
Comparing SQL and MapReduce to compute Naive Bayes
in a Single Table Scan

Sasi K. Pitchaimalai
University of Houston

Dept. of Computer Science
Houston, TX, USA

Carlos Ordonez
University of Houston

Dept. of Computer Science
Houston, TX, USA

Carlos Garcia-Alvarado
University of Houston

Dept. of Computer Science
Houston, TX, USA

ABSTRACT
Most data mining processing is currently performed on flat
files outside the DBMS. We propose novel techniques to pro-
cess such data mining computations inside the DBMS. We
focus on the popular Naive Bayes classification algorithm.
In contrast to most approaches, our techniques work com-
pletely inside the DBMS, exploiting the DBMS programma-
bility mechanisms wherein the user has full access to data,
but is transparent to the DBMS internals. Specifically, SQL
queries and User-Defined Functions (UDFs) are used to pro-
gram the Naive Bayes algorithm. We compare these mecha-
nisms with MapReduce, a popular alternative used for large-
scale data mining. We study two phases for the classifier:
building the model and scoring another data set, using the
model as input. Both building and scoring phases with SQL
queries involve a single table scan, whereas scoring with
UDFs involve two additional scans on large temporary ta-
bles. Experiments with large data sets demonstrate SQL
queries perform extremely well for building model, while
UDFs are better for scoring. In both cases the DBMS per-
forms better than MapReduce. Moreover, the DBMS is sig-
nificantly more efficient to load data than the file system
supporting MapReduce.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; H.2.4 [Database Management]: Systems—
Query processing

General Terms
Algorithms, Experimentation, Performance

Keywords
DBMS, SQL, UDF, Data Mining, MapReduce

1. INTRODUCTION
High performance data mining has become popular and in

demand with the abundant availability of both public and
proprietary data. Research on this topic has been focused
on providing efficient algorithms, programming models and

c© ACM, 2010 . This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in CloudDB 2010 (CIKM 2010 workshop).
http://doi.acm.org/10.1145/1871929.1871932

even exploiting hardware such as graphics processors for en-
hancing or aiding data mining computations. In an organi-
zation, most of the data resides in DBMSs and very little
data mining processing is done inside the DBMS. Most of
the knowledge discovery process is done outside the DBMS,
in which the data are exported to huge flat files. SQL is the
main mechanism to query databases in a DBMS. Between
SQL and User-Defined Functions (UDFs) we can perform
any type of data processing inside the DBMS. SQL has been
proved to be suitable to perform efficient data mining tasks
inside the DBMS [10]. UDFs are an important extensibility
mechanism to integrate more data mining algorithms into
the database system [12, 7].

Supervised learning is an important task for the analysis
of data. A particularly important problem for data mining
practitioners is classification [5]. However, building models
for classification can be computationally intensive. In this
paper, we demonstrate the capabilities of using SQL and
UDFs to perform high performance classification on large
data sets. We also compare another evolving and popular
framework for performing parallel data intensive processing:
MapReduce (MR) [3]. In particular, we focus on the Näıve
Bayes (NB) algorithm which has proven to be a reliable al-
gorithm for classification. The Näıve Bayes algorithm has
several advantages, as described in [10], due to its simple
structure. The classification is achieved in linear time and
the model is incremental.

This paper is organized as follows. Section 2, introduces
notation and explains programming in SQL and MapRe-
duce. Section 3 presents our main technical contributions,
introducing efficient implementations of NB in SQL, UDFs
and MapReduce. In Section 4, we experimentally compare
the performance of NB in the DBMS and MapReduce. Fur-
thermore, Section 5 discusses related work. Finally, in Sec-
tion 6, we present our conclusions and future work.

2. PRELIMINARIES

2.1 Definitions
We compute a predictive classifier model on a data set

X = {x1, x2, . . . , xn} of n points. Each point is composed of
d dimensions with an additional class attribute G. These d

dimensions are assumed to be independent variables called
as the predictive attributes and g is the class attribute to
be predicted with m classes. The table schema for this data
set X represented in a DBMS is X(i,X1, X2, . . . , Xd,G),
where i is an additional attribute to represent each of the
n data points. In a Näıve Bayes classifier, we assume an

Table 1: Matrices subscripts.
Subscript range Describes

g 1 . . .m classes
h 1 . . . d dimensions
i 1 . . . n points

Table 2: X: Example Data Set.
i X1 X2 X3 X4 G

1 2 3 4 5 0
2 6 7 8 4 0
3 5 1 8 2 0
4 23 22 28 25 0
5 25 27 24 21 0
6 46 41 49 50 1
7 56 47 51 47 1
8 48 50 59 57 1
9 79 77 81 73 1

10 84 71 86 86 1

approximation of a Gaussian distribution per class. We use
the same data set for both building the model and scoring.
The subscripts used to index each of the matrices or tables
used hereafter are given in Table 1. Table 2 shows an exam-
ple data set with d = 4;m = 2; n = 10 for NB which will be
used throughout to explain the algorithm and techniques.

2.2 Programming in the DBMS
We review an array of programmability options in a DBMS

used here to perform data mining computations.

2.2.1 SQL queries
SQL provides many scalar, aggregate functions, and some

programming constructs available in high level languages.
Though, it is not as flexible as any other high-level language
such as C. SQL is sufficient to perform most of the data
mining computations [9]. As most data mining algorithms
involve data parallelism, it is enough to specify or expose
the table columns rather than the actual data or row itself.
However, SQL provides a feasibility to perform data mining
in a DBMS, they may not always provide the optimized
technique which may require you to perform redundant or
unnecessary I/O. SQL limits the number of computations
that can be performed at any instant. We can overcome
these limitations using UDFs provided by most DBMSs.

2.2.2 UDFs
UDFs can be programmed in a high-level programming

language such as C, C++, C#, Java [1]. They can be called
in a SELECT statement like any other SQL function such
as avg(),sqrt() etc. There are two major types of UDFs
available across most DBMSs.

• Scalar UDF: that take a number of parameter values
and return a single value. The function produces one
value for each input row.

• Aggregate UDF: which work like standard SQL aggre-
gate functions. They return one row for each distinct
grouping of column value combinations and a column

with some aggregation (e.g. “sum()”). If there are no
grouping columns they return one row.

UDFs provide several advantages over SQL to perform in-
cremental data mining. They provide the ability to perform
complex computations on a finer granularity of the table.
It allows the data mining model to be updated as we scan
through the table.

The internal DBMS code does not need to be modified,
where only the data is transparent to the user. It is similar to
SQL but with better enhanced capabilities. Though UDFs
can be programmed in a high-level language, when they are
compiled and loaded on the DBMS server they have a com-
plete abstraction to the original UDF code. While program-
ming a UDF, the user can exploit the flexibility, features
and the speed of the high-level programming language. As
the UDFs work completely in main memory, it significantly
reduces disk I/O and reduce execution time. Both scalar
and aggregate UDFs are automatically executed in parallel
exploiting multi-threaded capabilities of the DBMS. This is
both an advantage and a constraint, as the UDF has to be
programmed to exploit this parallelism.

2.3 Parallel Programming in MapReduce
MapReduce Framework was designed for non-transactional

high performance data intensive processing. It assumes the
data is distributed on a cluster of nodes and most of the
time is spent on I/O rather than the computation itself.
MapReduce supports programming using many high-level
languages such as Java, C++, etc. As we shall see, it pro-
vides more flexibility than a DBMS in terms of programma-
bility. MapReduce is a programming model or framework
designed to do parallel computations. There are two phases
in MapReduce. The Map phase receives each input data
record and transforms or maps it to a key-value pair. These
key-value pairs input to the Reduce phase are aggregated
here to produce the final output. Although it offers many
features for programmability, it lacks many DBMS capabil-
ities for accelerating performance such as indexing.

3. NB IN SQL AND MAPREDUCE
Here, we compare the performance and feasibility of using

DBMS and MapReduce to perform high performance data
mining on large data sets. We present an overview of the al-
gorithms used and then discuss the various techniques used
to compute them in a DBMS and MapReduce. We demon-
strate our proposal using the Naive Bayes (NB) algorithm
for classification. We consider two phases of computation
for both NB classification (i.e computing):

• Phase 1: Building the model.

• Phase 2: Scoring data sets.

The algorithm and techniques discussed here employ a
single scan on the data set for both building the model and
scoring, except for SQL (scoring requires additional passes).

3.1 SQL and UDFs
One of the most popular and simple classification algo-

rithms, although it is robust to noise and fast to compute
on large data sets. As its name suggests, NB has a näıve
assumption on the d input dimensions. It assumes that the
dimensions are independent. It helps keeping the complexity

of the computations and the model simple. Since we assume
a Gaussian distribution per each class, the NB classifier tries
to compute the parameters of the distribution during the
training process. As Naive Bayes is based on probability, we
use these model parameters to find the most probable class
for a new data point during scoring.

3.1.1 Building the Model
Here, we try to fit the whole data set X to a multivariate

Gaussian distribution for each class g. Computing a model
in Näıve Bayes involves two steps: Computing the sufficient
statistics and computing the pdf parameters.
The first step requires the computation of the sufficient

statistics (NLQ) for each g: The NLQ for m classes is com-
puted in a single scan over the data set X.
The number of data points per class g is given by Ng =

|Xg|, where Xg represents data set partition belonging to
class g. The linear sum of points per g for each dimension
h is given by

Lg =
∑

xiǫXg

xi (1)

and the quadratic sum of squared points (Qg) is given by

Qg =
∑

xiǫXg

xix
T
i (2)

Only the diagonal elements of Q are required here.
The second step is the computation the pdf parameters

C,R of the Gaussian distribution which represent the Näıve
Bayes model using the sufficient statistics NLQ.
The Gaussian parameters per class are:

Cg =
1

Ng

Lg, (3)

Cg represents mean (µg) per dimension.

Rg =
1

Ng

Qg −
1

N2
g

LgL
T
g , (4)

Rg represents variance (σg) per dimension.
In addition to these parameters, we also compute the class

priors which is a ratio of the representation of a particular

class over the whole data set X, given by πg =
Ng

n
.

3.1.2 Scoring
Scoring in Näıve Bayes requires more computations than

computing the model itself. However, here we find the most
probable class for a given data point based on or using the
computed model parameters.
The class probability of a data point is the product of

the probability distribution function multiplied by the class
prior. The class probability distribution function is calcu-
lated as the product of conditional probabilities. The con-
ditional or marginal probability for the normal distribution
N(µ, σ) for a given data point xi in each class g is given by
the following equation:

p(xih|g) =
1

√

2πσ2

gh

exp[−
(xih − µgh)

2

2σ2

gh

] (5)

The joint probability of x is p(xi|g) = Πhp(xih|g), where
xih denotes the h-dimensional value for xi. The predicted
class c is found to be the class with maximum probability is
p(g|xi) = maxgπgp(xi|g).

3.1.3 SQL
As discussed earlier, computing the model involves two

steps which are expressed in two SQL queries. The first SQL
query to compute the sufficient statistics in table NLQ,

INSERT INTO NLQ
SELECT

g
,sum(1.0) /* N */
,sum(X1) /* L */
..
,sum(X4)
,sum(X1**2) /* Q */
..
,sum(X4**2)

FROM X
GROUP BY g;

then we compute the Gaussian pdf parameters in table
NB using the sufficient statistics from NLQ.

INSERT INTO NB
SELECT

g
,Ng/T.Nglobal /* prior */
,L_X1/Ng /* mu */
..
,L_X4/Ng
,Q_X1/Ng-(L_X1/Ng)**2 /* sigma */
..
,Q_X4/Ng-(L_X4/Ng)**2

FROM NLQ,(SELECT
sum(Ng) AS Nglobal

FROM NLQ
)T;

After computing the model we score a new data set us-
ing the model from the NB table. First we compute the
marginal probability for n data points in XMP using a cross
join on NB and input data set X.

INSERT INTO XMP
SELECT

X.i
,NB.g
,CASE

WHEN var_X1=0 THEN 1
ELSE (1/sqrt(((2*3.141592)*var_X1))

exp(-0.5(X1-mean_X1)**2/var_X1)
END
..
,CASE

WHEN var_X4=0 THEN 1
ELSE (1/sqrt(((2*3.141592)*var_X4))

exp(-0.5(X4-mean_X4)**2/var_X4)
END

FROM X,NB;

Second, the joint probability for each data point is com-
puted in table XP from XMP . A denormalized version of
XMP is employed to exploit the use of a CASE statement
of which use will be demonstrated in the next computational
step or SQL query.

INSERT INTO XP
SELECT

T.i
,sum(case when T.g=0 then t.prob end)
,sum(case when T.g=1 then t.prob end)

FROM (SELECT
i

,g
,X1*X2*X3*X4 as prob

FROM XMP)T
GROUP BY T.i;

Now, we have computed the probabilities of a data point
belonging to m classes. As all the m probabilities are in a
single row, we can use a CASE statement to find the g of
maximum probability.

INSERT INTO XC
SELECT

i
,CASE WHEN p_0>=p_1 THEN 0

ELSE 1
END

FROM XP;

3.1.4 UDF
The model parameters Cg, Rg are computed using an ag-

gregate UDF where all the computations required by the
aggregate are programmed in a high level language. The
aggregate UDF can exploit the I/O parallelism provided by
the DBMS as any SQL aggregation. However, most DBMSs
have a limitation on the amount of memory available to each
thread during the execution of an aggregate UDF. There are
4 major phases/steps involved in the computation. The first
two are independent to each thread and the threads merge
in the remaining steps.

1. Initialize: Here we initialize the variables required by
the threads such as N,L,Q to zero.

2. Accumulate: The input parameters passed to UDF
first go through this phrase where the N,L,Q for each
class g are computed/updated as we scan through each
data point in the input data set X. Figure 1 shows the
UDF code for Accumulate phase. The input parame-
ter is a User Defined Type (UDT). The code refers to
arrays from 1, . . . , d, we do not start from 0 for sim-
plicity and this wastage of memory space is negligible.

3. Merge: Here, the Ng, Lg, Qg computed from all the
threads are merged or added to obtain the Ng, Lg, Qg

over the entire data set.

4. Terminate: Here we compute the NB model param-
eters πg, Cg, Rg from Ng, Lg, Qg. After computation
the parameters are finally returned by the UDF here.

As with scoring in NB using UDF, it requires a single UDF
call from the SELECT statement similar to model building
phase. However, we need to find the most probable class be-
longing to each data point. Thus each data point xi passed
to the UDF returns a value i.e g. Hence we use a scalar UDF
which executes on a single row and returns a value. The
marginal probability, joint probability and the most proba-
ble class are found in a single UDF instead of many tempo-
rary tables as was with SQL. This scoring phase using scalar
UDF clearly demonstrates the capability or the power of a
UDF over SQL for data mining computations clearly saving
computational and I/O time. The scalar UDF call to score
n class values (g) for n points is given by:

Figure 1: UDF Accumulate Phase
public void Accumulate(Xd4 X)
{
if (!X.IsNull)
{
nbnlq.d = X.getd();
nbnlq.N += 1.0;
// Computing L,Q Matrix
for (int h = 1; h <= nbnlq.d; h++)
{
nbnlq.L[h] += X.getColumn(h);
nbnlq.Q[h] += X.getColumn(h) * X.getColumn(h);

}
}

}

Figure 2: UDF Parameters as UDT (optimized)
SELECT

udf_nb_train_d4(
GetXd4(4,X1,X2,X3,X4)
)

FROM X
GROUP BY g;

SELECT
udf_nb_score(4,X1..X4

,C0_X1,..C0_X4,R0_X1,.._R0_X4
,C1_X1,..C1_X4,R1_X1,.._R1_X4
)

FROM X,NB_MODEL;

Most DBMS have many limitations on the programmabil-
ity options available to UDF. They have considerably lower
limit on the number of parameters that can be passed as
input to the UDF. This makes the processing harder or
presents itself as an unavoidable computational overhead.
In general, a DBMS does not support returning complex
types in both scalar and aggregate UDFs (some DBMSs al-
low returning User-Defined Types) which can exploit data
parallelism. This requires some additional processing when
a complex data type is returned as a string and later more
UDFs are required to retrieve the original data structure
to perform any further processing. We use two methods to
bypass the input parameter limit for the aggregate UDF:

1. Pass as a String: All the parameter values are passed
as converted as a single string separated by a delimiter.
These values are parsed again inside the UDF during
the Accumulate phase. The aggregate UDF call with
string parameter is shown in Figure 2.

2. Pass as a UDT: When a DBMS provide support to
pass a User Defined Type (UDT) to a UDF, we can
convert our input parameters into our custom defined
UDT. Though this technique may seem to fix the over-
head introduced by the string parsing in the earlier
technique, it introduces a new overhead of memory al-
location for the UDT. The aggregate UDF call which
computes the entire model from a SELECT statement
is given in Figure 3.

Though, these overhead introduced may seem negligible
for a single UDF call, the magnitude of the overhead in-
creases proportional to the size of the data set(n) and num-
ber of dimensions (d).

Figure 3: Build Model varying n.

3.2 MapReduce
MapReduce performs computations over the key-value pairs

There are two major phases in a MapReduce computation:

1. Map: Each input data record is mapped into a key-
value pair required by the aggregation. Now some in-
termediate key-value pairs are generated as output for
each input record which in turn are routed as input to
the Reduce phase. In most cases the Map phase gener-
ates a key-value pair for each input record. To perform
aggregations, the Map generates a significantly small
number of distinct keys which aids performing the ac-
tual aggregation during the Reduce phase.

2. Reduce: This is the phase where the aggregations are
actually performed very much similar to the Merge
phase in aggregate UDF. The aggregations required
by the computation are performed over the key-value
pairs generated by the Map phase. After aggregations
are computed, the Reduce generates another set of key-
value pairs aggregated for each distinct key.

The input data are stored in sequential files where data
point xi is stored as a key-value pair. While building the
model, the input key-value pairs are mapped on to another
set of key-value pair which are input to the Reduce phase. In
addition, a combiner was used as an optimization to reduce
the amount of I/O input to the Reducer. A Combiner is a
Map task that performs some Reduce work. Its purpose is
reducing the size of intermediate files that are sent between
mappers and reducers.
The computation of sufficient statistics, model computa-

tion is done here during the Reduce phase. However with
scoring, since we need to output a class value g for each i, the
probability and class values are computed during the Map
phase. There is no necessity to go through the key sorting
and the Reduce phase.

3.3 I/O Analysis
Using SQL, UDFs or MapReduce can vary the time com-

plexity and the number of I/Os. The SQL algorithm requires
one pass over the data set to compute the model. The first
pass computes the sufficient statistics which are stored in the
NLQ table. An additional pass is required in this sufficient
statistic table to build the model. Notice that this time is
negligible due to the small size of the summarization table.

Even though, the model was built in one-pass, the scoring
requires further passes to the original data set. Once the
model was built, an additional pass is required, stored in
XMP, for obtaining the probabilities. The XMP table is of
gn cardinality. A one-pass aggregation is then performed on
the XMP table to obtain a table of n cardinality. Finally, a
third pass is required to assign each point to a class.

The UDF and MapReduce time complexity is quite sim-
ilar. The UDF requires one-pass over the data set to build
the model. Notice that the sufficient statistics are stored in
main memory and then the model is stored to a table. On
the other hand, MapReduce has one-pass over the data too,
however, an additional sorting of the keys is performed (by
class) when sending key value pairs to the reducer. The scor-
ing part in both UDF and MapReduce loads the model in
main memory (MapReduce only requires the Map function)
and then perform a one-pass over the data to decide the
class. The key sorting phase in MapReduce can be avoided.

4. EXPERIMENTAL EVALUATION
Now we evaluate the performance of the Näıve Bayes al-

gorithm across DBMS and MapReduce by comparing all the
techniques with the best possible optimizations.

4.1 Setup
We ran SQL and MapReduce on the same hardware. Our

comparison may not be fair to MapReduce since it is de-
signed to work in a large cluster of computers, but it gives
an idea about its relative performance compared to a DBMS.
In one computer we ran a Microsoft SQL Server 2005 under
Windows XP. A second computer was set running the open
source Hadoop under Linux. Both SQL Server DBMS and
Hadoop servers were running computers with a single Intel
Xeon 2.4 GHz processor, 4GB RAM, and 1 TB hard drive.

All data sets used here were created synthetically outside
the servers, and then imported on to the DBMS and the
Hadoop File System (HDFS). Notice that all the generated
dimensions consist on continuous variables with a point id
(integer). In case of HDFS, each row/data point was con-
verted to a key-value pair and stored as sequential files. The
aggregate and the scalar UDFs used here were programmed
using C#.NET. Java, natively supported by Hadoop, was
used to program MapReduce computations. In the follow-
ing subsections, we use MapReduce as the technical term
instead of Hadoop, since Hadoop is an open-source imple-
mentation of MapReduce.

Unless specified otherwise, the UDT was passed as input
parameter to the aggregate UDF for building model. Se-
quential (binary) files of key-value pairs, which offer better
performance, were input for both building and scoring for
MapReduce computations. The default parameters for all
experiments discussed hereafter are d = 8, n = 1M(million).

4.2 Building Model in NB
We compare the scalability of building the Näıve Bayes

model on sufficiently large data sets. All the techniques
across DBMS and MapReduce are tested varying size of the
data set (n) and number of dimensions (d). Regardless of
the technique used, the parameters n and d affect the scala-
bility of the model computation in different ways. Increasing
n increases the number of I/Os and computations performed
whereas increasing d only increases the number of computa-
tions performed per data point i and not the I/Os.

Figure 4: Build Model varying d.

As we can see from Figures 3 and 4, both UDF and MR
scale linearly with d and n. SQL clearly outperforms the
other technique while varying both n and d. The SQL aggre-
gations over input data set X involve the heavily optimized
sum() aggregations in the DBMS. Though, the aggregate
UDF is slightly faster than MR, it is much slower than the
SQL which runs on the same DBMS server. This perfor-
mance degrade can be delegated to the memory allocation
overhead introduced by the UDT. During each UDF call,
the individual parameters are converted to a UDT and then
passed to the aggregate UDF. This is clearly evident in Fig-
ure 4 varying d. As d increases the difference between the
SQL and UDF times starts increasing and beyond a certain
limit both UDF and MR converge.
The aggregate UDFs provide a powerful capability to per-

form complex aggregation computations harnessing the full
power of the DBMS I/O parallelism. However, a limit on
the amount and the type of parameters that can be passed
as input or primitive type as output, requires some unnec-
essary processing which takes a toll on its time performance
on large data sets. As discussed in an earlier section, we
compare the two types of UDF parameter passing meth-
ods: pass as a single string or a UDT. Both methods have
a unique overhead: string parsing for string parameter and
memory allocation in case of a UDT. Table 6 compares the
performance of the two methods varying n. We observe that
the String parameter is slower than the UDT although not
by a high magnitude. Most modern DBMSs provide both
methods for passing parameters to an aggregate UDF.

4.3 Scoring a data set
As discussed earlier, the computations required for scoring

are much different than during model computations. Model
computation involved performing aggregations over the in-
put data set X, where the output is significantly small com-
pared with n. However, scoring involves computing or pre-
dicting a class value g for each data point i based on the
computed model. From Figure 5, we can infer that the trend
scales linearly with n. As it can be observed while building
model. However, the performance comparison of the three
techniques significantly differs in comparison to model com-
putation. Since the amount of computations that can be
performed in an SQL statement is limited, it requires us
to perform some redundant or unnecessary I/Os to store
intermediate results each of which has n rows. These inter-

Figure 5: Scoring varying n.

Table 3: SQL Build Model vs Scoring (in secs).
n× 1M Build Score

1 4 31
2 4 63
4 9 157
8 18 311

16 41 688

mediate reads and writes slow down the computations with
increasing n. However, the UDF used here, generates a sin-
gle g for each data point eliminating the need to read or
write intermediate results onto the disk. The intermediate
results are calculated inside the UDF itself and only the re-
quired output is returned. In case of MapReduce, the class
value is computed during the Map phase and the output is
generated during the Map phase too.

After comparing the time performance of the techniques
for both phases of the Näıve Bayes computation (i.e model
building and scoring). We shall now analyze each technique
with regard to both building the model and scoring. This
is clearly a useful technique which displays the capabilities,
drawbacks, and usefulness of each technique across different
types of computations.

With SQL, the drawbacks and capabilities of technique
are clearly in contrast with building and scoring as shown in
Table 3. It performs extremely well with regards to simple
aggregations or scans on large data sets. However, as the
number of computations increases during scoring, the SQL
does not support performing such complex computations
during the table scan on the input data set X. It requires
several intermediate steps to arrive at the final output in-
creasing the amount of disk I/O required. The UDF, similar
to SQL, suffers from its own limitations of its programma-
bility in Table 4. When the SQL suffers from increase in
disk I/O, UDF suffers from memory allocation for n UDTs
in the aggregate UDF while building the model. Though we
use a different type of UDF for building (aggregate UDF)
and scoring (scalar UDF) both exploit data parallelism pro-
vided by the DBMS similar to SQL. The UDF performs well
during scoring where parameters are passed directly rather
than a UDT.

In comparison to the DBMS techniques, MapReduce (MR)
presents a different scenario in Table 5. The times required

Table 4: UDF Build Model vs Scoring (in secs).
n× 1M Build Score

1 15 16
2 21 33
4 43 50
8 87 91

16 178 179

Table 5: MR Build Model vs Scoring (in secs).
n× 1M Build Score

1 38 40
2 59 60
4 91 95
8 153 163

16 285 285

for both building and scoring are quite similar even with in-
creasing n. This brings into question whether the complexity
of computations or amount of output I/O makes any differ-
ence to its performance. However, with MapReduce, the
Map phase outputs n key-value pairs during both building
and scoring phases. While building the model, the interme-
diate key-value pairs generated are required by the Reduce
phase, whereas during scoring, the key-value pairs are the
predicted output class value g per data point i.

4.4 Loading data
In any data mining task, most of the input data sets are

generated or stored as flat text files on local file systems.
However, all the data mining techniques used here require
its own unique data storage. DBMS requires the data sets to
be stored in tables and MapReduce requires the data sets to
be stored on the distributed Hadoop File System (HDFS). In
any case, the text files should be loaded or imported onto the
DBMS or MapReduce (Hadoop) server. In case of MapRe-
duce, the data are stored on the HDFS as key-value pairs in
sequential (binary) files which provides better performance
than text input data.
Table 7 compares the amount of time spent importing the

data set onto the DBMS to the total time spent on importing
and building the model. The import times require the major
proportion of the total time. However, the significantly lower
time required to build the model justifies the data loading
which is done only once.
In a similar way, we compare the data loading and total

model building time for MapReduce in Table 8. The import
times similar to the DBMS occupies major portion of the
time required to build model. However, the build times

Table 6: Parameter passing to UDF (in secs).
n× 1M UDT String

1 14 15
2 21 29
4 43 66
8 87 113

16 178 288

Table 7: DBMS Load vs Model Computation (in
secs).

n× 1M Import Build Model Total
1 18 4 22
2 41 4 45
4 81 9 90
8 147 18 165

16 331 41 372

Table 8: MR Import vs Build Times (in secs).
n× 1M Import Build Total

1 48 38 86
2 94 59 153
4 185 91 276
8 367 153 520

16 730 285 1015

alone are not significantly small. They are almost half the
time required to import which is definitely larger than that
required by the DBMS.

In the comparison between the import times of the DBMS
and MapReduce, we observe that both DBMS and MapRe-
duce times scale linearly with n. DBMS clearly loads the
data faster than MapReduce. Even though, importing the
data as a text files rather than sequential files would def-
initely bring down the import times in MapReduce, the
text files in MapReduce would significantly affect the per-
formance of the the data mining computations.

4.5 Discussion
As evident from the experiments, it is clear that the DBMS

proves to be more efficient than MapReduce for data re-
trieval and storage. It provides sufficient features with SQL
and UDFs to perform high performance data intensive pro-
cessing. DBMS lacks flexibility in many aspects: UDF pro-
grammability and the amount of data that can be serialized
in the intermediate step after the Accumulate phase in the
aggregate UDF. Though, the UDFs work in a similar way
in most commercial DBMSs, they are not portable between
different DBMS as the SQL. A better flexibility in UDF
programmability and features would definitely increase the
performance for data mining computations.

MapReduce proves highly competitive to the DBMS. How-
ever, it lacks many features offered by the DBMS for effi-
cient I/O such as indexing (which become extremely useful
in such data intensive computations). The Map and Re-
duce phases are not the best optimized framework for effi-
ciency. The Map phase writes the intermediate key-value
pairs onto the disk and then the Reduce reads them from
the disk performing some unnecessary I/Os. The amount of
reads/writes performed here are essentially huge. The out-
put from Map can be streamed directly to Reduce rather
than passing through the disk. Though, MapReduce pro-
vides a lot of laxity in regard to its programmability, it be-
comes harder to code and debug as the complexity of key-
value pair or computation increases.

5. RELATED WORK
The integration of data mining algorithms using SQL was

previously explored in [6]. This paper performs computa-
tions on large amounts of data in a DBMS. Complemen-
tary to using SQL, some papers such as [2, 12] discuss some
DBMS extensions and primitives for programming data min-
ing algorithms inside the DBMS. UDFs are shown to be an
efficient mechanism to program several data mining algo-
rithms [7]. On the other hand, reference [9] shows NB and a
more sophisticated Bayesian classification model can be pro-
grammed only with SQL queries. The main difference with
[7, 9] is that we now perform a comparison between SQL
and MapReduce running on the same hardware. Similarly
to this paper, the authors in [4] show that using SQL per-
forms well for summarizations in large data sets and UDFs
excels in complex computations. MapReduce, discussed in
[11], spurred a lot of interest due to the comparison be-
tween MapReduce and a DBMS. Notice that the results in
[11] favor the performance experiments presented in this pa-
per. However, MapReduce offers additional capabilities (e.g.
fault tolerance) that prove useful in large clusters of inex-
pensive hardware. Finally, the authors in [8] present the
challenges of performing data mining inside the DBMS and
MapReduce. As a result, this paper extends this tutorial
by showing a detailed discussion of the model building and
scoring of the NB algorithm.

6. CONCLUSIONS
We compared the feasibility and performance of the Näıve

Bayes algorithm on large data sets in a DBMS (SQL and
UDFs) and MapReduce. The building and scoring phases
in the DBMS are completely done inside the DBMS. The im-
plementation using portable SQL queries and UDFs does not
require any modifications or knowledge of the internals of
the particular DBMS. MapReduce computations were done
using sequential files as input where each record was rep-
resented as key-value pair. In case of data mining compu-
tations, it proves efficient to move the computations to the
data than the data to the computations. In both DBMS and
MapReduce, the computations are moved to the data in the
server rather than exporting the data. We tested the perfor-
mance across both DBMS and MapReduce varying the size
of the data set and the number of dimensions for building
the model and only data set size for scoring. SQL fairs re-
ally well during the scalability tests for model building than
UDFs and MapReduce. However, during scoring the UDFs
perform much better than SQL and MapReduce with large
data sets. In any case, the DBMS techniques (SQL during
building and UDF during scoring) prove to be more efficient
than MapReduce for Näıve Bayes. Each technique has its
own set of advantages and drawbacks for different types of
computations. These are clearly visible when comparing the
model building and scoring times for each technique. When
comparing the data import times and model build times for
DBMS andMapReduce. The DBMS clearly justifies its large
import time when compared to its significantly small build
time. On the other hand, MapReduce has a larger import
time than DBMS and also the model build times are almost
half its import times.
Future work includes extending this efficient algorithm, in

the DBMS and MapReduce, for data sets that require addi-
tional data preprocessing by applying dimensionality reduc-

tion (using Principal Component Analysis) or class decom-
position. In addition, further optimizations in the scoring
part should be explored and algorithmic variations of the
NB algorithm should be studied (e.g. discrete NB). Other
areas of opportunity includes applying the NB algorithm for
data streams, enhancing DBMS support for matrix opera-
tions and the integration of hybrid solutions combining SQL
and MapReduce.

7. ACKNOWLEDGMENTS
This research work was partially supported by NSF grants

CCF 0937562 and IIS 0914861.

8. REFERENCES
[1] J. Blakeley, V. Rao, I. Kunen, A. Prout, M. Henaire,

and C. Kleinerman. .NET database programmability
and extensibility in Microsoft SQL Server. In Proc.
ACM SIGMOD Conference, pages 1087–1098, 2008.

[2] J. Clear, D. Dunn, B. Harvey, M. Heytens, and
P. Lohman. Non-stop SQL/MX primitives for
knowledge discovery. In ACM KDD Conference, pages
425–429, 1999.

[3] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[4] C. Garcia-Alvarado, Z. Chen, and C. Ordonez.
OLAP-based query recommendation. In Proc. ACM
CIKM Conference, pages 1353–1356, 2010.

[5] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning. Springer, New York,
1st edition, 2001.

[6] M. Navas and C. Ordonez. Efficient computation of
PCA with SVD in SQL. In KDD Workshop on Data
Mining using Tensors and Matrices, Article no. 5,
2009.

[7] C. Ordonez. Statistical model computation with
UDFs. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 22(12):1752–1765,2010.

[8] C. Ordonez and J. Garćıa-Garćıa. Database systems
research on data mining. In Proc. ACM SIGMOD
Conference, pages 1253–1254, 2010.

[9] C. Ordonez and S. Pitchaimalai. Bayesian classifiers
programmed in SQL. IEEE Transactions on
Knowledge and Data Engineering (TKDE),
22(1):139–144, 2010.

[10] C. Ordonez and S. Pitchaimalai. Fast UDFs to
compute sufficient statistics on large data sets
exploiting caching and sampling. Data and Knowledge
Engineering, 69(4):383–398, 2010.

[11] M. Stonebraker, D. Abadi, D. DeWitt, S. Madden,
E. Paulson, A. Pavlo, and A. Rasin. MapReduce and
parallel DBMSs: friends or foes? Commun. ACM,
53(1):64–71, 2010.

[12] H. Wang, C. Zaniolo, and C. Luo. ATLaS: A small but
complete SQL extension for data mining and data
streams. In Proc. VLDB Conference, pages 1113–1116,
2003.

