Fast and Dynamic OLAP Exploration Using UDFs

Zhibo Chen
University of Houston
Dept. of Computer Science
Houston, TX 77204, USA

ABSTRACT

OLAP is a set of database exploratory techniques to effi-
ciently retrieve multiple sets of aggregations from a large
dataset. Generally, these techniques have either involved
the use of an external OLAP server or required the dataset
to be exported to a specialized OLAP tool for more efficient
processing. In this work, we show that OLAP techniques
can be performed within a modern DBMS without external
servers or the exporting of datasets, using standard SQL
queries and UDFs. The main challenge of such approach is
that SQL and UDF's are not as flexible as the C language to
explore the OLAP lattice and therefore it is more difficult to
develop optimizations. We compare three different ways of
performing OLAP exploration: plain SQL queries, a UDF
implementing a lattice structure, and a UDF programming
the star cube structure. We demonstrate how such methods
can be used to efficiently explore typical OLAP datasets.

Categories and Subject Descriptors

E.1 [Data Structure]: [Trees]; H.2.4 [Database Manage-
ment]: Systems— Relational Databases; H.2.8 [Database
Management|: Database Applications—Data Mining

General Terms

Algorithms, Experiments, Measurement

Keywords
OLAP, UDF, CUBE

1. INTRODUCTION

On-Line Analytical Processing (OLAP) [1] is a set of tech-
niques that allow the user to efficiently retrieve specific ag-
gregations from large datasets with multiple dimensions.
OLAP exploration and analysis is often performed through
the use of precomputed subcubes or by transforming the
dataset into a different structure from which subcubes can be
quickly obtained. Regardless of the method, results are still
obtained either from an OLAP server or from a source out-
side the database management system. The problem with
these approaches is that additional OLAP servers are costly
and require additional maintenance, while exporting large
datasets from the DBMS takes a long time.

(© ACM, 2009 . This is the author’s version of the work. It is pashere
by permission of ACM for your personal use. Not for redisttibn. The
definitive version was published in SIGMOD Conference 2009.
http://doi.acm.org/10.1145/1559845.1559989

Carlos Ordonez
University of Houston
Dept. of Computer Science
Houston, TX 77204, USA

Carlos Garcia-Alvarado
University of Houston
Dept. of Computer Science
Houston, TX 77204, USA

The main motivation behind our research lies in observ-
ing the viability of performing OLAP techniques entirely
within a database management system, without the need
to build a separate OLAP server or to export the dataset.
Thus, we not only reduce the cost of installing and main-
taining additional OLAP servers, but also remove the de-
lay of exporting datasets. In addition, we can enjoy the
benefits offered by database systems, such as improved se-
curity, fault tolerance and querying with SQL. We found
that by using user-defined functions (UDFs), we can solve
OLAP operations faster than using standard SQL and can
efficiently extract subcubes from typical OLAP datasets. In
addition, for large datasets, the time to export a dataset
and import results makes performing OLAP operations out-
side the database inefficient. In this demonstration, we will
show how we can explore OLAP cubes as well as perform
some simple analysis on the subcubes. In addition, we will
show how additional knowledge can be extracted through
the combination of OLAP and parametric statistical tests
[3]. Finally, we will also compare the UDF approach to
OLAP techniques with the standard SQL approach, which
is known to be slow.

In this article, we provide a technical summary in Section
2 and outline our system demonstration in Section 3.

2. TECHNICAL OVERVIEW

We will now give a more detailed analysis of how OLAP
techniques can be performed with User-Defined Functions
(UDFs). It is important to note that our primary goal is to
produce an application with the ability to perform OLAP
techniques entirely within a database, without the need to
alter any source code. Before we look at the technical as-
pects, we will discuss some definitions used through this
demonstration. We consider a typical OLAP dataset as hav-
ing n records, d cube dimensions, and e measure attributes.
The dimensional lattice is the data structure that represents
all the subsets of dimensions and their containment. Nodes
represents a particular combination of dimensions in the lat-
tice. We can further separate nodes into groups, which rep-
resents a specific combination of dimension values.

2.1 OLAP Operations

OLAP queries normally fall into two categories: retrieval
and aggregational. The retrieval queries involve operations,
such as slicing, dicing, and pivoting, that extracts data from
specific nodes of the dimensional lattice. These queries pri-
marily use select statements to retrieve the appropriate re-
sults. On the other hand, the aggregational OLAP queries,

saL | Orignal Ly eston
4/ Approach Dataset
User — —
| UF _ | Orginal | | -
e Lattics Dataset Aggregation
Parameters "
 \mL |
StarCube | StrCube | Aggregaton

Figure 1: Design flow of SQL and UDF approaches.

such as drill up and roll up, requires the creation of entire
nodes on the lattice. These queries require group-by state-
ments that often takes longer time than the retrieval queries.
For both of these queries, there are three main ways that
they can be resolved. The first method involves computing
the entire dimensional lattice, storing it in a table, and then
retrieving the required tuples as needed. While this method
offers some of the fastest response times, it becomes imprac-
tical at higher dimensions and also uses the most storage
space. The second method creates intermediate subcubes
that are strategically places around the entire dimensional
lattice. In this way, when a query is inputted, the closest
intermediate subcube is determined and used to produce the
results. The assumption is that these intermediate subcubes
will have less tuples than the original dataset. The third and
final method involves calculating all the queries directly from
the original dataset. This method uses the least amount of
storage space, but is the slowest of the three. The method to
use depends on the size of the original dataset. If the dataset
has a large n and d, then the first method is not viable. On
the other hand, if the dataset is small, then it would be
practical to simply calculate the entire dimensional lattice.
In our demonstration, we consider these three methods to
be optimizations and can be controlled by the user.

2.2 Standard SQL Approach

The SQL approach involves the use of standard SQL to
produce the required results of OLAP queries. For the most
part, the SQL required includes at least one aggregation
on some particular dimension(s). For the scalar operations,
the SQL requires either a straight select to retrieve rows
from already computed nodes or an aggregation to compute
the required node, followed by a select statement. Both
the aggregation and select statements are fairly straight for-
ward, with the dimensions in question being involved in the
query. If multiple nodes of the dimensional lattice are re-
quired, then an aggregation would need to be performed for
each node. For certain databases, there also exists built-in
functions, such as grouping sets, which would allow for the
aggregation of multiple sets of dimensions. More detailed
explanations of the actual queries can be found in our pre-
vious research [3].

2.3 UDF Approach

Our goal in the UDF approach is to significantly reduce
disk access by performing most exploratory operations in
main memory through the use of UDFs. The main compo-
nent behind the UDF is the data structure that needs to

be created to store essential information from the dataset.
This structure is held in main memory and is used to re-
trieve the results of the OLAP queries. Currently, we have
two different data structures: a lattice-based structure and a
starcube-based structure. The lattice-based data structure,
shown in detail in our previous research [2], uses a two-
tiered design to represent the dimensional lattice. The first
level stores the nodes and the set of dimensions represented,
while the second level stores data pertaining to specific val-
ues of those dimensions. The required OLAP data, such as
summation or averages of the cells, are stored directly into
the second level. This data structure only requires one pass
through the dataset because it has the ability to perform
multiple aggregations simultaneously.

A second alternative data structure that we are currently
researching is the starcube [4] inside the UDF. The starcube
is a data structure that can be used to represent the actual
dataset. Once a dataset is changed into this new format,
OLAP operations can be quickly retrieved by traversing the
structure. Unlike the previous data structure, the aggrega-
tions are not stored within the starcube. Instead, an ad-
ditional pass through the starcube structure is required to
obtain the appropriate results. However, the starcube only
needs to be computed once, similar to a precomputation of
the dataset that is used in the SQL approach. Once gen-
erated, the UDF needs to load the starcube and all OLAP
operations can then be processed in memory.

For both of the UDF approaches, the optimizations are
all related to the C language. This is because the UDF
is programmed in C before being built and deployed into
the DBMS. One of the optimizations that we used is a
while statement instead of recursion when traversing the
tree structures. The reasoning is that using recursion would
waste too much memory. Several other implementation op-
timizations were also included, such as the use of strings to
represent structures instead of creating a struct.

Regardless of the data structure used within the UDF, the
final result of the UDF needs to be a table. In past years,
the only common UDF types were scalar and aggregation.
For both, the return value is always single values that can
only be used to store small amounts of information. Instead,
we decided to use Table-Valued Functions (TVFs), a novel
type of UDF supported by some DBMS, that allow for the
return of an entire table, instead of one tuple per set. This
is useful because it avoids the extra intermediate step of
having to transform the original dataset into a multi-valued
attribute (i.e. long string). With the TVF, we can read in
entire datasets and return entire tables. The novelty of using
UDFs to solve OLAP operations is the use of previously C-
only algorithms within the UDF of a DBMS. We show how
starcube can be translated from C into a UDF. To the best
of our knowledge, few researchers have studied the viability
of performing OLAP algorithms within a DBMS through
the use of UDFs instead of an external language, such as C.

3. SYSTEM DEMONSTRATION

The general data flow of our application, including the
various approaches, is shown in Figure 1. Note how both
UDF approaches only use one or two passes of the dataset
while the SQL approach requires one pass for each aggre-
gation. For our application, we used Java 1.6 to create the
GUI. Since the user is allowed to open up multiple win-
dows in which to perform OLAP operations, we created one

{5 oL Bxploration B

[0L Exploration Es

Fle Souce Run Window Help

4 o B H>m

| Disconnect NewProject Open Project Save Project | Execute Stop

DBIMS: [5QUServer | Database: research | Username: zchen

Input | progress | Output

e
o

Attrbutes

0_CLERK 10_ORDERPRIORITY
o comenr o croeRsTATLS
oy o speRIcRITY
o crogroate
(0 ORDERKEY E
T
E O_TOTALPRICE.

Computaton Method Support (10000
@sa
Owr

O [(Emm] (o]

FullLattce Computation

Fle Sowce Run Window Hep

L = L > m Opst [5QLserver | Database: rosearch | Ussmame: zchen
et | NowPrject OpenPrject Save Project | Bxocts 509

I New Project!

gt o] output
52 araphcal
GROUP BY Bl
O_ORDERSTATUS 3

/% O_SHIPPRIORITY */
::::::
SELECT
O_SHIPPRIORITY
/ avg(0_TOTALPRICE)
FrON
TPCH_ORDERS
GroUP BY
©_SHIPPRIORITY

Estinate Time to Frish: § seconds

O_ORDERSTATUS, O_SHIPPRIORITY

Message Output

Message Ouput

il

Figure 2: User Interface of OLAP Exploration and Analysis using DBMS.

thread for each window. Each thread would have its own
connection to the database using JDBC. As a result, the
user will be able to execute multiple windows at the same
time. When an OLAP operation is executed, the applica-
tion performs one of the two approaches, depending on user
preference. For both approaches, the application will gener-
ate the appropriate SQL queries and automatically send the
queries to the database. When the queries are completed,
the application would automatically retrieve the appropriate
results and display them to the user.

For the demonstration, we will use a system running a
commercial database system that supports TVFs. We will
demonstrate our application, Figure 2, for OLAP explo-
ration and analysis within this DBMS on these two datasets:
TPCH-ORDERS and a synthetic dataset. The first dataset
comes from the TPC-H benchmark and contains 1M tuples
with a small number of dimensions. The second dataset is
randomly generated with a large number of tuples (5M) and
higher number of dimensions. The number of distinct values
for each column will vary from two to five. We will run our
demonstration on a local DBMS installed on our laptop and
will not require any internet connections.

Our demonstration can be separated into two distinct
parts. The first part will demonstrate the viability of per-
forming OLAP operations within a DBMS, while the second
portion will compare the various ways in which we can arrive
at the correct result. For the first portion of the demonstra-
tion, we will use the larger dataset. We will show how the
user can easily select the various parameters, optimizations,
and the approach with which to generate the results. For
example, we will show how a user can load the synthetic
dataset and choose several dimensions from the fifty in the
list. Then, the user can easily select the various other pa-
rameters, such as support, aggregation operation, as well as
the approach and the optimizations, such as whether to cal-
culate the full lattice or not. Once the results are obtained,
we will show how a user can then navigate throughout the
subcube, using standard OLAP techniques such as roll-up,
drill-up, and slice. In addition, Figure 2 shows how the user
also has the ability to view the SQL code for the standard
SQL approach. We can also graphically see the data struc-
ture that is stored into main memory by the UDF approach

as well as the actual code that generated the structure. Also,
we will show how the user can alter the parameters and ob-
serve the new results. We will also demonstrate the undo
feature, which allows the user to roll back to a previous set
of parameters. Afterward, we will demonstrate how the user
can open another window to perform separate exploration
and analysis on either the same dataset or a different one.
The multiple windows allow the user to compare results or
to simultaneously perform multiple OLAP operations.

The second portion of the demonstration will compare the
performance of the different approaches. We will show the
difference in execution time of the different approaches as
well as different parameters. Because we will be generat-
ing full lattices in our demonstration, we will be primarily
using the smaller TPCH-ORDERS dataset. We will demon-
strate the difference in execution time between the different
approaches when generating entire lattices and partial sub-
cubes. For example, we will compare the execution times of
generating the full lattice of the TPCH-ORDERS dataset.
Since the dimensionality is low, this portion should not take
more than a few minutes. We will also compare the exe-
cution times of obtaining a subcube of the lattice. Even
though the original dataset might have a high number of di-
mensions, by choosing a few dimensions, we can still obtain
efficient times. The ultimate goal of our demonstration is
to convince the user that OLAP operations can feasibly be
performed within a DBMS.

4. REFERENCES

[1] S. Chaudhuri and U. Dayal. An overview of data
warehousing and OLAP technology. ACM SIGMOD
Record, 26(1):65-74, 1997.

[2] Z. Chen and C. Ordonez. Efficient OLAP with UDFs.
In ACM DOLAP, pages 41-48, 2008.

[3] C. Ordonez and Z. Chen. Evaluating statistical tests on
OLAP cubes to compare degree of disease. [EEE
TITB, 20009.

[4] D. Xin, J. Han, X. Li, and B. Wah. Star-cubing:
computing iceberg cubes by top-down and bottom-up
integration. In VLDB, 2003.

