levels. Clustering requires
tuning two parameters, the number of clusters and the centroid threshold, being the number of clusters the
most important (the higher the better). On the other hand, correlation has no parameters. Clustering support
bounds tightness depends on clustering quality, whereas bounds derived from the correlation auxiliary matrix
do not depend on how correlated dimensions are. Both clustering and correlation analysis are accurate for
short itemsets and show a decrease in accuracy as the minimum support threshold is lowered. The clustering
model provides highly accurate support estimations for longer itemsets, given a high k. In general, clustering
is more accurate than correlation to bound and estimate support, except for 2-itemsets, where it is slightly
less accurate. Correlation analysis gives exact support estimation for 2-itemsets and a reasonable support
approximation for 3-itemsets. Picking the right number of clusters will depend on how well the data set
clusters and how accurate bounds and estimations are desired. The clustering model provides three main
advantages: the model provides a summary of statistical characteristics of the data set, the model allows
getting approximate values of support, and the model can be maintained in main memory since it is generally
much smaller than the data set.

This is a summary from a time and space efficiency perspective. If already available, the clustering
model is faster than A-priori and correlation to search frequent itemsets. Decreasing support impacts per-
formance on all alternatives due to the combinatorial growth on the number of itemsets. In general, the
clustering model is much smaller than a large data set: O(dk) < O(dn). The clustering model takes less
space than the correlation matrix when k < d since it is O(dk); clusters generally provide a more concise
summary about the data set than correlation. On the other hand, the correlation matrix takes quadratic space
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(O(d2)) and provides a less concise and less accurate summary of the data set. Both clustering and corre-
lation can be computed in linear time with respect to data set size. The correlation matrix can be computed
much faster than the clustering model.

6 Related Work

There has been a lot of work on both scalable clustering [1, 30, 29] and efficient association mining
[26, 16, 40], but little has been done finding relationships between association rules and other data min-
ing techniques. Sufficient statistics are essential to accelerate clustering [7, 30, 29]. Clustering binary data
is related to clustering categorical data and binary streams [27]. The k-modes algorithm is proposed in
[20]; this algorithm is a variant of K-means, but using only frequency counting on 1/1 matches. ROCK
is an algorithm that groups points according to their common neighbors (links) in a hierarchical manner
[13]. CACTUS is a graph-based algorithm that clusters frequent categorical values using point summaries.
These approaches are different from ours since they are not distance-based. Also, ROCK is a hierarchical
algorithm. One interesting aspect discussed in [13] is the error propagation when using a distance-based
algorithm to cluster binary data in a hierarchical manner. Nevertheless, K-means is not hierarchical. Using
improved computations for text clustering, given the sparse nature of matrices, has been used before [6].
There is criticism on using distance similarity metrics for binary data [11], but our point is that clusters can
be used to discover associations.

There exist many efficient approaches to mine associations. Most approaches concentrate on speed-
ing up the association generation phase [16, 1]. Some of them use data structures that can help frequency
counting for itemsets like the hash-tree, the FP-tree [16] or heaps [19]. Reference [19] proposes an effi-
cient algorithm based on a heap than can efficiently mine frequent itemsets with new records or decreasing
support; compared to our approach, both clustering and correlation can be efficiently and incrementally up-
dated through their sufficient statistics and since they are statistical models they are independent from any
minimum support level. Others resort to statistical techniques like sampling [38], statistical pruning [26]. In
[35] global association support is bounded and approximated for data streams with the support of recent and
old itemsets; this approach relies on discrete algorithms for efficient frequency computation instead of using
statistical models like our proposal. In [5] it is shown that according to several proposed interest metrics the
most interesting rules tend to be close to a support/confidence border. Another important issue is filtering
out spurious rules [14]; the authors propose improved confidence and lift metrics which are more robust
to noise in the data set. Reference [45] proves several instances of mining maximal frequent itemsets (a
constrained frequent itemset search) are NP-hard and they are at least #P-hard, meaning they will remain
intractable even if P=NP. This work gives evidence it is not a good idea to mine all frequent itemsets above
a support threshold since the output size is combinatorial. In [12] the authors derive a tight bound on the
number of candidate itemsets given the current set of frequent itemsets, when using a level-wise algorithm.
Our work provides a less tight bound, but from a statistical perspective. Covers and bases [37, 21] are an
alternative to summarize association rules using a combinatorial approach instead of a model. Clusters have
some resemblance to bases in the sense that each cluster can be used to derive all subsets from a maximal
itemset. The model represents an approximate cover for all potential associations.

Related work on relationships between association rules and other techniques follows. Preliminary
results on using clusters to get lower and upper bounds for support is given in [28]. On the other hand,
a closely related algorithm that derives association rules from clusters is presented in [23]. The authors
show clusters can be used to compute frequent itemsets faster than A-priori and sampling-based methods;
their support approximation is related to our proposed upper support bound; they also use a threshold to
eliminate unlikely itemsets from each cluster. There are several important differences though. First, they
consider clusters as a mechanism to compress the data set rather than a statistical model; the authors use
a hierarchical clustering algorithm based on the Jaccard coefficient, whereas we use the popular K-means
algorithm based on distance; their algorithm requires a similarity threshold for the Jaccard coefficient; our
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approach can produce a good clustering model in just two passes over the data set; such approach may miss
some frequent itemsets above a support threshold; their threshold to eliminate unlikely itemsets is related to
itemset similarity whereas our is related to the cluster mean; in addition we also propose lower bounds for
support and our estimation is based on the bounds average. From a statistical perspective, we show how to
derive sufficient statistics for clustering and correlation. In general, there is a tradeoff between rules with
high support and rules with high confidence [34]; this work proposes an algorithm that mines the best rules
under a Bayesian model. There has been work on clustering transactions from itemsets [41]. However,
this approach goes in the opposite direction: it first mines associations and from them tries to get clusters.
Clustering association rules, rather than transactions, once they are mined, is analyzed in [22]. The output
is a summary of association rules. The approach is different from ours since this proposal works with the
original data set whereas ours produces a model of the data set. In [44] the idea of mining frequent itemsets
with error tolerance is introduced. This approach is related to ours since the error is somewhat similar to the
bounds we propose. Their algorithm can be used as a means to cluster transactions or perform estimation
of query selectivity. In [39] the authors explore the idea of building approximate models for associations
to see how they change over time. Mining ratio rules based on an improved PCA technique is proposed
in [18]; our correlation bounds can be generalized to a PCA model. Reference [43] analyzes relationships
between item correlations and association rules and derives a bound to prune pairs of items; the authors
focus only on positive correlations above a user-specified threshold and defend the idea of not computing
the entire correlation matrix. In contrast, we have shown the entire correlation matrix can be efficiently
computed because each transaction is a sparse vector and we studied how association rule metrics are linked
to correlation: correlated and uncorrelated items can indeed appear together.

7 Conclusions

This article studied mathematical relationships between association rules and two fundamental models: clus-
tering and correlation. Models help understanding statistical properties of a binary data set for association
rule mining and can be used to approximate support and confidence. Sufficient statistics for clustering con-
sist of the linear sum of points, whereas sufficient statistics for correlation are the sum of squared points.
Each cluster represents an itemset and the sufficient statistics for correlation measure support for all pairs of
items. The clustering model and the correlation matrix can be efficiently updated with sparse matrix oper-
ations to process large, high dimensional, data sets. We introduced two families of association rule metrics
based on clustering and correlation, respectively. Each family of metrics provides bounds and estimations
for support and confidence, the standard metrics for association rules. Confidence bounds and estimated
confidence are based only on support bounds. Support metrics exhibit the set downward closure property
for efficient bottom-up search for frequent itemsets. The clustering model uses the number of clusters as
the main input parameter, whereas the correlation model does not have any parameters. We introduce a
secondary parameter, used during frequent itemset search from clusters, to filter out itemsets unlikely to be
frequent, by including only item combinations above a centroid threshold that gives more weight to item
co-occurrence. We conducted experiments with real and synthetic data sets to evaluate accuracy and time
performance, focusing on frequent itemset search given a minimum support threshold. Accuracy was evalu-
ated with the average of relative error on support estimation. In general, clustering models with a sufficiently
high number of clusters are accurate. Relative error decreases with a higher number of clusters, showing
asymptotic behavior, but grows slowly as itemset length increases. That is, accuracy increases as the number
of clusters increases, but it decreases as the minimum support threshold decreases. The minimum centroid
threshold is set to a low value greater than zero that preserves most frequent itemsets, but excludes a signif-
icant fraction of infrequent itemsets. Relative error on support estimation grows as itemset length increase
with both models, but it grows at a higher rate for correlation. We compared the models with the A-priori
algorithm as mechanisms to find frequent itemsets. Excluding the time to compute models, when decreasing
minimum support clustering is the fastest mechanism, followed by A-priori, and correlation is left on the
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third place; the three techniques are impacted by the combinatorial growth of the number of itemsets, but
A-priori is more heavily impacted. Considering the overall time to build the model and to find frequent item-
sets the clustering model is the slowest alternative at high support levels, but the fastest at very low support
levels. The reason correlation had bad time performance is because its bounds are loose for long itemsets,
making the algorithm generate an extremely large number of itemsets which turn out to be infrequent. From
a time complexity perspective, both models can be computed in linear time with respect to data set size, but
correlation is significantly faster than clustering. For sparse binary data sets, such as transaction data sets,
high dimensionality has a marginal impact on speed due to the efficient sparse matrix operations. In short,
clustering represents a more accurate, but also more expensive, alternative than correlation to understand
a data set from a statistical perspective. Correlation on the other hand, is very fast to compute, is com-
pletely accurate for associations with two items and can get reasonable support bounds for short itemsets.
Therefore, clustering and correlation models complement each other to explore a data set for association
rules.

There are several directions for future work. It is feasible to build a hybrid model combining clustering
and correlation. For instance, the correlation matrix can be computed for a subset of items in one tight
cluster or conversely, a clustering model can be computed for a set of points having a subset of uncorrelated
items. The clustering model and the correlation matrix can be incrementally updated on-line through suf-
ficient statistics, allowing maintenance of a set of interesting association rules. Even further, both models
enable the statistical analysis of streaming data. Incorporating constraints into the models to mine predic-
tive association rules is another important direction, with wide applicability. The correlation matrix leads
to principal component analysis and factor analysis, which are fundamental techniques to analyze high
dimensional data sets. Therefore, we can create sophisticated descriptive models combining mixtures of
probabilistic distributions and factor analysis under a maximum likelihood estimation framework, like the
Expectation-Maximization algorithm. We want to derive analytical bounds on relative error for both models
under different probabilistic distributions.
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