
A Referential Integrity Browser for Distributed Databases

Carlos Ordonez1 Javier Garcı́a-Garcı́a2 Rogelio Montero-Campos2 Carlos Garcia-Alvarado1

1 University of Houston 2UNAM∗

Houston, TX, USA Mexico City, Mexico

ABSTRACT
We demonstrate a program that can inspect a distributed
relational database on the Internet to discover and quan-
tify referential integrity issues for integration purposes. The
program computes data quality metrics for referential in-
tegrity at four granularity levels: database, table, column
and value, going from a global to a detailed view, exhibiting
specific evidence about referential errors. Two orthogonal
data quality dimensions are considered: completeness and
consistency. Each table is stored at one primary site and it
can be replicated at multiple sites, having foreign key ref-
erences to tables at the same site or at different sites. The
user can choose alternative query evaluation strategies to
efficiently compute referential error metrics. Our proposal
can be used in data integration, data warehousing and data
quality assurance.

1. INTRODUCTION
Referential integrity [1] is the glue that maintains rela-

tional database components together. In a database such
components are tables and the fundamental link between
two tables is a foreign key. Unfortunately, referential in-
tegrity may be violated for several reasons: tables with sim-
ilar information, extracted from different source databases,
are integrated, referential integrity constraints are disabled
to improve performance, the logical data model evolves to in-
clude new columns or drop existing columns, or simply, some
foreign key column value is not available when a row is in-
serted. To compound the problem, nowadays many organi-
zations use several databases, residing at different locations,
communicated by the Internet. In general, such databases
are integrated into a data warehouse. Our program has
the purpose of efficiently detecting tables and identifying
columns with referential integrity problems on interrelated
tables in a distributed database on the Internet.

∗Universidad Nacional Autónoma de México.
Authors Javier Garćıa-Garćıa and Rogelio Montero-
Campos were sponsored by the UNAM project Macro-
proyecto de Tecnoloǵıa para la Univ. de la Información y la
Computación.

Copyright is held by the author/owner.
Twelfth International Workshop on the Web and Databases (WebDB 2009),
June 28, 2009, Providence, Rhode Island, USA.

Figure 1: Selecting tables and columns from LDM

2. QUALITY METRICS
The program quantifies referential errors in a distributed

database with absolute and relative error metrics. Absolute
error is useful in tables where almost zero errors are accept-
able. Such tables correspond to small lookup tables that are
infrequently updated and which are generally replicated to
improve performance and fault tolerance. Relative error is
useful in large tables, where errors can appear frequently.
Large tables typically correspond to transaction or historic
tables; these tables are replicated to improve fault tolerance
and they are periodically refreshed with new records.

Our QMs are based on foreign keys and foreign columns.
Foreign columns are those which are functionally depen-
dent on a foreign key in a denormalized table. QMs on
foreign keys measure completeness, whereas QMs on foreign
columns measure consistency.

3. DESCRIPTION OF PROGRAM
The program takes as input the logical data model (LDM)

behind the distributed database. The LDM is represented
as a directed graph, where each vertex represents a table and
each edge represents a foreign key relationship between two
tables. Tables can be stored at multiple sites and the LDM
is enriched with the http addresses of the DBMSs storing
each table, designating one as the master copy. The LDM is
internally manipulated as a list of foreign key relationships
between a referencing table and a referenced table. The



Figure 2: Query optimizations

user can inspect the entire distributed database, which re-
quires running the program in batch mode, or interactively,
by selecting one table or a few columns from one table; see
Figure 1. The database may be denormalized: some tables
may not be in 3NF [1]. In such case the user can verify con-
sistency by comparing denormalized column values against
“reference”values; we call such columns “foreign columns”.

Absolute and relative error QMs are initially computed
for each column. Then they are aggregated at the table
level and finally, they are aggregated at the database level,
in a bottom-up fashion. The program provides several query
optimization strategies, as shown in Figure 2. We adapted
common distributed query processing techniques [2] to our
problem, assuming the cost to transfer a large table is high.
The program favors iterated sampling over transferring large
tables. To process a distributed join the program can take
advantage of a replicated table, being locally stored at the
same site, but which may be outdated. When there is a need
to join tables stored at different sites the program projects
only a minimum set of primary keys, foreign keys and for-
eign attributes, covering the generated query. When a join
requires two tables stored at different sites the smallest table
is transferred via JDBC to the other site. We are currently
exploring strategies to compute a distributed join with two
large tables. The program sampling feature can approxi-
mate QMs, providing fair accuracy guarantees, that may be
improved through repeated sampling. A particular query
optimization is performing an early “group by” on foreign
keys before joining a large table to accelerate processing of
tables with several foreign keys, each having a low number
of distinct values; this optimization effectively compresses a
table before joins. Response time depends on QM results
stored from previous runs, at which sites tables are stored,
network speed, tables sizes and query optimizations.

When results are ready, the user has the ability to ex-
plore referential integrity by traversing the LDM by click-
ing on desired tables or columns. The output is a set of
QMs at three levels: database, table and column. Tables
and columns are marked green, yellow or red, indicating no
errors, some errors and signicant referential issues, respec-
tively, as shown in Figure 3. When the user is interested

Figure 3: Displaying referential integrity issues

in knowing why a certain column has a high error, he can
“drill down”on such column, getting a list of values with
referential errors, sorted by their frequency in descending
order. This list explains why errors happened and it can
help identifying critical values to fix referential errors.

4. DEMO WITH A SYNTHETIC DATABASE
Our prototype was programmed in the Java language for

portability and web access. Queries to compute QMs are
dynamically generated in ANSI SQL. The program is a web-
based application that can connect to any relational DBMS
through the JDBC interface.

We will demonstrate our prototype with a small distributed
database on the Internet, created with the TPC-H genera-
tor. A few tables will be replicated on different DBMSs,
residing at distinct geographical locations. The user can
pick specific tables and columns to compute QMs. We will
show interactive operation, where different options can be
tried to compare speed and accuracy of our different query
optimization strategies. Tables and columns having refer-
ential errors will be marked accordingly. Finally, the user
can “drill down” on the specific foreign key/column values
which contribute to referential error QMs.

5. CONCLUSIONS
Our system can inspect a distributed relational database

to discover and quantify referential integrity problems, con-
sidering normalized and denormalized databases. Quality
metrics are hierarchically computed applying several query
optimizations. As a data quality diagnostic tool, our refer-
ential integrity detective program represents a complement
to programs that measure data quality in each table indi-
vidually or in a single centralized database.

6. REFERENCES
[1] R. Elmasri and S. B. Navathe. Fundamentals of

Database Systems. Addison/Wesley, Redwood City,
California, 3rd edition, 2000.

[2] M.T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, 2nd edition, 1999.


