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ABSTRACT
In On-Line Analytical Processing (OLAP), users explore
a database cube with roll-up and drill-down operations in
order to find interesting results. Most approaches rely on
simple aggregations and value comparisons in order to val-
idate findings. In this work, we propose to combine OLAP
dimension lattice traversal and statistical tests to discover
significant metric differences between highly similar groups.
A parametric statistical test allows pair-wise comparison of
neighboring cells in cuboids, providing statistical evidence
about the validity of findings. We introduce a two-dimensional
checkerboard visualization of the cube that allows interac-
tive exploration to understand significant measure differ-
ences between two cuboids differing in one dimension along
with associated image data. Our system is tightly integrated
into a relational DBMS, by dynamically generating SQL
code, which incorporates several optimizations to efficiently
explore the cube, to visualize discovered cell pairs and to
view associated images. We present an experimental evalu-
ation with medical data sets focusing on finding significant
relationships between risk factors and disease.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; I.3.6 [Computer Graphics]: Methodology
and Techniques—Interaction techniques

General Terms
Algorithms, Human Factors, Performance

Keywords
Parametric test, cube, visualization

1. INTRODUCTION
In a modern data mining environment users have a wide

spectrum of options to analyze a data set going from simple
queries to building machine learning and statistical mod-
els. On-Line Analytical Processing (OLAP) [5, 11] is an
important application of exploratory database analysis that
is complementary to such approaches. In an OLAP database
users generally explore a large fact table with aggregations
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performed at multiple granularity levels trying to find in-
teresting results. In OLAP most computations return sim-
ple univariate statistics such as sums, row counts, means
and standard deviations. On the other hand, data mining
[7, 11], statistical [13] and machine learning [17] techniques
generally build models of varied complexity on a data set, de-
pending on problem requirements. A comprehensive family
of statistical tests sit somewhere in the middle between uni-
variate statistical analysis and complex statistical models.
Our tool shows parametric statistical tests are a promising
technique to explore OLAP cubes.

Statistical tests [22] exhibit several advantages over sta-
tistical and machine learning models. They have simple and
weak assumptions about the probability distribution behind
the data set. In our case, such distribution generally comes
in the form of a normal (Gaussian) distribution, or a closely
related probability distribution function. Statistical tests
use mathematically simple equations that can be efficiently
evaluated with SQL queries because they generally do not
require vector or matrix manipulation. Statistical tests can
produce statistically reliable results with both large data sets
and small data sets, whereas many data mining and machine
learning techniques require large data sets in order to find
significant results. It is important to notice that small data
sets may appear even when working with large databases,
due to analyzing a database at coarse aggregation levels (e.g.
grouping by store) or when the distribution behind some se-
lection attribute is skewed (e.g. zipf). On the other hand,
compared to standard exploratory OLAP analysis, statisti-
cal tests provide more evidence that a finding is indeed sig-
nificant, going beyond simple comparisons or getting vari-
ance proportions. Nevertheless, statistical tests generally
require many trial and error runs before a plausible finding
is made and each run requires varying parameters or select-
ing subsets of the data set. With such motivation in mind,
our tool automates the process of exploring cuboids from a
low dimensional cube trying to find significant measure dif-
ferences supported by statistical tests. Since the lattice be-
hind the cube dimensions represents a combinatorial search
space the problem is computationally challenging; several
optimizations are incorporated to make the exhaustive com-
parison process faster. Our current application is in medical
databases.

This is an outline of the rest of the article. Section 2
introduces basic definitions for OLAP databases and statis-
tical tests. Section 3 explains how our tool automatically
applies statistical tests on all cuboids from a cube. Sec-
tion 4 presents an experimental evaluation of visualization



Figure 1: Discovering group pairs with significant
measure differences.

and database optimizations with medical data sets. Related
work is discussed in Section 5. The conclusions are presented
in Section 6.

2. DEFINITIONS
Let F be a fact table with n records having d cube di-

mensions [11], D = {D1, . . . , Dd}, a set of e measure [11]
attributes A = {A1, A2, . . . , Ae} and an additional set of f
image attributes I = {I1, . . . , If}. This set I is required
only for visualization. The data structure representing all
subsets of dimensions and their containment is called the
dimension lattice [11]. Due to their simplicity and wide ap-
plication in the medical domain we restrict dimensions to
be binary. The set of image attributes represents a single
image, where each attribute can be a pixel, an image seg-
ment or an image region. In OLAP processing, the basic
idea is to compute aggregations (sum(), count()) on mea-
sures Ai by subsets of dimensions (i.e. cuboids or cuboids)
G s.t. G ⊆ D, effectively performing aggregations at differ-
ent granularity levels. The set of all potential aggregations
at a certain level is called a cuboid and one specific group
is called a cell. In our case, aggregations are used to derive
univariate statistics such as µ, σ, which in turn are the ba-
sic elements in the equations of a parametric statistical test,
introduced in Section 3.

Example
In Figure 1 we present an example of a cube having three di-
mensions D1, D2, D3. Each face represents a 2-dimensional
cuboid. As can be seen, there exist two sets of cell pairs
within one cuboid that differ in exactly one dimension. The
difference in fill pattern is indicating there is a significant
difference on a measure attribute.

3. APPLYING STATISTICAL TESTS
ON OLAP CUBES

This section introduces our main technical contributions.
We explain how to apply statistical tests to explore OLAP
cubes. We propose an algorithm that explores the cube
at several dimension granularities to compare highly simi-
lar groups. Since we consider data sets with alphanumeric
and imaging attributes, our algorithm performs processing
of image attributes in order to provide visualization. We
introduce optimizations to generate efficient SQL code. We
discuss the application of our research in medical databases.

3.1 Statistical Tests
Instead of looking for unusual patterns in cuboids like pre-

vious work [8, 10, 9], we propose to use a statistical test to
compare pairs of cells in cuboids, providing a more reliable
discovery. Most existing work relies on simple comparisons
and multi-level aggregations to find interesting findings. In-
stead, in our approach we exploit a parametric statistical
test comparing populations means [22]. Such approach pro-
vides the following advantages:

• Two large groups of any size can be compared. Two
groups with very different number of elements can be
compared (e.g. a large and a small group).

• The means comparison takes into account data vari-
ance, which measures measure overlap between the
corresponding subpopulations.

• In the case of OLAP, dimensions can be used to focus
on highly similar groups, differing in a few dimensions.

• It represents a natural extension of OLAP computa-
tions since it relies on distributive aggregations [9].

• Measures are assumed to have a normal distribution,
which is applicable in most cases.

We now describe the parametric statistical test in more
formal terms. We use a statistical comparison test of the
means µ1, µ2 from two data subsets (populations), where
the size of each data subset is N1, N2. Each data sub-
set is assumed to be an independent sample. In this case
the null hypothesis H0 states that µ1 = µ2 and the goal is
to find cells where H0 can be rejected (deemed false) with
high confidence 1− p, where p generally takes the following
thresholds, p ∈ {0.01, 0.05, 0.10}. Therefore, the so-called
alternative hypothesis H1 asserts µ1 6= µ2. When H0 can
be rejected the test will return the significance level p; such
outcome will allow us to provide strong statistical evidence
supporting H1 : µ1 6= µ2. Otherwise, when p > 0.1 there
does not exist a significant means difference. We use a two-
tailed test which allows finding a significant difference on
both tails of the Gaussian distribution. The statistical test
relies on Equation 1 to compute a random variable z with
pdf N(0, 1):

z =
|µ1 − µ2|√

σ2
1/N1 + σ2

2/N2

, (1)

where µi, σi correspond to the estimated mean and stan-
dard deviation from group 1, 2, respectively. When both
groups are large the z value just needs to be compared with
zp/2 in the cumulative probability table for N(0, 1) (e.g.
z0.495) When either group is small or both groups are small



the statistical test requires computing the degrees of freedom
as

df = N1 + N2 − 2 (2)

and then looking up z on the t-student distribution table
according to df . This implies that either N1 > 1 or N2 > 1
because df ≥ 1. If one group is much larger than the other
one then there exists a row for df = ∞. For instance, it
is possible to compare a singleton set with a large set of
records.

Applying the statistical test on cubes
Applying the statistical test has two goals: (1) finding sig-
nificant differences between two groups in a cuboid on at
least one measure. Finding two or more significant mea-
sure differences is desirable, but rare. (2) When there ex-
ists a significant difference we focus on groups that differ in
one dimension, which can explain cause-effect. Even though
dimensions are considered independent the aggregation au-
tomatically groups records with correlated dimensions to-
gether. Therefore, if a high correlation exists in binary di-
mensions it will be automatically considered. With respect
to the first goal, when applying a statistical test a significant
difference can only be supported by a small p-value which
takes into account both the means and the standard devia-
tion of the distributions. The smaller the p-value the more
likely the difference between both groups is significant. It is
expected that many differences will not be significant, mak-
ing the search problem expensive. Regarding the second
goal, we are interested in finding significant differences in
highly similar groups because that helps explain which spe-
cific dimension “triggers” a significant change on the cuboid
measure. For instance, finding a significant measure dif-
ference, between two highly dissimilar groups, makes causal
explanation difficult, since such difference may be attributed
to two or more dimensions. Nevertheless, such less signifi-
cant findings can be stored on additional tiers of group pairs.

3.2 Algorithm
We introduce an algorithm that integrates cube explo-

ration, statistical tests and visualization. Our algorithm has
the following goals: (1) exploring all cuboids from F when
d is medium or low. Otherwise, when d is large, explor-
ing all cuboids based on k dimensions selected by the user
s.t. k < d. (2) running the statistical test for every pair.
(3) selecting significant pairs differing in δ cube dimensions.
(4) interactive visual exploration of the cube together with
statistically significant results. (5) efficient visualization of
image data associated with each group.

Our algorithm basically computes the entire cube, explor-
ing the entire dimension lattice and then applies statistical
tests for every pair. The algorithm assumes a low d or al-
ternatively low k, binary dimensions, which is common in
medical databases. Our tool applies a top-down approach
exploring all cuboids from a cube, working level-wise.

The algorithm input and output is as follows:

• Input parameters: maximum p-value, δ threshold of
maximum # of different dimensions (generally δ = 1).

• Output: a table C containing all cell pairs differing in
δ dimensions.

The algorithm steps are the following:

1. Precompute cube with d dimensions on all e measures
getting groups at the finest granularity level.

2. Traverse the lattice. Compute sufficient statistics N, L, Q
for every group in the dimension lattice.

3. Create group pairs with groups differing in at most δ
dimensions.

4. Compute subpopulation parameters µ1, σ1, µ2, σ2 , based
on n, L, Q.

5. Compute a statistical test for every cell pair on the
same level of aggregation.

6. Select pairs having significance value < p with at most
δ different dimensions. Categorize results into tiers
having 1,2,3 dimensions differences.

When d is small or medium (e.g. our medical data sets),
the table F is first aggregated at the finest granular level
as given by D1, . . . , Dd and then the cube exploration pro-
ceeds with subsets of dimensions having d − 1, d − 2, . . . , 1
dimensions. Otherwise, we assume the user selects k di-
mensions s.t. k < d. Cube pre-computation automatically
eliminates groups with zero records (empty groups). When
d is large the user specifies a small subset of k dimensions
that can be analyzed interactively. Given the combinatorial
number of dimension subsets and hence pairs, it is infeasi-
ble to explore all of them. Given one level of aggregation
the algorithm performs a pair-wise test-based comparison of
all group pairs. Such comparison is made on each of the
measure attributes. The algorithm tries a list of increasing
p-values, in order to find the smallest p value at which H0

can be rejected. If p > 0.1 then the test shows there is little
evidence µ1 6= µ2.

3.3 Exploration and Visualization
After the cube has been built, either with the d or k di-

mensions, the user can explore it and visualize results. Our
prototype allows visualizing pre-processed images through
summarization, sampling or visualizing the entire set for a
group. We are currently exploring the visualization of in-
dividual raw images, when images are not uniform or are
bigger. For the remainder of the article we will assume F
has pre-processed images at a low resolution. In the case of
medical databases image attributes are generally standard-
ized, allowing uniform techniques for visualization. That is,
image attributes have been already pre-processed when they
are stored in the DBMS.

Our prototype can do the following:

1. Visualizing the cube and all cuboids in a 2D represen-
tation.

2. Highlighting significant pairs of cells indicating their
different dimension and equal dimensions.

3. Isolating the measure attribute where the significant
difference was found.

4. Visualizing associated image data based on image sum-
maries or randomly selected samples (to speedup visu-
alization)



5. Interactively navigating the cube, allowing the user to
jump from one cell to another cell.

The 2D representation of the cube follows a checkerboard
display similar to a Karnaugh map (as used in digital de-
sign), where cells differing in one dimension are visually
linked. Each cell has a fill pattern determined by the 1s
and 0s determined by the specific aggregation group it rep-
resents. Image summaries provide an accurate representa-
tion on what an average record looks like; this is enabled by
image standardization. Samples are needed to inspect a few
images coming from a large group since it would be infeasi-
ble to manually inspect a large number of images. When the
user switches from one pair to another pair the program dy-
namically retrieves and displays the corresponding average,
sample or “all” images, based on user’s selection. In general,
our prototype retrieves records and imaging attributes from
tables in the DBMS.

3.4 Optimizations
Our tool generates standard SQL code and it can connect

to any relational DBMS through the JDBC interface. After
exploring a cube the tool produces an output table with
the most important group pairs where mean differences are
significant, indicating which dimensions are equal and which
specific dimension is different.

Our algorithm was implemented by dynamically generat-
ing SQL queries to build the d-dimensional cube, traverse
the lattice, form pairs and compute the statistical test. We
found several issues in trying to optimize SQL queries. (1)
It is not possible to pre-define a general-purposes primary
index for the cube because d may vary and the correspond-
ing columns will be different, given different fact tables F .
Instead the cube table has either a simple primary key to
uniquely identify groups (cube cells) or a primary index on
the dimensions. (2) A search for a specific cell requires han-
dling nulls and “All” separately. In particular they were
coded as negative integer values (i.e. codes different from
0 and 1). (3) Traversing the entire dimension lattice is the
most time-consuming stage, especially for subsets of dimen-
sions around d/2. (4) OLAP cubes combined with statistical
tests are not an“association rule”problem. (5) When visual-
ization is required, it may be necessary to inspect individual
record images to get a more concrete idea about statisti-
cal findings or when images have not been pre-processed.
Therefore, image sampling is required when N is large for
some group.

Computing statistical tests on cubes although it seems
a similar problem to association rules [11], it is different
because there is no“minimum support”threshold and binary
dimensions are not equivalent to items [2]. This is because
both 1 and 0 are used to get groups, whereas association
rule algorithms generally consider only 1s. Each group may
have any combination of 0s and 1s in the dimensions.

We introduce the following optimizations: (1) All aggre-
gations are stored on the same table. This table contains all
cuboids at different aggregation granularities. The table has
a secondary index on all dimensions coding “All” and “null”
separately. (2) Search for a specific cell is indexed. The
secondary index allows efficient retrieval of cell pairs and
associated image data in one indexed search per group (i.e.
two indexed searches per pair). (3) All measure and image
attributes are uniformly manipulated with sufficient statis-
tics N, L, Q, to be explained below. We are not currently

interested in finding significant differences in image regions,
but sufficient statistics open that possibility. (4) When there
are image attributes we introduce two optimizations. Image
attributes are aggregated per cell for visualization. Each cell
has its “average” image. That is, OLAP computations are
extended to image attributes. Individual images can be vi-
sualized performing sampling from a specific group from F ,
or all images can be visualized when the group (cell) has a
small N . Image retrieval is done in a single query, retrieving
all image information for display purposes. Once images are
retrieved they are held in main memory for visualization.

Contrary to common intuition, when d is small a“bottom-
up” level-wise algorithm is not used. Since dimensions are
assumed to be independent and the statistical test relies
on averages rather than counts (frequencies), downward clo-
sure (“association rule”-like) optimizations are not applica-
ble. That is, we cannot explore k − 1-dimensional cuboids
in order to prune out k-dimensional cuboids. In fact, a sig-
nificant means difference might be found between cuboids
having very different N1, N2. This leads to an exhaustive
search process, computationally expensive for a high-d cube.

The tool uses the following optimizations for efficient sta-
tistical test computation: (1) F is aggregated at the finest
granular level producing a cube table C and further coarser-
grained aggregations are computed from C. This step is
extremely important to eliminate empty cells in the cube.
Only groups (cells) with N > 0 participate in further pro-
cessing. (2) Sufficient statistics are computed on each cell so
that univariate statistics can be derived in one pass. Such
statistics include count(*), sum(Ai) and sum(A2

i ) for a mea-
sure column Ai. More specifically, Ni, Li =

∑
Ai, Qi =∑

A2
i for each Ai. This idea is also applied to image data:

NI
i , LI

i =
∑

Ii, Q
I
i =

∑
I2

i for Ii. Then µ1, µ2, σ1, σ2 are
easily derived from sufficient statistics. (3) In general, for
large groups it is required to compare the test statistic against
a given z value using the normal N(0, 1) distribution, which
generally requires looking up a value in a small table. We
introduce a simple optimization, finding the significance of
the test statistic without visiting such table with a CASE
statement based on the specific p-values commonly used in
the medical domain (p ∈ {0.01, 0.05, 0.10}). That is, finding
zp/2 for the two-tailed test is done in main memory. On
the other hand, when the group is small (say < 30) we per-
form an indexed search on the t-student distribution using
df as the search key. (4) Depending on input parameters,
the SQL code will compare only groups having up to δ di-
mension differences, being δ = 1 the default. This means
groups in a pair must differ in up to δ dimensions in order
to be compared.

3.5 Medical Application: Finding Differences
between Similar Groups

Table 1 shows actual significant findings on a medical data
set, explained in more detail in Section 4. Each row repre-
sents the comparison between two patient groups, differing
in one dimension indicated by “0/1”. Cube dimensions are
well-known risk factors for heart disease including family
history of heart disease, diabetes, gender, high cholesterol
and high blood pressure. For a given group, each matching
dimension will be 0, indicating absence of a risk factor, 1
indicating presence of a risk factor, or “All” indicating such
dimension was ignored in the aggregation. When p is small
it indicates two highly similar groups of patients, differing



D1 D2 D3 D4 D5 N1 N2 A1 A2

FamHist Diab Gender HighChol highBP LAD RCA
0 All All 1 0/1 35 23 p > 0.1 p ∈ [0.01− 0.05]
0/1 All All 1 0 35 26 p > 0.1 p < 0.01
All 0/1 All All All 47 157 p < 0.01 p < 0.01

Table 1: Medical database: group pairs with significant measure differences.

Figure 2: OLAP statistical test GUI.

in exactly one risk factor have a high likelihood of having a
different artery health (medical measurement of artery nar-
rowing in this case).

3.6 GUI for Visualization and Exploration
We are currently applying our prototype on a medical data

set having heart images, where such images are normalized.
The images are pre-processed to get 32 regions, describing
an 8×4 2-dimensional map of the heart muscle. For medical
interpretation these 32 regions are condensed into 9 regions
that are in the range [-1,1]. A value close to -1 indicates
a healthy region, whereas numbers closer to +1 indicate a
severe degree of disease, with 0 being neutral. These num-
bers allow visualizing a spectrum of patients’ health in color.
This scale also allows a uniform visualization technique for
heart images of diverse patients.

Our tool GUI and visualization aids is illustrated in Fig-
ure 2, where the medical doctor can select cube dimensions,
cube measures and image attributes. The output from the
tool is shown in Figure 3 (for an average image per group)
and Figure 4 (with a sample of heart images per group). The
tool allows 2D visualization for the dimension lattice on the
left panel for a specific dimensionality k, where 2 ≤ k ≤ d.
This 2D visualization is based on a checker board display,
where red means “1” (risk factor present) and blue means
“0” (risk factor absent). Since this checkerboard is based on

a set of k selected binary dimensions there are up to
(

d
k

)
cells. A pair of cells linked by the green lines means they
differ in one dimension, which highlights a specific risk fac-
tor triggering heart disease. The left upper part indicates
dimensions which are equal, while the right panel indicates
the specific dimension that is different for each group (dia-
betes in this case). For heart image attributes, on the right
two windows the medical doctor can visualize for a group
with many records a summary of all its images, or alterna-
tively, a sample dynamically retrieved from the database.
Otherwise, when the group is small enough all its images
can be visualized (perhaps as thumbnails). In short, these
two windows enable visualization of image data, with a scale
going from -1 (very sick) to +1 (completely healthy).

4. EXPERIMENTAL EVALUATION
Our tool is an OLAP query generator developed in the

Java language, where queries are written in ANSI SQL for
maximum portability. Our tool connects to the DBMS via
the standard JDBC (Java Database Connectivity) interface.
We conducted our experiments on a modern DBMS. The
DBMS was SQL Server running on a server with a CPU at
3.2GHz, 4GB of memory and 750GB on disk.

4.1 Data Sets
We performed experiments based on two real data sets

coming from the medical domain. The first medical data set
contains profiles of n = 655 patients and has 25 attributes
containing categorical, numeric and image data. This data
set was obtained from a hospital and we call it the “Heart”
data set. There were medical measurements such as weight,
heart rate, blood pressure and pre-existence of related dis-
eases. Finally, the data set contains the degree of artery
narrowing (stenosis) for the four heart arteries. All numeric
attributes were converted to binary dimensions. There were
d = 12 binary dimensions (e.g. gender, hypertension Y/N),
e = 4 measures (artery disease measurement) f = 9 image
attributes representing a standardized image of the heart.
The second data set was obtained from the UCI Machine
Learning repository [3] and we call it “Thyroid”. The Thy-
roid data set contained the profiles of n = 9, 172 patients.
We transformed this data set to have d = 10 binary di-
mensions and e = 5 measures; this data set had no image
attributes. These data sets were treated as the fact table F ,
defined in Section 2.

4.2 Default settings
For our medical data sets our goal was to explore the en-

tire dimension lattice. Therefore, we used all d dimensions.
The settings for parameters were as follows. p = 0.01, δ = 1,
which can be interpreted as follows. We want to find signifi-
cant measure differences, with 99% confidence, on all group
pairs differing in one dimension. A group pair in the cube



Figure 3: Cube exploration in 2D and image visualization (average image).

can have from 1 to d dimensions, out of which one will be
different. It is possible, but unlikely, that a group pair has
significant differences in two or more measures.

4.3 Significant Group Pairs
We provide a summary of pairs having a significant dif-

ference in at least one measure for both data sets. Table
2 summarizes significant pairs, which represent potentially
valuable medical knowledge. Those pairs where p < 0.01 are
valuable since they show a discriminating risk factor (binary
dimension) causes a significant measure change. Those pairs
whose p-value is between 0.05 and 0.10 are considered unim-
portant findings and therefore we do not show them. The
most important pairs are those with a few equal dimensions
(1 or 2) because they are general and involve larger groups,
and those with many equal dimensions (8 for Heart data set
[19], 10 for Thyroid data set [3]) because they summarize re-
dundant subsets in the middle of the lattice, but they tend
to be specific.

4.4 Image Visualization
We now discuss experiments for image visualization. These

experiments illustrate the interactive response of our tool
to explore the cube, isolate significant pairs and visualizing
associated image data. We recomputed the cube at each d
and then we measured the time to retrieve one group at each
d. Based on expert opinion, we initially ranked dimensions
in order of medical importance so that the most important
dimension had rank one. Figure 5 shows time growth to
retrieve images from the database. We compare the time
to visualize the “average” image versus sampling one image

Table 2: Significant group pair differences.
Data Set p-value # equal dims # pairs
Heart <0.01 1 6
Heart <0.01 2 76
Heart <0.01 3 378
Heart <0.01 4 974
Heart <0.01 5 1436
Heart <0.01 6 1287
Heart <0.01 7 705
Heart <0.01 8 201
Heart <0.01 9 0
Thyroid <0.01 1 8
Thyroid <0.01 2 88
Thyroid <0.01 3 406
Thyroid <0.01 4 1068
Thyroid <0.01 5 1780
Thyroid <0.01 6 1966
Thyroid <0.01 7 1441
Thyroid <0.01 8 680
Thyroid <0.01 9 188
Thyroid <0.01 10 23



Figure 4: Cube exploration in 2D and image visualization (sample of images).

from one cube cell (group); times are in milliseconds. In
this case the cube is already pre-computed and we dynami-
cally retrieve one average or one sample image for the group
based on the following common medical dimensions: oldyn,
sex, diab, hta, highchol. This represents a highly interest-
ing group with specific risk factors. The left graph shows
the time to retrieve images in this group varying n. In this
case the time to retrieve an average image remains constant
because the average image is already precomputed from suf-
ficient statistics and the search is fully indexed for equality
search. On the other hand, the time to retrieve one sample
image grows with n because the group also grows in size.
The plot shows time to retrieve all images as d grows, with
C being recomputed at every d. We do not include the time
to precompute C in the time to retrieve images. We can see
the time to get the average image grows slowly as d grows
showing an asymptotic behavior. On the other hand, we
can see the time to get a sample image from one group gets
increasingly faster because the group shrinks in size. The
time to retrieve one sample should be greater than the time
to retrieve the average image because the sample is dynam-
ically obtained from one group which cannot be obtained
through a fully indexed search.

In order to give a complete experimental evaluation on
image visualization, we now discuss experiments including
the time to retrieve all images in one cell. Table 3 shows
the times to retrieve images varying n and Table 4 has the
times to retrieve images varying d. We include the times to
retrieve the average image from the cube, one sample image
from one group and the time to retrieve all images from one
group. Notice retrieving all images from a group incurs on

Table 3: Image retrieval varying n (msecs).
n Average Sample All

655 40 31 32
1310 40 37 41
2620 40 45 75
5240 41 46 100

10480 41 49 231
20960 42 51 487
41920 42 86 907
83840 43 146 1722

significant overhead, but it may still be acceptable for data
sets having n < 100k. Our image retrieval is done in a single
query, retrieving all image information for display purposes.
Once images are retrieved they are held in main memory for
visualization.

4.5 Time complexity
Our previous experiments showed the challenge for our

problem is d and not n. Nevertheless, we created larger
data sets replicating F several times and we measured time
for the entire process. The contribution of n to total time
was so small that a plot varying n was a flat line. Therefore,
we omit such plot.

Figure 6 illustrates time scalability as we vary d. The
entire cube, cuboids, pairs and statistical test are computed
at each d. The left graph corresponds to the Heart data
set and the right graph corresponds to the Thyroid data



Figure 5: Time complexity for image retrieval; times in msecs.

Table 4: Image retrieval varying d (msecs).
d Average Sample All
1 16 125 2100
2 30 106 1279
4 39 93 506
8 42 79 203

12 43 67 94

Table 5: Profile of cube exploration (d = 12 and
d = 10, time in secs).

Step Heart Thyroid
Time % Time %

Cube & NLQ < 1 0 < 1 0
Get N, L, Q on lattice 495 31 116 34
Compute µ, σ from N, L, Q 173 11 28 8
Create group pairs based on δ 158 10 39 12
Compute test statistic 419 26 87 26
Categorize based on p-value 344 22 66 20

set. It is clear the time complexity grows exponentially as
d increases, highlighting the expensive search process for
significant pairs. However, for our medical data sets the
entire lattice is explored in a matter of minutes.

4.6 Profiling Processing Steps
Table 5 gives a breakdown of the total execution time to

explore the entire dimension lattice. As we can see most
computations take significant time, despite F being a small
data set. Traversing the dimension lattice is the slowest
operation; this step requires creating an output group for
each dimension combination and it is I/O bound since it
requires visiting every F row. Computing the test statistic
is the second slowest operation; this is mostly CPU time.
Classifying pairs into tiers for final analysis comes slightly
behind. The fastest operation is computing the cube at the
finest granularity level to get groups having d dimensions.

Table 6 compares optimizations. For the sake of complete-

Step Data set N Y Impr
cube & NLQ Heart na < 1 -
cube & NLQ n× 1000 Heart na 11 -
lattice NLQ from cube Heart 1396 1366 -2%
Primary index on dims Heart 1366 400 -70%
cube & NLQ Thyroid na < 1 -
cube & NLQ n× 1000 Thyroid na 82 -
lattice NLQ from cube Thyroid 336 216 -36%
Primary index on dims Thyroid 216 100 -54%

Table 6: Optimizations (na=not applicable,
impr=improvement).

ness, we simulated a large fact table by replicating F 1000
times. This gives two large data sets having n =655k rows
and n ≈ 9M rows, respectively. We want to understand
how much longer it takes to compute the group-by query
to get the cube on d dimensions. As we can see the cube
can still be efficiently computed on large fact tables. The
rest of the steps remain unaffected with the same measured
time. Time for computing the cube directly from the data
set F is not applicable in the first two rows. Precomputing
the d cube and computing N, L, Q is compared with directly
computing N, L, Q from F . That is, we want to understand
if it is worth it to compress the (small) data set by precom-
puting the cube at the finest granularity level. As we can
see there is an important performance improvement for the
Thyroid data set. A primary index on dimensions is com-
pared with a simple primary key for each group. In this case
we want to understand the improvement on time to search
each group efficiently. As we can see the index in dimension
has a significant impact on performance.

5. RELATED WORK
Cube exploration is a well researched topic. OLAP and

a classification of aggregations originates in the seminal pa-
per [9]. Methods to increase the performance of multidi-
mensional aggregations, by combining novel data structures
and precomputation at different aggregation levels, are in-
troduced in [1, 8]. The authors of [10] puts forward the plan



Figure 6: Time complexity to compute cube varying d.

of creating smaller, indexed summary tables from the origi-
nal large input table to speed up aggregating executions. In
[21] the authors explore tools to guide the user to interest-
ing regions in order to highlight anomalous behavior while
exploring large OLAP data cubes. This is done by identi-
fying exceptions, that is, values in cells of a data cube that
are significantly different from the value anticipated, based
on a statistical model. In contrast, we propose to use sta-
tistical tests to do pair-wise comparison of neighboring cells
in cuboids to discover significant metric differences between
similar groups. We identify such differences giving statisti-
cal evidence about the validity of findings. Reference [12]
proposes computing large lattices with a greedy algorithm.

Our work is related to applying data mining in medical
data sets to improve heart disease diagnosis [19, 18]. These
works discuss the medical significance of pairs to detect spe-
cific risks for heart disease. Neural networks are used to
predict heart response based on exercise stress and heart
muscle thickening images [4]. A basic set of search con-
straints is introduced in [20] and experimental results stress
their importance.

There has been research on visualizing OLAP cubes. Ref-
erence [15] studies the problem of improving understanding
through the use of visualization. Recent work can also be
found on the use of tools to visually and interactively ex-
plore OLAP warehouses. The authors for [24] explore the
requirements for analyzing a spatial database with an OLAP
tool. This work shows the need to apply spatial data tech-
niques, used in geographic information systems, for OLAP
exploration, in which drill up/down, pivoting, and slicing
and dicing provide a complementary perspective. In con-
trast, our work relies on statistical tests to explore OLAP
cubes and can automatically detect significant metric dif-
ferences between highly similar groups. Additional visual-
ization work was completed in [16] where the mapping of
the Cube Presentation Model, a display model for OLAP
screens, involves visualization techniques from the Human-
Computer Interaction field. In [14], the author presents a
rigorous multidimensional visualization methodology for vi-
sualizing n-dimensional geometry and its applications to vi-
sual and automatic knowledge discovery. The application of
visual knowledge discovery techniques is possible by trans-

forming the problem of searching for multivariate relations
among the variables into a two-dimensional pattern recog-
nition problem. A framework for exploration of OLAP data
with user-defined dynamic hierarchical visualizations is pre-
sented in [23]. While this study emphasizes the use of visu-
alization tools to explore data warehouses, we are proposing
a tool that not only gives the user visual aids to explore
the data, but also to present the user with a novel method
of highlighting interesting features of the cubes by means
of statistical tests. Indexing is one method of increasing
performance in the searching of images and the authors in
[6] proposed a multilevel index structure that can efficiently
handle queries on video data.

6. CONCLUSIONS
In this article, we presented a prototype which combines

OLAP cube exploration, statistical tests and visualization.
Statistical tests are applied on pairs of similar groups in or-
der to find significant measure differences caused by some
distinctive dimension. The cube is explored with automati-
cally generated SQL code. Our tool can produce statistically
reliable results on both large and small subsets. The inter-
nal aggregation algorithm incorporates several database op-
timizations. The cube is precomputed when the number of
cube dimensions is low. Otherwise, the program works with
a user-specified set of dimensions to pre-compute a lower
dimensional cube. The cube incorporates a primary index
on dimensions for efficient group search. We also introduced
optimizations for interactive visualization of the cube, statis-
tical test results and associated image data. The fact table
is indexed for efficient image retrieval. Image attributes are
uniformly treated as measures in order to get an average
representative image per group through sufficient statistics
or to collect sample images.

There are many research issues for future work. The
combination of OLAP processing and visualization creates
several research challenges. In particular, visualization of
high-dimensional cubes requires novel cube data transfor-
mation techniques. In the case of medical databases im-
age attributes can be efficiently visualized in a cell, but this
could not be done for non-uniform images: dynamic image



compression techniques could be required to interactively
visualize them. We want to study how to further optimize
pair creation and computation of statistical tests. There is a
big family of statistical tests that may be applied in OLAP
databases. The cube provides a natural way to summarize
large databases which is more difficult if underlying records
have image attributes.
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