
Relational versus Non-Relational Database Systems for
Data Warehousing

Carlos Ordonez
University of Houston

Houston, TX, USA

Il-Yeol Song
Drexel University

Philadelphia, PA, USA

Carlos Garcia-Alvarado
University of Houston

Houston, TX, USA

ABSTRACT
Relational database systems have been the dominating tech-
nology to manage and analyze large data warehouses. More-
over, the ER model, the standard in database design, has a
close relationship with the relational model. Recently, there
has been a surge of alternative technologies for large scale
analytic processing, most of which are not based on the rela-
tional model. Out of these proposals, distributed file systems
together with MapReduce have become strong competitors
to relational database systems to analyze large data sets,
exploiting parallel processing. Moreover, there is progress
on using MapReduce to evaluate relational queries. With
that motivation in mind, this panel will compare pros and
cons of each technology for data warehousing and will iden-
tify research issues, considering practical aspects like ease of
use, programming flexibility and cost; as well as technical
aspects like data modeling, storage, hardware, scalability,
query processing, fault tolerance and data mining.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing ; H.2.7 [Database Management]: Database adminis-
tration—Data Warehousing

General Terms
Algorithms, Design, Languages, Performance

1. INTRODUCTION
For a long time, relational database systems have been

the best technology to manage and analyze large data ware-
houses. On the other hand, there has been an explosion of
semi-structured data on the Internet represented by docu-
ments, web pages, images and diverse files, which are stored
and queried by search engines. Relational database systems
offer extensive functionality to efficiently and reliably update
OLTP databases with transactions and to analyze large data
warehouses with queries using SQL [2]. However, relational
database systems are not flexible and efficient enough to
manage and analyze large collections of semi-structured data
files, although they offer some basic text processing capabil-
ities. Thus there have been many alternative database tech-
nology proposals to solve such limitations [2]. (e.g. XML,

Copyright is held by the author/owner(s).
DOLAP’10, October 30, 2010, Toronto, Ontario, Canada.
ACM 978-1-4503-0383-5/10/10.

streams, column stores, keyword search, content-based im-
age retrieval, and MapReduce, among others). Out of all
technologies, MapReduce [1, 5] has gained significant atten-
tion, especially to analyze large data sets. MapReduce [1, 5]
is a simple parallel programming model coming from func-
tional programming, that enables fast processing on a cluster
of computers. MapReduce is typically supported by an effi-
cient distributed file system (DFS), being Hadoop [4, 5] the
most popular. Initially, MapReduce was used to perform
analysis on large collections of text files. Also, MapReduce
has shown to be a good alternative to perform data min-
ing [4] and it is being extended to perform database-like
query processing (i.e. SPJA queries). Even further, the
Hadoop DFS and MapReduce have been used to develop a
data warehouse (e.g. Hive at Facebook [5]). Therefore, it is
important to compare features, limitations, advantages and
disadvantages of both technologies.

One of the main goals for the panel is to discuss the
present and future of data warehousing. Thus the panel
will carefully compare DBMS and MapReduce technologies,
from practical and technical perspectives, considering mod-
eling, management and analysis of large data warehouses.
Also, the panel will identify research issues to further en-
hance and integrate relational DBMSs and MapReduce.

2. DISCUSSION SUMMARY
The panel discussion will focus on practical and techni-

cal aspects. Practical aspects include technology maturity,
ease of programming (e.g. testing and code maintenance),
integration with other existing technologies and cost of de-
velopment. Technical aspects include database modeling,
required hardware, system architecture, query evaluation,
fault tolerance, OLAP and data mining.

A summary of practical issues follows. Relational DBMSs
provide SQL as the standard language to update and query
information [2]. SQL computing capabilities can be ex-
tended with UDFs [3] and other programming mechanisms,
such as stored procedures, embedded SQL and ODBC (or
JDBC). MapReduce is available in object-oriented libraries
in C++ and Java, out of which Hadoop (Java) is now the
most popular. It is fair to say C++/Java are preferred
over SQL by most developers. Integrating data mining algo-
rithms into a DBMS is difficult given its complex architec-
ture, unavailability of source code and relational foundation
[3]. Most DBMSs offer OLAP and data mining techniques.
However, a significant portion of processing happens outside
the DBMS. In contrast, MapReduce is an open programming
platform, which can be easily extended. From a cost per-



spective, the best parallel DBMSs are commercial, require
specialized hardware and are somewhat expensive, whereas
MapReduce is open-source and can be implemented with
any hardware. On a brighter side, commercial DBMSs offer
much more functionality.

We now provide a summary of technical aspects. Most
data warehouses are designed with the ER model, com-
plemented by object-oriented software engineering methods
like UML. The Extract-Transform-Load (ETL) processes ef-
ficiently update the data warehouse with batches of new
records. Since ETL builds denormalized tables and trans-
forms existing tables for integration, it is considered a part of
data warehouse modeling. ETL is time-consuming and dif-
ficult in data warehousing, but easier and faster in MapRe-
duce/DFS. Spatial and temporal dimensions are also incor-
porated to provide comprehensive database models. Mod-
eling is well studied in relational databases, but remains
not well understood in alternative information management
technologies. Both parallel DBMSs and the DFS supporting
MapReduce, are based on a shared-nothing architecture [5]
in which each processing unit (node, process, thread) has
its own memory and disk storage; data records are dynami-
cally redistributed among processing units through message
passing. Most DBMSs have row-based storage, where a disk
block stores a set of rows together. Column-based stores
are an innovative alternative to efficiently evaluate analytic
queries based on different subsets of columns. In contrast,
file systems in search engines (e.g. Yahoo Hadoop DFS,
Google GFS) are designed to manage and analyze large
collections of diverse semi-structured files (i.e. html web
pages, text files, documents and so on). DBMSs provide
fault tolerance for transaction and query processing whereas
MapReduce provides better fault-tolerance, but only for job
processing. A failure in a DBMS may require restarting
the query, whereas given a failure in the cluster, MapRe-
duce may continue working without interruption with au-
tomatic process migration. DBMSs offer extensive query
capabilities, especially with joins (inner, outer) and sophis-
ticated aggregations (e.g. group-by, cubes). There is ex-
tensive work on efficiently evaluating cube computations in
a DBMS, where the input (fact) table is modeled a mul-
tidimensional data set to compute aggregations on multi-
ple dimension combinations. In short, OLAP technology
works well with a DBMS. MapReduce can easily evaluate
group-by aggregations and recent research shows it is feasi-
ble to efficiently compute joins, which are fundamental re-
lational query operators in a DBMS. However, cube com-
putations are not well studied in MapReduce. It is impor-
tant to emphasize aggregate UDFs accumulate (aggregation
detail) and merge phases exhibit fundamental similarities
with map() and reduce() functions. Finally, there is exten-
sive work on efficient data mining algorithms, most of which
work on flat files outside the DBMS. Moreover, most statis-
tical packages work outside the DBMS, although some can
push some demanding computations into the DBMS. We
should mention commercial DBMSs offer various data min-
ing algorithms, but they are internally integrated. There-
fore, they cannot be customized or extended by the user.
There have been alternative proposals to program and op-
timize data mining algorithms with SQL queries and UDFs
[3]. But for the most part, processing data mining inside a
DBMS remains a difficult problem.

3. CONCLUSIONS
Relational database systems represent a mature and stan-

dard technology in data warehousing, whereas DFS and
MapReduce represent a relatively young technology. It is
likely SQL will remain the standard language to update and
query large databases in the near future. Most relational
database systems are basically row stores with tables hor-
izontally partitioned, whereas search engines are based on
distributed file systems, where MapReduce uses key-value
pairs for processing. MapReduce is simple and efficient to
compute aggregations. UDFs represent a promising alter-
native to extend a DBMS with advanced analytical (OLAP
and data mining) capabilities, whose features are similar
to MapReduce. DFS/MapReduce are unlikely to substitute
the DBMS for data warehousing, although its user base and
research will keep growing since it is open-source. Instead,
MapReduce can complement DBMSs with flexible and scal-
able parallel processing for analytic applications.

Given the wide use of DBMSs and the growth of informa-
tion on the Internet there exist many research issues. SQL
together with UDFs (and other DBMS programming mech-
anisms) will likely remain faster than MapReduce running
on the same hardware, but fault-tolerance for large-scale
parallel query processing should be improved in a DBMS.
UDF support should be improved for more efficient OLAP
and data mining processing. The DBMS should support pro-
cessing of more complex data types (arrays, objects, UDTs).
DFS and MapReduce have a simple and flexible parallel sys-
tem architecture. DBMSs should have new modular archi-
tectures, where subsystems can be turned off for analytic
applications, reducing system overhead and making man-
agement easier. It is likely MapReduce will efficiently eval-
uate complex relational queries with joins and aggregations,
combining it with SQL, as recent research shows. SQL,
UDFs and MapReduce should be better integrated to pro-
gram OLAP and data mining techniques. Fault-tolerance
in long-running queries should be improved in a DBMS to
avoid restarts. Faster mechanisms for loading large tables
of records are needed in MapReduce to match the loading
speed provided by DBMSs. In the same vein, DBMSs should
provide more flexibility to analyze large external files.

4. REFERENCES
[1] J. Dean and S. Ghemawat. MapReduce: a flexible data

processing tool. Commun. ACM, 53(1):72–77, 2010.

[2] R. Elmasri and S. B. Navathe. Fundamentals of
Database Systems. Addison/Wesley, 6th edition, 2010.

[3] C. Ordonez. Statistical model computation with UDFs.
IEEE Transactions on Knowledge and Data
Engineering (TKDE), 22, 2010.

[4] C. Ordonez and J. Garćıa-Garćıa. Database systems
research on data mining. In Proc. ACM SIGMOD
Conference, pages 1253–1254, 2010.

[5] M. Stonebraker, D. Abadi, D.J. DeWitt, S. Madden,
E. Paulson, A. Pavlo, and A. Rasin. MapReduce and
parallel DBMSs: friends or foes? Commun. ACM,
53(1):64–71, 2010.


