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Abstract—Statistical tests represent an important technique
used to formulate and validate hypotheses on a data set. They are
particularly useful in the medical domain, where hypotheses link
disease with medical measurements, risk factors and treatment.
In this work, we propose to compute parametric statistical
tests treating patient records as elements in a multidimensional
cube. We introduce a technique that combines dimension lattice
traversal and statistical tests to discover significant differences
in the degree of disease within pairs of patient groups. In order
to understand a cause-effect relationship we focus on patient
group pairs differing in one dimension. We introduce several
optimizations to prune the search space, to discover significant
group pairs, and to summarize results. Our proposal can work on
any relational database system since it is based on dynamically
generated SQL code. We present experiments showing important
medical findings and evaluating scalability with medical data sets.

I. INTRODUCTION

Medical data sets are commonly analyzed with statistical
[11], [20] and machine learning [13], [18] techniques. Such
techniques range in complexity from computing descriptive
statistics such as the mean, variance and histograms, to build-
ing complex predictive models. In this work we focus on
improving and extending statistical tests. In terms of complex-
ity and computations, statistical tests are more sophisticated
than descriptive statistics, but simpler than predictive models.
Statistical tests stand out for their wide applicability in the
medical domain given their simplicity, flexibility and reliability
[10], [20]. In general, many experiments (e.g. clinical trials,
survey analysis [20]) are performed to discover an important
medical fact, which is validated with a statistical test. The
statistical test is based on a hypothesis about the statistical
properties of the data set being analyzed. The overall goal
is to find a hypothesis having high reliability (confidence).
This problem becomes more difficult when the user needs to
analyze multiple subsets of a data set, considering different
combinations of attribute values (risk factors).

On-Line Analytical Processing (OLAP) [5], [10] is a col-
lection of exploratory database techniques [8], [10]. In an
OLAP database, users try to find interesting or unexpected
results by analyzing subsets of a data set with aggregations
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Fig. 1. OLAP statistical tests within data mining process.

performed at multiple granularity levels. OLAP techniques
offer promising application in the medical domain, since they
are intuitive, comprehensive and efficient [5], [8], [10]. In
OLAP most computations are based on simple aggregations
such as sums and counts, which are the basic ingredients
used in statistical tests. Therefore, we propose to integrate
statistical tests and OLAP techniques in order to formulate
and validate medical hypotheses on multiple subsets of a data
set. Our proposal extends statistical analysis with database
techniques to improve disease understanding and diagnosis.
Figure 1 presents an overview of the data mining process.

Statistical tests [20] exhibit several advantages. They have
simple assumptions about the probability distribution behind
the data set. Such distribution is in general the normal (Gaus-
sian) distribution, or a closely related probabilistic function.
Such assumption is not an issue when there are many obser-
vations (e.g. ≥ 30) and when there are few outliers [20]. Most
statistical tests use equations that can be efficiently evaluated
with SQL queries in a database system, because they do not
require matrix manipulation, making them efficient and easy
to implement. Statistical tests can produce statistically reliable
results with both large and small data sets, whereas statistical
and machine learning techniques commonly require larger data
sets in order to find significant results; such limitation is partic-
ularly important in medicine, where in studies about a specific
type of disease or in clinical trials on new drugs or treatments,
only small sets of patient records are available. Also, different
institutions do not share patient records due to government
and privacy regulations. Statistical tests are frequently used as
an initial step to building predictive models. Therefore, our
proposal is not intended to substitute predictive models, but
to complement them. For instance, the statistical test can filter
risk factors that can then be used as input for a predictive
model. It can help understanding why a predictive model has
low accuracy or can validate a model whose reliability is
questionable. Statistical tests can enhance a decision support
system by providing a mechanism to validate knowledge or
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intuition about a disease or treatment, by comparing a patient
to other patients having a similar medical profile.

Statistical tests have practical disadvantages. They generally
require many trial and error runs before a plausible finding is
made. Each run requires selecting different variables, varying
parameters or selecting subsets of the data set. Nevertheless,
we will show both of these limitations can be solved by OLAP
techniques. On the other hand, compared to OLAP techniques,
statistical tests provide more evidence that a finding is indeed
valid, by going beyond simple comparisons or proportions.
Our proposal combines statistical tests with OLAP cube ex-
ploration techniques in order to automatically generate and
test hypotheses for a large collection of subsets from a medical
data set. Since the dimension lattice behind the cube represents
a combinatorial search space the problem is computationally
challenging. We thereby introduce techniques to efficiently
evaluate statistical tests on OLAP cubes and to produce a
succinct set of significant findings. Our method can work with
large data sets, as required in a modern analytic environment.
We illustrate our approach with experiments on two medical
data sets containing patients with heart disease (stenosis) and
thyroid gland abnormality, respectively. The statistical test
can uncover combinations of risk factors leading to a greater
degree of disease.

The article is organized as follows. Section II introduces ba-
sic definitions for OLAP databases and statistical tests. Section
III explains how to apply statistical tests on OLAP cubes and
introduces several optimizations. Section IV presents an exper-
imental evaluation with medical data sets, showing important
medical findings and evaluating optimizations. Related work
is discussed in Section V. The conclusions and directions for
future work are presented in Section VI.

II. DEFINITIONS

We focus on an input table F with n records having d cube
dimensions [10], D = {D1, . . . , Dd} and a set of e measure
[10] attributes A = {A1, A2, . . . , Ae}. The data structure
representing all subsets of dimensions and their containment
is called the dimension lattice [10]. Due to their simplicity
and wide application in the medical domain, we focus on
binary dimensions, but our proposal also works for categorical
dimensions with higher cardinality. In the case of medical data
sets, risk factors for a certain disease are represented by the
cube dimensions and the degree of disease are cube measures.
Section II-B contains a detailed example.

A. OLAP Processing

In OLAP processing, the basic idea is to compute ag-
gregations (sum(), count()) on measures Ai by subsets of
dimensions (i.e. subcubes or cuboids [10]) G s.t. G ⊆ D,
effectively performing aggregations at different granularity
levels. Each output record obtained by the aggregation is called
a group. The set of all potential aggregations at a certain level
is called a subcube. In our proposal, aggregations are used to
derive descriptive statistics such as µ, σ, which in turn are the
basic elements in the equations of a parametric statistical test,
introduced in Section III.

Fig. 2. Finding significant measure differences in the cube.

B. Example

Figure 2 illustrates our approach on a cube with three
dimensions D1, D2, D3 and one measure, where each face
represents a subcube on two dimensions. We highlight two
pairs of groups in two subcubes that differ on one dimension
(i.e. some risk factor). The difference in fill pattern means a
significant difference was detected on a measure attribute (i.e.
degree of disease). Consider, for instance, a medical data set
with patients being treated for heart disease. Each dimension
Dj can represent a risk factor (e.g. hypertension) or some
binned numeric attribute (e.g. cholesterol level). The measure
Ah can represent the degree of disease (narrowing) in an
artery. In this case, the statistical test is stating that each
highlighted pair of patient groups has a significant difference
in the degree of disease in an artery (comparing measure mean
value for each patient group), which is probably caused by the
“discriminating” dimension (i.e. the risk factor that is different
across the pair).

III. STATISTICAL TESTS AND OLAP

This section presents the main contributions of our proposal.
We start by motivating and explaining the use of statistical
tests on OLAP cubes. Then we introduce an algorithm that
explores the cube with different dimension combinations to
compare highly similar groups. We discuss several optimiza-
tions. Finally, we summarize advantages and disadvantages of
our method.

A. Statistical Tests

We propose to use a means comparison parametric test
[20] to discover pairs of patient groups with a significant
difference in a disease measurement. The basic hypothesis is
that a specific risk factor, combined with other risk factors
can lead to a high probability of developing disease. Instead
of looking for unusual patterns in individual subcubes with
simple comparisons and multi-level aggregations like previous
work [9], [10], we propose to use the statistical test to
compare pairs of groups. The means comparison test offers
the following advantages: Two large groups of any size can
be compared. In particular, two groups with very different
number of elements can be compared (e.g. a large and a
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small group). The means comparison takes into account data
variance, which measures overlap between the corresponding
group subpopulations. This feature is essential to make sound
inferences. Measures are assumed to have a normal distri-
bution. The normal distribution assumption works well for
medium or large data sets (n ≥ 30), having few outliers and
small skew [20]. That is, a highly skewed or asymmetrical
distribution may decrease the reliability of the test.

Parametric Test Statistical Background

We now describe the statistical test in more formal terms.
We use a parametric test comparing the means µ1, µ2 from
two disjoint data subsets (populations), where the size of each
data subset is n1, n2. Each data subset is assumed to be
an independent sample. In this case the null hypothesis H0

states that µ1 = µ2 and the goal of our proposal is to find
group pairs where H0 can be rejected (deemed false) with
high confidence 1 − p, where p generally takes the following
thresholds, p ∈ {0.01, 0.05, 0.10}. The so-called alternative
hypothesis H1 states µ1 6= µ2. When H0 can be rejected
the test will return the significance level p; such outcome
will allow us to provide strong statistical evidence supporting
H1 : µ1 6= µ2. We use a two-tailed test which allows finding a
significant difference on both tails of the Gaussian distribution
in order to compare means in any order (µ1 < µ2 or µ2 < µ1).
The statistical test relies on Equation 1 to compute a random
variable z with probability distribution function (pdf) N(0, 1):

z =
|µ1 − µ2|

√

σ2

1
/n1 + σ2

2
/n2

, (1)

where µi, σi correspond to the estimated mean and standard
deviation from group i. When both groups are not small (i.e.
n1 ≥ 30, n2 ≥ 30). the z value just needs to be compared
with zp/2 in the cumulative probability table for N(0, 1) (e.g.
z0.495). When either group is small the statistical test requires
computing the degrees of freedom as df = n1 + n2 − 2, and
then looking up z on the t-student distribution table according
to df . This implies that n1 > 1 or n2 > 1 because df ≥ 1. If
one group is much larger than the other one then there exists
a row for df = ∞. For instance, it is possible to compare a
singleton set with a large set of records, although it may be
medically irrelevant.

Applying the statistical test on cubes

In general, a statistical analyst needs to perform a batch
of statistical tests with different medical measurements and
multiple subsets from the data set before a significant finding
is made. The medical measurements are in general related to
the disease being studied and the subsets are selected based on
medical opinion, trying to obtain samples as large as possible.
Missing information and irrelevant (unrelated to measurement)
dimensions make the problem more difficult. Based on such
challenging and time-consuming task, we propose to auto-
matically generate group pairs by applying the statistical test
only on pairs differing in a few dimensions. When used in
an OLAP cube, the means comparison test has the following

advantages: OLAP aggregations can produce many pairs of
disjoint groups, which are the required input for the parametric
test. Groups produced by the same aggregation query are
disjoint. Dimensions can be used to identify highly similar
groups, differing in a few dimensions or even one dimension.
This can help explaining a cause-effect relationship. From a
database perspective, the test represents a natural extension of
OLAP computations since it relies on distributive aggregations
[9]. That is, we are not introducing a large extra burden on
processing. When the cube has low d and small groups are
eliminated it is feasible to compute all potential groups pairs
traversing the entire dimension lattice.

In the case of a heart disease data set, OLAP aggregations
produce disjoint sets of patients having specific risk factors.
When groups are compared with each other (forming pairs),
the test focuses on groups that have one different risk factor
and evaluates the difference in their degree of artery disease.
Applying the statistical test has two goals: First, finding
significant differences between two groups in a subcube on
at least one measure. Finding two or more significant measure
differences for the same pair is desirable, but rare. Second,
when there exists a significant difference we need to isolate
groups that differ in a few dimensions, which can explain
cause-effect. With respect to the first goal, when applying a
statistical test, a significant difference can only be supported
by a small p-value, which takes into account both the means
and the standard deviation of the distributions. The smaller the
p-value the more likely the difference between both groups is
significant. It is expected that many differences will not be sig-
nificant, making the search problem expensive. Regarding the
second goal, we are interested in finding significant differences
in highly similar groups because that helps explain which
specific dimensions (e.g. risk factors) “trigger” a significant
change on the subcube measure (e.g. degree of disease). For
instance, finding a significant measure difference, between two
dissimilar groups, makes causal explanation difficult, since
such difference may by attributed to two or more dimensions.
In general, we focus on group pairs differing in exactly
one dimension. Groups differing in two or more dimensions
are stored on additional tiers. Even though dimensions are
considered independent, the aggregation automatically groups
records with correlated dimensions together. Therefore, if a
high correlation exists in dimensions it will be automatically
reflected when patient groups are built by OLAP aggregations.

B. Optimizations

Our algorithm was implemented by dynamically generat-
ing SQL queries to search the d-dimensional cube, traverse
the lattice, form pairs and compute the parametric test. We
found several technical issues in trying to optimize process-
ing. (1) Searching the dimension lattice is the most time-
consuming stage. (2) Very small patient groups may not
produce medically reliable findings; in particular inferences
involving groups with one patient should be avoided. (3) It
is not possible to pre-define a general-purpose index for the
cube because d may vary and the corresponding columns
will be different, given different fact tables F . Instead the
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cube table has either a simple primary key to uniquely
identify groups (cube cells) or a primary index on all the
dimensions. (4) OLAP cubes combined with statistical tests
cannot be solved as an “association rule” problem, although
there are similarities. Statistical tests on cubes represent a
different technique from association rules [10] because binary
dimensions are not equivalent to items [1]. In general, items
represent only the value 1 of some binary dimension, ignoring
the value 0. On the other hand, in the statistical test both
1 and 0 are considered. Second, the test is applied on a
pair of groups, which would correspond to comparing the
records behind two highly similar itemsets. Finally, the test
compares numeric attributes, which has no counterpart in
association rules because association rules are defined over
binary dimensions (called items); numeric attributes are binned
and represented as items.

Based on the issues above we present two sets of optimiza-
tions: mathematical optimizations, applicable from a general
perspective and database optimizations, useful to generate
efficient SQL code in a relational database system.

We present the following mathematical optimizations for
efficient statistical test computation: (1) We introduce a fre-
quency threshold ψ, which is somewhat similar to the “sup-
port” threshold in association rules. This ψ threshold has the
primary purpose of discarding small patient groups, but also
applying the test on pairs of large groups with the N(0, 1)
pdf (n1 ≥ 30 and n2 ≥ 30). This threshold significantly
prunes the search space in the dimension lattice. (2) Sufficient
statistics are computed on each cell so that univariate statistics
can be derived in one pass. Such statistics include count(*),
sum(A) and sum(A2) for a measure column A. In formal
terms, Ni is the count patient records for group i and:
Li =

∑

A, Qi =
∑

A2 for measure A. Then µ1, µ2, σ1, σ2

can be easily derived from sufficient statistics (µi = Li/Ni,
σ2

i = Qi/Ni − µ2

i ). (3) Depending on input parameters, the
SQL code will compare only groups having up to δ dimension
differences, being δ = 1 the default. This means groups in a
pair must differ in up to δ dimensions in order to be compared.
Dissimilar groups are pruned out.

We introduce the following database optimizations, which
are particular to using a relational database system. (1) Search
for a specific cell is indexed. The secondary index allows
efficient retrieval of cell pairs in one indexed search per group
(i.e. two indexed searches per pair). (2) All aggregations are
stored on the same table. This table contains all subcubes
at different aggregation granularities and has an index on
all dimensions, (3) F is aggregated at the finest granular
level producing a cube table C and further coarser-grained
aggregations are computed from C. This step is important
to eliminate empty groups. (4) In general, for large groups
it is required to compare the test statistic against a given z
value using the normal N(0, 1) distribution, which generally
requires looking up a value in a small table. We introduce
a simple optimization, finding the significance of the test
statistic without visiting such table with a CASE statement
(if-then in a common programming language) based on the
specific p-values commonly used in the medical domain
(p ∈ {0.01, 0.05, 0.10}). This optimization can be applied

because we do not need to know the exact p-value, just the
range (i.e. p < 0.05 or p < 0.01) that the pair falls into. That
is, finding zp/2 for the two-tailed test is done in main memory.
On the other hand, when the group is small an indexed search
is performed on the t-student table using df as the search key.

Optimization properties: We summarize the improvement
that the proposed optimizations may achieve.

Property 1: When ψ = 30 the algorithm reduces to a
parametric test with the standard normal distribution for every
pair. When ψ = 10 the algorithm evaluates the t-student
distribution for a pair with a group having 10 ≤ ni < 30,
and discards smaller groups. When ψ = 0 the algorithm also
evaluates the t-student on pairs with small groups, perhaps
having one patient in one group. A high ψ threshold produces
mostly general results, whereas a low ψ threshold also includes
specific results.

Property 2: Assuming dimensions are binary, an aggregation
on k dimensions may produce up to 2k different groups.
Clearly, this may take exponential space. When ψ is used to
prune small groups the final number of groups (dimension
combinations) will be < 2k. As k grows the number of small
groups increases and therefore more groups are pruned out.

Property 3: Suppose an aggregation on k binary dimensions
produces m groups. Then there are

(

m
2

)

potential pairs. By
property 2 in the worst case there are 2k(2k − 1) potential
pairs. Focusing on pairs with δ = 1 different dimensions there
are only k2k−1 potential pairs. In general k2k−1 << 2k(2k −
1); this is a significant reduction in the number of pairs and
processing time.

Property 4: For a pair having both groups Ni ≥ ψ every
subpair with some dimension subset is also above ψ. Con-
versely, if one group with dimensions X in a pair is below
ψ then every group whose dimensions are a superset of X is
also below ψ. This is analogous to the well-known downward
closure property of association rules [10], [16]. This property
is used to prune the exponential search space.

C. Algorithm

We introduce an algorithm that integrates statistical tests
with cube exploration and the optimizations introduced above.
Our algorithm has the following goals: (1) Searching the cube
for groups with a minimum number of patients. (2) Building
group pairs differing in δ cube dimensions. (3) Computing the
statistical test for every pair. (4) Producing a succinct output
with a few significant group pairs.

The algorithm assumes a low d, which can be used to
analyze a user-selected set of binary dimensions. In general,
the low d assumption is reasonable because there may be
medical knowledge on the most important factors for degree of
disease. Also, for high d, highly correlated risk factors can be
discarded, by using a representative one using dimensionality
reduction (e.g. PCA [11]). The algorithm searches the cube
for groups above ψ and then applies statistical tests for every
pair. We apply a bottom-up traversal on the dimension lattice,
working level-wise, building higher-d cubes at each level. The
algorithm input and output is as follows:
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• Input parameters: a maximum p-value threshold, δ thresh-
old of maximum number of different dimensions (e.g.
δ = 1) and ψ, a minimum frequency threshold.

• Output: a table C containing group pairs with a significant
measure difference, passing the test at a small p-value,
with δ different dimensions.

The algorithm steps are the following:
1) Precompute cube with d dimensions D1, . . . , Dd on all

e measures getting groups at the finest granularity level.
2) Compute groups having Ni ≥ ψ by traversing the

dimension lattice bottom up, computing groups with 1
dimension, 2 dimensions and so on. Prune out supersets
of groups below ψ. Compute sufficient statistics N,L,Q
for every measure A1, . . . , Ae for each group.

3) Compute pdf parameters µ, σ, based on N,L,Q for each
group. This is done for each measure A1, . . . , Ae.

4) Create group pairs with groups differing in at most δ
dimensions (in general, δ = 1).

5) Compute a statistical test for every group pair and every
measure using Equation 1.

6) Filter pairs having a significant difference (z > zp/2

using N(0, 1) or t-student pdf, depending on N1 ≥
30, N2 ≥ 30). This is done for each measure. A pair
is eliminated if there is no significant difference in any
measure.

7) Optionally eliminate redundant pairs. If a pair X is
significant then every pair Y , s.t. X ⊂ Y , is eliminated.

Table F is first aggregated at the finest granular level as
given by D1, . . . , Dd and then the cube exploration proceeds
with a bottom-up search having 2, 3, . . . , dimensions. Given
one level of aggregation the algorithm performs a pair-wise
test-based comparison of all group pairs. Such comparison is
made on each of the measure attributes. The algorithm tries a
list of increasing p-values, in order to find the smallest p value
at which H0 can be rejected. When p > 0.1 the parametric
test shows there is no evidence µ1 6= µ2. When δ > 1 we cat-
egorize results into tiers having 1,2,3 dimensions differences,
up to δ. Notice we eliminate redundant pairs containing the
same discriminating dimension combined with other matching
dimensions. Only when a discriminating dimension appears
alone all pair supersets are discarded. Indexing with null values
prevents efficient search. Therefore, a search for a specific
cell requires handling nulls and “All” separately. Nulls repre-
sent missing information and “All” means the corresponding
dimension was not used as a grouping column in SQL. In
particular, they were coded as negative integer values (i.e.
codes different from 0 and 1) in order to allow for expansion to
categorical (nominal) values (dimensions with more than just
0 and 1). The summary table has an index on all dimensions,
coding ”All” and ”null” separately.

D. Advantages and Disadvantages

Advantages include the following. Our method automates
a time-consuming task to try to discover which specific
combinations of risk factors are associated with significant
differences in the degree of heart disease. Since the method
is based on a comprehensive parametric statistical test it can

TABLE I
ATTRIBUTES OF HEART DATA SET.

Attribute Description
Dimensions:
OLDYN Age ≥ 60
SEX Gender
HTA Hyper-tension Y/N
DIAB Diabetes Y/N
HYPLD Hyperlipidemia Y/N
FHCAD Family history of disease
SMOKE Patient smokes Y/N
CLAUDI Claudication Y/N
PANGIO Previous angina Y/N
PSTROKE Prior stroke Y/N
PCARSUR Prior carot surg Y/N
HIGHCHOL High Cholesterol
Measures:
LM Left Main
LAD Left Anterior Desc.
LCX Left Circumflex
RCA Right Coronary

handle and compare large data sets (thousands of records) or
small samples (no more than one hundred records), which
are common in clinical trial studies. Our method allows the
detection of risk factors triggering disease in two or more
arteries, which can be interpreted as a complex multitarget
predictive task. Compared to machine learning or similar
techniques, our proposed method performs feature (variable)
selection for each group pair. It does not require to create
binary targets (predicted class); it is not sensitive to im-
balanced populations; and it finds many patient group pairs
instead of building a single model. Disadvantages include the
following. The statistical test assumes measures (degree of
disease) follow a normal distribution, which may decrease
its reliability when distributions are highly skewed. However,
the statistical test considers the variance (Equation 1) to
compare populations, which mitigates issues with skewed or
asymmetrical distributions. The method incorporates several
optimizations and pruning strategies to make processing faster,
but the search space is still combinatorial. Therefore, the
method is applicable on data sets of any size, but analyzing
no more than 20 risk factors at one time.

IV. EXPERIMENTAL EVALUATION

Our experiments were performed on the Microsoft SQL
Server DBMS running on a computer with a CPU at 3.2GHz,
4GB of memory and 600GB on disk. The SQL code generator
computing the parametric test on the OLAP cube was devel-
oped in the Java language and queries were submitted through
the Java DataBase Connectivity (JDBC) interface. Times are
measured in seconds.

A. Data Sets

For a medical doctor it is difficult to judge how sick or
healthy a patient is and which are the specific causes for the
disease. The following experimental evaluation is based on
two medical data sets, that contain detailed medical profiles
for diseased patients with numeric attributes, that measure
a degree of disease and binary dimensions, which represent
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TABLE II
ATTRIBUTES OF THYROID DATA SET.

Attribute Description
Dimensions:
OLD Age ≥ 60

GENDER Male/Female
THYROXINE On Thyroxine Y/N
ANTITHYROID On Antithyroid Y/N
SICK Sick Y/N
PREGNANT Pregnant Y/N
SURGERY Prior Thyroid Surgery Y/N
TUMOR Tumor Y/N
I131TREATMENT On I131 Y/N
LITHIUM On Lithium Y/N
GOITRE Goitre Y/N
HYPOPITUITARY Hypopitituary Y/N
HYPOTHYROID Hypothyroid Y/N
HYPERTHYROID Hyperthyroid Y/N
Measures:
TSH Thyroid Stimulating Hormone
TT4 Total Thyroxine
T4U Thyroxine Utilization Rate
FTI Free Thyroxine Index

risk factors or demographic information on each patient. The
OLAP statistical test will attempt to uncover highly similar
patient groups (with only one different risk factor) with a sub-
stantially different degree of disease (their means are signifi-
cantly different). The first medical data set contains profiles of
n = 655 patients and has 25 attributes containing categorical,
numeric and perfusion image data. This data set, collected
over a period of five years [7], [6], was obtained from the
Emory University Hospital and we call it the “Heart” data set.
There were medical measurements such as weight, heart rate,
blood pressure and pre-existence of related diseases. Finally,
the data set contains the degree of artery narrowing (stenosis)
for the four heart arteries. We converted attributes to binary
dimensions using medically-recommended thresholds [15].
Artery narrowing measurements were treated as measurements
for OLAP processing. There were d = 12 binary dimensions
(e.g. gender, hypertension Y/N) and e = 4 measures (artery
disease measurement) Perfusion image attributes were not
used. The Heart data set is summarized in Table I. To provide
a more complete and reproducible experimental evaluation we
also analyze a publically available data set. This second data
set was obtained from the UCI Machine Learning repository
[2] and we call it “Thyroid” and is summarized in Table II.
The Thyroid data set contained the profiles of n = 9, 172
patients. We transformed this data set for OLAP processing
to have d = 14 binary dimensions (common risk factors)
and e = 4 measures (medical measurements of chemicals on
Thyroid gland); there were no image attributes. We discarded
two measures (TBG and T3), that had a significant amount of
missing values (more than 80%). Both data sets were treated
as table F , defined in Section II.

B. Default Settings

We analyzed all d dimensions, exploring the entire lattice.
The default settings for parameters were: p = 0.01, δ = 1
and ψ = 30. In words, we wanted to find significant measure
differences, with 99% confidence, on all group pairs differing
in one dimension with groups having at least 30 patients. A

group pair in the cube can have up to d dimensions, out of
which one will be different. It is medically important that a
group pair has significant differences in two or more measures,
as revealed by the statistical test. The lower settings for ψ
trigger the t-student pdf and the higher settings for the p-value
provide additional, but less significant, group pairs.

C. Significant Medical Findings

Table III shows significant findings on the Heart data set,
based on discussions with a medical doctor. Dimensions (risk
factors) are on the left part and measures (degree of disease)
are on the right part. Each row represents the comparison
between two patient groups, differing in one dimension in-
dicated by “0/1”, meaning the discriminating risk factor is
absent (equal to 0) in the first group and it is present (equal
to 1) on the second one. For a given group pair, each
matching dimension will be 0, indicating absence of that
risk factor in both groups, or 1 indicating presence of a risk
factor in both groups. The * symbol indicates there was a
significant difference detected in the corresponding measure
(artery disease). Finally, a blank space indicates such risk
factor was not considered in the corresponding aggregation
(i.e. including“All” records). When p < 0.01, the test indicates
two similar groups of patients, differing in one risk factor have
a high likelihood of having a different degree of disease.

The following discussion focuses on the Heart data set,
whose results were discussed with a medical doctor. Table III
shows some of the most important results at the significance
level p = 0.01. To make the table more succinct we do not
show N1, N2, µ1, µ2. The program produced a total of 67
group pairs, involving at most five dimensions; all of them
represent valuable medical knowledge. There were additional,
less significant pairs, whose p-value was in [0.01-0.05], which
are excluded from these results. Cube dimensions, on the left
part, are well-known risk factors for heart disease including
family history of heart disease, diabetes, gender, high choles-
terol and high blood pressure (hypertension). Cube measures
representing artery stenosis (narrowing) are on the right.
Based on the domain expert opinion we selected some of the
most significant pairs, based on these criteria: (1) Identifying
key risk factors which can discriminate between healthy and
sick patients. (2) Isolating risk factor combinations linked to
disease in two or more arteries. (3) Identifying pairs involving
a large fraction of the patients and a few (or possibly one) risk
factors. (4) Finding pairs that confirm risk factor combinations
for heart disease, which are well known in medicine (DIAB
and HTA). (5) Finding group pairs involving several risk
factors, which uncover specific risk factor combinations that
trigger disease in some artery. All pairs shown in Table III fall
into one of these categories.

Table IV provides a summary of medically important re-
sults for the Heart data set. According to our method only
CLAUDI, DIAB, HTA, HYPLPD, OLDYN, SEX, SMOKE
can discriminate patients based on the degree of disease.
From these risk factors the three most important, found in
most pairs, were OLDYN, SEX and SMOKE. On the other
hand, it was interesting FHCAD, HIGHCHOL, PANGIO,
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TABLE III
HEART DISEASE DATA SET: GROUP PAIRS WITH SIGNIFICANT MEASURE DIFFERENCES AT p=0.01.

D1 D2 D3 D4 D5 D6 D7 D8 D9 A1 A2 A3 A4

CLAUDI DIAB FHCAD HIGHCHOL HTA OLDYN PCARSUR SEX SMOKES LAD RCA LCX LM
0 0 0/1 1 * * *

0/1 0 * * *
0 0/1 0 * * *

0 0/1 * * *
0 0 0/1 * * *

0/1 * *
0 0/1 * *
0/1 0 * *

0 0 0/1 1 0 *
0 0 1 0/1 *

TABLE IV
HEART DISEASE DATA SET: SUMMARY OF MEDICAL RESULTS AT p = 0.01.

Discriminating Combined risk Arteries
risk factor factors
CLAUDI RCA
DIAB OLDYN PANGIO LCX LAD
HTA CLAUDI DIAB HYPLPD SMOKE LAD LCX
HYPLPD DIAB FHCAD HTA OLDYN LAD RCA
OLDYN DIAB FHCAD HTA PCARSUR SEX SMOKE LAD RCA LCX LM
SEX CLAUDI DIAB FHCAD HIGHCHOL OLDYN PANGIO SMOKE LAD RCA LCX LM
SMOKE CLAUDI DIAB HTA HYPLPD OLDYN LAD RCA LCX

TABLE V
THYROID DATA SET: PAIRS WITH SIGNIFICANT MEASURE DIFFERENCES.

D1 D2 D3 D4 A1 A2

GENDER OLD TUMOR SURG. FTI TSH
0/1 p < 0.01 p < 0.01

0/1 0 p < 0.01
0/1 p < 0.01 p < 0.01
0 0/1 p < 0.01 p < 0.05

PCARSUR and PSTROKE could not discriminate healthy
from sick patients. The medical doctor noted, however, that
three of these variables refer to medical history of the patient
which was commonly short because the patient was being
treated for the first time. The arteries that were diseased most
frequently are LAD and RCA; LCX can also be diseased in
combination with those two. But LM never appeared alone in
a pair, meaning it always appeared in pairs having some other
diseased artery. Such finding made medical sense because the
other three arteries branch from LM: high stenosis in LM
would interrupt blood flow to the other three arteries. The
medical doctor stated our tool can be useful to explore a data
set to find plausible hypotheses, to identify discriminating risk
factors for specific diseased arteries, to isolate patients groups
for further analysis and to identify which specific arteries are
more likely to be diseased, given a patient profile.

Table V has some important pairs obtained with the Thyroid
data set, focusing on two key thyroid gland abnormality mea-
sures, at several p-values. These results were not interpreted
by any domain expert, but are included because Thyroid is
a publically available data set and therefore it can be used
as an example to reproduce our experimental results. First,
gender alone is an important risk factor for disease given the

fact that two measurements are significantly different on two
large groups of patients, as evidenced by the first pair. The
absence of a tumor combined with increased age or having a
surgery lead to significant change in the amount of the Thyroid
stimulating hormone (TSH), as shown by the second and third
pairs. The fourth pair shows a link between a gland surgery
and disease, despite not having a tumor detected. Since this
data set is larger than Heart and we used a comparatively lower
ψ there are many more pairs found with more dimensions.

D. Impact of Optimizations

Parameters vary as follows: ψ ∈ {0, 10, 30} and p ∈
{0.01, 0.05, 0.10}. We first analyze the importance of ψ to
reduce the number of generated groups and the number of
pairs. Table VI shows the impact of the ψ threshold on pruning
the search space. We later analyze the impact of the p-value.
In this case we are considering all groups created during
lattice exploration and all pairs created by the algorithm before
passing/failing the parametric test. This table measures the
decrease in the analyzed number of pairs and the amount
of work saved. The number of groups and pairs significantly
decreases for the Heart data set, where the number of groups
and pairs is about two orders of magnitude smaller. On the
other hand, the decrease in number of groups is more modest
for the Thyroid data set, but still important; the number of
pairs created goes down to one third. This is explained by
the fact that Thyroid is a much larger data set and then the
likelihood that there are groups above ψ is much higher. The
last column shows the percentage of pairs that are above the ψ
threshold. By Property 1, discussed in Section III-B, and uses
only Equation 1 assuming normal distributions. By Property
2, ψ = 30 clearly produces significant pruning, compared to
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TABLE VI
IMPACT OF ψ ON PRUNING.

Data set ψ Groups % All pairs %
Heart 0 604584 100% 205065 100%

10 113803 19% 21068 10%
30 42003 7% 5078 2%

Thyroid 0 3319794 100% 1152000 100%
10 1738546 52% 434048 38%
30 1197138 36% 241792 21%

TABLE VII
IMPACT OF p-VALUE ON PRUNING (NUMBER OF PAIRS).

Data set ψ p = 0.10 p = 0.05 p = 0.01 % All
Heart 0 153265 138561 113159 55%

10 11518 8383 4111 2%
30 3551 2842 1605 1%

Thyroid 0 948153 850192 687087 60%
10 362970 324828 256171 22%
30 227416 214413 179203 16%

ψ = 0.
We now analyze the impact of the p-value, combined with

ψ. Table VII shows the number of pairs passing the test
at different significance levels. By Property 3, introduced in
Section III-B, the number of pairs differing in one dimension
is much smaller than the total number of potential pairs;
such larger numbers are not shown since those pairs are not
generated. The two rightmost columns show the number and
percentage of the most significant pairs at p = 0.01. Reading
the table horizontally from left to right, we can gauge the
amount of pruning by the p-value. Reading the table from top
to bottom at each p-value we can assess the pruning impact
of ψ. From these results we conclude ψ provides a higher
impact on pruning than the p-value. Finally, we measure the
combined impact of ψ and the p-value on pruning with the
quotient (not shown in table) between the number of pairs at
ψ = 30 and p = 0.01 and the total number of pairs from Table
VI without any pruning: for the Heart data set the number
of pairs goes down to 0.5% and for the Thyroid data set to
17%. In summary, pruning is essential to obtain a manageable
number of significant pairs, especially for the Heart data set.

Table VIII gives a breakdown of the total execution time
to explore the entire dimension lattice, generate pairs and
apply the parametric test. These times include the JDBC
overhead to submit queries and retrieve results. As we can
see most computations take significant time, despite F being
a small data set. Traversing the dimension lattice is the slowest
operation for Heart; this step requires creating an output group
for each dimension combination and it is I/O bound since
it requires visiting every F row. This step exploits Property
4, introduced in Section III-B, to traverse the lattice more
efficiently. Filtering and saving pairs is the slowest operation
for Thyroid: time to append records depends more on the table
size than the number of pairs being appended.

Table IX shows the impact of optimizations. To compare
time to traverse the dimension lattice we use ψ = 0 and ψ =
30. We use d = 12 on both data sets. Precomputing the d cube

TABLE VIII
PROFILE OF CUBE EXPLORATION; ψ = 30, d = 12 (TIMES IN SECS).

Data set Step Time %
Heart Compute N,L,Q on lattice 151 31%

Compute µ, σ from N,L,Q 70 14%
Create group pairs using δ 97 20%
Compute test statistic each pair 91 18%
Filter & save pairs based on p-value 87 18%

Thyroid Compute N,L,Q on lattice 6162 32%
Compute µ, σ from N,L,Q 684 4%
Create group pairs using δ 747 4%
Compute test statistic each pair 651 3%
Filter & save pairs based on p-value 10923 57%

TABLE IX
OPTIMIZATIONS: COMPUTINGNLQ (TIME IN SECS).

Step Data set N Y
Precompute cube & NLQ lattice Heart 670 650
Index on dimensions Heart 690 650
Prune at ψ = 30 Heart 6128 650
Precompute cube & NLQ lattice Thyroid 2459 1917
Index on dimensions Thyroid 2598 1917
Prune at ψ = 30 Thyroid 6145 1917

and computing N,L,Q is compared with directly computing
N,L,Q from F . That is, we want to understand if it is worth
it to compress the (small) data set by precomputing the cube at
the finest granularity level. As we can see there is an important
performance improvement for the Thyroid data set. An index
on all dimensions is compared with a simple primary key for
each group (i.e. a group id), to understand the reduction on
time to search each group efficiently. The index on dimensions
has indeed a significant impact on performance for Thyroid.
Finally, ψ = 30 is an essential optimization since it reduces
time to 10% for Heart and to less than one third for Thyroid.

E. Scalability

Table X shows scalability of our method with large data
sets. We replicated each medical data set 100, 1000, and 10000
times, storing records in a random order. The algorithm was
run with all dimensions from each data set, p = 0.1 and ψ =
0.05. The significant pairs obtained from the large data sets
were exactly the same as those from the small data sets. In
order to understand the impact of n on time we include two
time measurements. The first column (lattice) shows the time
needed to produce the groups and their statistics NLQ in order
to apply the statistical test; such time measurement considers
computing the cube at the finest aggregation level from F and

TABLE X
SCALABILITY VARYING n (TIMES IN SECS).

Dataset n Lattice Total
Heart 65500 143 490

655000 147 498
6550000 168 539

Thyroid 91720 1093 3310
917200 1104 3335

9172000 1142 3433
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Fig. 3. Time to compute cube varying d.

TABLE XI
ENTIRE PROCESS (TIMES IN SECS).

Heart Thyroid
d ψ = 0 ψ = 30 ψ = 0 ψ = 30

2 5 1 2 1
4 6 2 7 4
6 27 9 33 17
8 139 43 156 75

10 913 200 838 388
12 6128 670 6145 2459
14 - - 74995 28215

computing NLQ by traversing the lattice. The second column
(total) shows time for the entire process. We can see that n
has a modest impact on the time to traverse the lattice on both
data sets. The overall impact on total time is even smaller:
for the Heart data set increasing size 100-fold increases time
only by 5% and for the Thyroid data set a 100-fold growth
produces merely a 4% growth. These results prove our method
can analyze large data sets.

Figure 3 illustrates scalability as we vary the number of
dimensions d to traverse the lattice and create groups. The
first graph graph corresponds to the Heart data set and the
second one refers to the Thyroid data set. The impact from ψ
is important for the Heart data set, highlighting the reduction
in the number of pairs and time, especially at the highest d.
The performance gap is smaller for Thyroid, but still above
50%. This is an indication ψ needs to be increased to get larger
groups and fewer pairs. These experiments show the challenge
for our problem is d and not n.

Table XI illustrates time scalability for the entire process.
These times include the JDBC overhead to submit queries
and retrieve results. Time complexity grows exponentially as
d increases, highlighting the expensive search process for
significant pairs. Our pruning strategy using ψ significantly
accelerates processing for the Heart data set reducing time
to almost 10% and it produces over 50% improvement for
the Thyroid data set. These trends indicate pruning with ψ is
essential to make the problem tractable.

V. RELATED WORK

To the best of our knowledge, we are the first to propose the
integration of statistical tests and OLAP cubes. Statistical tests
have been extensively applied in the medical literature [20],

but they have not been combined with exploratory database
techniques, as proposed in this work. On the other hand,
OLAP cubes have been studied in the database literature for
efficient ad-hoc analysis [5], [10], [9], [19], but have never
been extended with statistical tests. Our approach goes a step
beyond by comparing pairs of groups with a statistical test
obtained with automated cube exploration.

This work is a continuation of previous studies using data
mining, statistical and machine learning techniques on medical
data sets to improve heart disease prediction [6], [7], [17], [15].
In [3], neural networks were used to predict heart response
based on exercise stress and heart muscle thickening images.
A basic set of search constraints for association rules was also
introduced in [17], and experimental results stress their impor-
tance. Reference [15] introduces techniques to learn predictive
association rules for disease prediction by testing and filtering
them on independent subsets of a data set. Our work exhibits
similarities with [17], [15] in the sense that we explore a large
search space to find interesting results. However, there are
important differences: one association rule refers to one group
of patients, whereas a pair relates two; association rules require
binned (discretized) numeric attributes; the p-value is different
from confidence. OLAP techniques allow exploration of binary
dimensions, but the the parametric test allows comparing
numeric attributes (degree of disease in this case). We stress
parametric tests are not a substitute for a predictive model,
but a complementary technique to analyze medical data sets.
Also, statistical tests have wider applicability given their more
general assumptions.

Related work on improving disease diagnosis with data min-
ing techniques includes the following. Reference [4] looked at
two different datasets to predict radiation pneumonitis based
on superior-to-inferior tumor position, maximum dose, and
D35; while a predictive statistical model based on one of
the datasets did not perform well, when both datasets were
used, the result was greatly improved. In a different study,
multivariate analysis was used in [14] to determine that in
addition to only using PSA (prostate specific antigen) and DRE
(direct rectal examination) to screen patients for PC (prostate
cancer), one should also look into other factors, such as age
and family history. In these two studies, the first looked at
a set number of factors while the second analyzed different
sets of factors. In terms of analysis results, the last reference
most closely matches our proposal. However, our method takes
subset analysis even further: our method can find all significant
subsets from a given set of factors without user participation.

We close this section discussing related work on OLAP
from the database field. OLAP and a taxonomy of aggregations
originates in the seminal paper [9]. In database research most
approaches avoid exploring the entire cube but since medical
data sets are small, the cube dimensionality is lower and
several pruning strategies are used, it becomes feasible to
search for significant pairs on the entire cube. Reference
[10] summarizes several techniques to accelerate OLAP cube
computations. Key differences are: (1) our summary tables
contain sufficient statistics for the parametric test; (2) we focus
on multiple pairs of groups instead of analyzing single groups;
(3) mean comparisons are made with the statistical test and not
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comparing averages directly. Similar to our proposal, OLAP
operations are used as a mechanism to find interesting patterns
in [12]. However, instead of mining collections of similar rules
referring to single groups in order to gain knowledge that
cannot be obtained from individual rules, we analyze pairs
of groups within subcubes to detect significant differences.
In [19] the authors explore techniques to guide the user
to interesting cube regions in order to highlight anomalous
behavior, by identifying exceptions. That is, they identify
values in cells of a data cube that are significantly different
from some expected value, based on a regression model.
In contrast, we propose to use statistical tests to do pair-
wise comparison of neighboring cells in subcubes to discover
significant metric differences between highly similar groups.
Our optimizations generalize downward closure properties of
association rules [10] to multidimensional group pairs and
avoid generating many unnecessary patterns.

VI. CONCLUSIONS

In this article, we proposed integrating OLAP cube explo-
ration and statistical tests to analyze medical data sets. Para-
metric statistical tests are applied on pairs of similar groups
in order to find significant measure differences caused by
some discriminating dimension. Cube dimensions are typically
represented by risk factors and cube measures represent degree
of disease or health. Our approach can produce statistically
reliable results with both large and small subsets. We introduce
several optimizations. We use a frequency threshold used to
eliminate small groups, reduce the number of pairs and ac-
celerate dimension lattice exploration. Sufficient statistics are
used to directly derive the mean and standard deviation from
the cube in one pass. Pair generation is optimized to avoid
generating unnecessary pairs. The cube incorporates an index
on all dimensions for efficient pair generation. Automatic cube
exploration, the parametric statistical test and optimizations
are assembled into one efficient and comprehensive algorithm.
We discussed interesting experimental results on two medical
data sets, for heart and thyroid disease respectively, illustrating
the applicability of our approach to contrast similar groups of
patients having significant differences in degree of disease.
In the case of heart disease we identified combinations of
risk factors (absent and present) which can lead to disease
(stenosis) in the four heart arteries. Group pairs with several
dimensions provide specific profiles of patients who have
developed disease. Significant pairs can help identifying im-
portant risk factors that trigger health issues in any of the
four arteries, isolating patient groups for further analysis and
improving disease diagnosis with new patients. From a scala-
bility perspective, experiments show it is feasible to search an
entire cube with low dimensionality for significant group pairs
by applying our pruning and filtering techniques. Experiments
also show there is a significant reduction in the number of
groups and pairs when using the frequency threshold and a
strong significance p-value, thereby producing only medically
relevant results and improving their interpretation.

There are many research issues for future work. We want
to understand the interrelationship of degree of disease for

groups having two or more significant measure differences.
The findings of the parametric test can also be used as a pre-
processing step for building predictive models. Our method
will be part of a data mining tool incorporating predictive mod-
els, data mining and data transformation to be used in medical
research. We plan to apply our tool on other medical data sets
for heart disease and cancer, to be obtained from other medical
institutions. We need to use imputation techniques to improve
data quality of attributes with a significant fraction of missing
information. Medically significant pairs can be validated with
alternative statistical techniques. We want to introduce further
optimizations to prune insignificant or redundant patient group
pairs. There exists a big family of alternative statistical tests
that can also be applied in OLAP cubes.
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