
OLAP-based Query Recommendation∗

Carlos Garcia-Alvarado
University of Houston

Dept. of Computer Science
Houston, TX, USA

Zhibo Chen
University of Houston

Dept. of Computer Science
Houston, TX, USA

Carlos Ordonez
University of Houston

Dept. of Computer Science
Houston, TX, USA

ABSTRACT
Query recommendation is an invaluable tool for enabling
users to speed up their searches. In this paper, we present
algorithms for generating query suggestions, assuming no
previous knowledge of the collection. We developed an on-
line OLAP algorithm to generate query suggestions for the
users based on the frequency of the keywords in the selected
documents and the correlation between the keywords in the
collection. In addition, performance and scalability exper-
iments of these algorithms are presented as proof of their
feasibility. We also present sampling as an additional ap-
proach for improving performance by using approximate re-
sults. We show valid recommendations as a result of com-
binations generated using the correlations between the key-
words. The online OLAP algorithm is also compared with
the well-known Apriori algorithm and found to be faster
only when simple computations were performed in smaller
collections with a few keywords. On the other hand, OLAP
showed a more stable behavior between collections, and al-
lows us to have more complex policies during the aggregation
and term combinations. Additionally, sampling showed im-
provement in the time without a significant change on the
suggested queries, and proved to be an accurate alternative
with a few small samples.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—Data Warehouse and Repository

General Terms
Algorithms, Experimentation

Keywords
OLAP, IR, Query Processing

1. INTRODUCTION
There have been numerous approaches for improving the

user experience while browsing digital collections [9]. ,Query
recommendation has been used extensively to provide clever

∗This research work was partially supported by NSF grants
CCF 0937562 and IIS 0914861.

c© ACM, 2010 . This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in CIKM Conference 2010.
http://doi.acm.org/10.1145/1871437.1871619

hints or suggestions for concepts related to a given query
[4]. Query recommendations are usually based on the anal-
ysis of “known queries” stored in query logs. Nevertheless,
query suggestion without any prior information or“unbiased
query suggestion” requires the analysis of vast amounts of
data, usually performed in a precomputed way (e.g. clus-
tering). As a result, an online analysis of the selected docu-
ments may look like an unfeasible option. The base assump-
tion is that users will often start their searches with näıve
queries, which are somehow related to the target query (e.g.
“Chicago Bulls” can lead to “Michael Jordan”), and the tar-
get query is reached when the user begins to understand the
collection. Given this, the resulting documents can be ana-
lyzed to return a set of queries that will allow the users to
pick any of the suggestions to refine their searches.

In order to provide such recommendation features, we ex-
ploit the knowledge discovery properties of On-Line Analyt-
ical Processing (OLAP)[7]. OLAP can be used in query rec-
ommendation to build data cubes containing the frequency
of candidate sets of keywords to be suggested to the user. A
similarly efficient approach is conducted by using the well-
known Apriori algorithm, widely used in association rules.
Although both methods are quite efficient in the computa-
tion of aggregations, performing such a task in large collec-
tions may be time prohibitive, especially if an immediate
result is needed. Therefore, we decided to use sampling as
an alternative for managing large collections in a “vanilla”
universe. In addition, the validity of our recommendations is
improved by the computation of the correlation of the terms
in the collection and analysis of the frequency of occurrence
of the recommended terms in the subset of documents.

This paper is divided as follows: In Section 2, we intro-
duce the definitions. Section 3 presents algorithms used for
obtaining valid query recommendations. Section 5 discusses
previous work in this area. Finally, Section 6 contains our
final remarks and future work.

2. DEFINITIONS
Let us focus on defining the notation. Let C be a col-

lection, or corpus, of n documents {d1, d2, . . . , dn}. Each
document di or query q is composed of a set of terms tij . In
addition, let xi be a frequency vector of all the different key-
words in C for each document di. The collection is stored
in an inverted list format within the table vtf that contains
the document id, term and position in the ith document. A
summarization table tf is computed from vtf as table with
the document id i, the term t, and the term frequency f

stored. In addition, let d̂ be a subset of documents, t̂f a

subset of terms from tf , and v̂tf a subset of vtf .
The backbone data structure for the OLAP data cubes is

the dimensional lattice, which has a size of 2t̂−1, where t̂ is
the number of terms. One level (or depth in the lattice) of

the cube is denoted by
(|t̂|
level

)
, such that level ≤

∣∣t̂
∣∣.

3. QUERY RECOMMENDATION
Our query recommendation analysis process is the result

of the aggregation of the frequencies of a set of keywords
(that have a positive correlation) appearing in a subset of
documents. In practice, it is not feasible to obtain the com-
binations of all the keywords in a set of documents. There
are often many keywords have a tractable problem. Thus, in
order to speed up the execution of the process, we select the
d̂ most important documents of the collection based on an
initial user query. Unfortunately, even with an abridged set
of documents, the number of keywords in such documents
can still be considered too overwhelming for efficient corre-
lation analysis to be conducted. As a result, we also obtain
the top-k keywords from these d̂ documents and apply an
importance metric. With these objectives, we adapted two
different approaches: using the Apriori algorithm and using
an online OLAP algorithm. Since the Apriori algorithm is
well known, we will only cover how we altered the OLAP
cube algorithm to efficiently compute recommendations.

3.1 Correlation and Metrics
The correlation will represent how related the frequency of

one keyword is with another in terms of the whole collection.
We adapted an efficient one-pass method to compute the
correlation values of unique terms in the collection [6]. In
addition to the previous definitions, let L be an additional
set containing the total sum of all the different terms in
the collection (L =

∑n

i=1
xi). Moreover, let Q be a lower

triangular matrix containing the squared measures between
the terms (Q =

∑n

i=1
xix

T
i). In the last step, the correlation

of a pair of terms a and b is obtained by applying ρab =
nQab−LaLb√

nQaa−L2
a

√
nQbb−L2

b

.

Once the combinations have been created and verified for
having valid correlations, a final analysis of the importance
of the concept can be performed by summarizing the oc-
currences of such combinations of terms in the subset of
ranked documents. We propose three different techniques
for ranking these recommendations: a single match method,
a distance method, and a correlation method.
The single match technique is built on performing a sin-

gle scan of the data counting all the occurrences based on the
appearance of the set of terms in a document. Therefore, the
occurrence of a combination will be represented by the MIN
frequency of any of the terms in the combinations within a
particular document. A user-defined threshold is used to
filter the final results. The distance match method, also
called proximity match, takes into account the position of
the terms in the document and counts the number of times a
set of selected terms in the combination appear within a cer-
tain user-defined distance, δ. As a result, highly-ranked rec-
ommendations will imply that the concept holds a stronger
meaning due to the proximity of the terms. The correla-
tion method uses the correlation table to make recommen-
dations. In this approach, the validity of a set of keywords
depends on its correlation with the initial query. We ob-
tain the correlation between each keyword of the user query

Input: level , t̂
1 : Init data structure S
2 : Init Listtf
3 : foreach<i,t̂,v> r in t̂f sorted by i
4 : if i changed
5 : Listtf ← {r.t, r.v}
6 : else
7 : C ← GetNextCombo(Listtf , level)
8 : while isCorrelated (C)
9 : if checkTolerance (v, tol)
10: SC++
11: else
12: SC ← 1
13: C ← GetNextCombo(Listtf , level)
14: return S

Figure 1: One-level online OLAP Cube algorithm.

with each keyword of the candidate set. From these, an
average correlation is then obtained to determine if the key-
word set should be recorded. The difference between these
three methods is in how the initial query is handled. For the
frequency and distance methods, the initial query is used to
filter the document collection into a more manageable size.
While the same approach is used by the correlation method,
it also takes into account the correlation between the initial
user query and the keyword set candidates.

3.2 OLAP Cube
OLAP techniques can be used to efficiently obtain query

recommendations. Figure 1 shows a general online algo-
rithm for the computation of aggregations on keywords in
the vertical format. In this algorithm, the structure S is a
data structure that is used to store the combinations of key-
words along with their frequency. The main input table for
this algorithm is the keyword table, which always contains
document id and keyword columns. The third column, v,
changes depending on the final filtering method.

The validity of a set of keywords is determined by the fil-
tering method: single match, distance, or correlation. For
the single match method, v is the frequency of the keyword.
We select the minimum frequency of the keywords to repre-
sent the set. The distance method bases the validity of a set
of keywords on their positioning. In this case, v represents
the position of the keyword in the document. The correla-
tion method bases the validity on the correlation between
the initial query and the sets of keywords. The average cor-
relation of the initial query and the candidate set is obtained
by retrieving them from the correlation tables. If multiple
levels of the lattice are desired, the online OLAP algorithm
can take a bottom-up or top-down approach.

While our algorithm may seem similar to the Apriori algo-
rithm, there are two major differences. First, our algorithm
uses main memory to compute all possible combinations us-
ing only one pass while the Apriori algorithm requires one
pass for each group of itemsets. Second, our one-pass algo-
rithm does not prune the results while the Apriori algorithm
is able to prune between different iterations.

3.3 Sampling
To further improve the efficiency, we decided to explore

the effect of sampling on both performance and accuracy.

a) Cube: i=10K,topk=5. b) Apriori: i=10K,topk=5. c) Cube: top-5 terms (NYT). d) Apriori: top-5 terms (NYT).

Figure 2: Full document scan performance for level 2 and 3.

The first step is to obtain a smaller list of documents, d̂,
based on φ(q, tf), where φ is the ranking function based on
the query and the original set of documents. From this set,
we draw τ samples, each having a d̂ = {d1, d2, . . . , dm} with
replacement from the result of φ(q, tf). The probability of

any document in d̂ of being selected in the τ samples is P (1−
(1−1/m)τ). Each of the d̂ samples of documents is then used
as a source for obtaining its top-k keywords t̂ and computing
the techniques. Finally, the scores for each combination are
obtained as the average of the frequencies. Notice that the
set of keywords t̂ is different between samples. We calculate
accuracy as the percentage of total combinations of the top k
keywords that are found through the course of the iterations.

4. EXPERIMENTS
The experiments were performed on an Intel Xeon E3110

server with 4 GB of RAM. The algorithms were implemented
in SQL and UDFs. Four different collections were used dur-
ing the experiments (see Table 1). The first collection is
a subset of the ACM Digital Library. The NYTIMES and
PUBMED were obtained from the UCI Repository. The
Texas Water Well Data Set of Texas (TWWD) was used
only for analyzing the quality of the results.
The quality of the results was validated in TWWD with

ten initial keyword queries (air, america, dissolved, infor-
mation, quality, residential, texas, treatment, waste, and
water). With these queries, we recorded the query rec-
ommendations using the frequency, the distance, and the
correlation. Table 2 shows the query recommendation re-
turned by the initial query for “information”. Of these three
approaches, the correlation method definitely returned the
most accurate results. In this case, we consider a recom-
mendation accurate if a majority of the returned queries
contains data similar to what a user might search for. The
recommendations from the correlation method are almost
always close to what the user initially queried while those
from the other two methods are often more general. For
the single and distance methods, the quality of their recom-
mendations heavily depends on the initial query. We found
an average of 25% overlap between these two recommenda-
tions. The remainder of the queries are very similar to one
another, with only subtle differences.
The set of plots in Figure 2 present the performance re-

sults of the Apriori and OLAP cube algorithms. Note that
the execution time increases with the size of the collection
because of the time required to perform the extraction of

Table 1: Collections.
Collection C Total t Avg. t per d |tf |
ACM 7675 23404 57 0.5M
NYTIMES 299752 92829 226 68M
PUBMED 8200000 134317 58 479M
TWWD 1002 129470 5926 6M

the t̂f subset. However, because the extraction of this sub-
set is obtained differently in both algorithms, the perfor-
mance change may also be different. Interestingly, such a
difference between the two algorithms provides us with some
intriguing trends. For example, the OLAP cube algorithm
performs faster on collections in which the average number
of keywords per document is large. In such situations, the
Apriori algorithm is heavily penalized because of the extra
matches that the algorithm must perform. Hence, we be-
lieve that OLAP proves to be a more stable option due to its
ability to be fairly independent of the size of the collection.
Having said this, the Apriori algorithm is still quite fast,
especially when t̂f can be extracted quickly and managed
in main memory. However, the OLAP approach is favored
whenever the computations are complex.

Figures 2c and 2d were focused on the execution time with
respect to an increasing the number of documents. The
results show that the online OLAP algorithm appears to
have a linear reaction. For the Apriori algorithm, when the
number documents to be analyzed is small, the performance
trend is similar to n2. However, as the number of documents
analyzed increases, the algorithm becomes much more sta-
ble, and is significantly faster than the cube approach. For
the online OLAP algorithm, we fully expected the perfor-
mance to be linear (depends on the number of documents).

The execution times for 10K documents become unman-
ageable. Hence, we analyzed the effect of sampling on both
overall performance and safety. Figure 3a and Figure 3b
present the performance results of executing τ = 10 itera-
tions. Each iteration would only analyze a small portion of
the overall original data set. From these experiments, the
Apriori algorithm is slightly faster on data sets with a small
average number of keywords per document. In addition, the
OLAP Cube algorithm also appears to be more stable than
the other options. However, the question arises regarding
the validity of using sampling as an approximate solution.
Figures 3c and 3d show results on the number of iterations
required to arrive to the final solution. Surprisingly, only

a) Cube: Performance. b) Apriori: Performance. c) Cube: Accuracy (ACM). d) Apriori: Accuracy (ACM).

Figure 3: Sampling performance and accuracy with replacement (τ = 10).

Table 2: Recommendations for query=“Information” (ranked by frequency and correlation).
Single Match Distance Match Correlation

rank combination cnt combination cnt combination corr
1 water, system 368 quality, water 246 information, tceq 0.885
2 tceq, water 368 reduction, requirements 211 information, required 0.848
3 monitoring, water 328 water, surface 170 annual, information 0.848

a few iterations are needed (normally less than 5) to reach
high accuracy. Hence, bootstrapping proves to be a viable
alternative for reducing the times.

5. RELATED WORK
Recently, a term “popularity” approach is explored in [4]

in which each term is compared to the query terms. Simi-
larly, the authors present the idea of näıve suggestions, but
they do not explore how to efficiently compute such aggre-
gations. Early straightforward attempts on query logs for
unbiased query recommendations where presented in [1, 3].
But the authors assume previous knowledge by using these
logs. OLAP has been explored less than association rules for
query recommendation. However, a couple of applications
have implemented OLAP to explore document collections [8,
2]. In [8] a contextualized warehouse (XML data warehouse)
of the documents was built, and then queried by the usage
of OLAP on relevant measures assigned to the documents.
However, they focus on the metadata of the documents. In
addition, OLAP sampling was explored initially in [5] as a
technique for speeding up OLAP aggregations with approx-
imate results. However, this analysis is not presented in the
context of collections of keywords.

6. CONCLUSIONS
We showed that OLAP can greatly enhance query recom-

mendations. Through this paper, we have shown how the
analysis of the intrinsic knowledge of keywords in a collection
of documents can be efficiently performed. Our experimen-
tal results showed that while the Apriori algorithm is slightly
faster than our online OLAP algorithm, the latter appears
to be more stable in its times. Furthermore, we showed that
even with a few iterations, sampling was able to obtain a
fairly high accuracies. As a result, the experimental results
proved that obtaining a few samples with replacement of
large collection can achieve a high accuracy. We also cre-
ated three main approaches to determining the validity of a
set of keywords: single, distance, and correlation. We found

that the single match method is the fastest while the corre-
lation method produces better quality results.

Future work includes comparing our system to other query
recommender systems and trying different policies for find-
ing the occurrences of the set of keywords. Similarly, query
suggestion enhanced with the injection of previous knowl-
edge should be explored (e.g. ontologies). Finally, we want
to study the effect of different sampling techniques.

7. REFERENCES
[1] B.M. Fonseca, P.B. Golgher, E.S. De Moura, and

N. Ziviani. Using association rules to discover search
engines related queries. In LA-WEB, pages 66–71, 2003.

[2] C. Garcia-Alvarado, Z. Chen, and C. Ordonez. OLAP
with UDFs in digital libraries. In CIKM, pages
2073–2074, 2009.

[3] A. Giacometti, P. Marcel, E. Negre, and A. Soulet.
Query recommendations for OLAP discovery driven
analysis. In ACM DOLAP, pages 81–88, 2009.

[4] G. Koutrika, Z.M. Zadeh, and H. Garcia-Molina. Data
clouds: summarizing keyword search results over
structured data. In EDBT, pages 391–402, 2009.

[5] X. Li, J. Han, Z. Yin, J.G. Lee, and Y. Sun. Sampling
cube: A framework for statistical OLAP over sampling
data. In Proc. of ACM SIGMOD, pages 779–790, 2008.

[6] C. Ordonez. Statistical Model Computation with
UDFs. IEEE TKDE, 22(12):1752–1765,2010.

[7] C. Ordonez and Z. Chen. Evaluating statistical tests on
OLAP cubes to compare degree of disease. IEEE
TITB, 13(5):756–765, 2009.

[8] J.M. Perez, R. Berlanga, M.J. Aramburu, and
T.B.Pedersen. R-cubes: OLAP cubes contextualized
with documents. In ICDE, pages 1477–1478, 2007.

[9] R. R. Kraft and J. Zien. Mining anchor text for query
refinement. In Proc. of WWW, pages 666–674, 2004.

