
1

Repairing OLAP Queries in Databases with
Referential Integrity Errors ∗

Javier Garcı́a-Garcı́a
IPN∗∗ / UNAM∗∗∗

Mexico City, Mexico
Carlos Ordonez

University of Houston
Houston, TX, USA

Abstract—Many database applications and OLAP tools dy-
namically generate SQL queries involving join operators and
aggregate functions and send these queries to a database server
for execution. This dynamically generated SQL code normally
assumes the underlying tables and columns are clean and lacks
the necessary robustness to deal with foreign keys with null and
invalid or undefined values that are ubiquitous in databases with
inconsistent or incomplete content. The outcome is that at query
time, several issues arise mostly as inconsistencies in answer
sets, difficult to detect and explain by users of OLAP tools. In
this article, we present an automated query rewriting method
for automatically generated OLAP queries that are executed
over tables with foreign key columns having potentially null or
invalid values. Our method is applicable in queries that use join
operators and aggregate functions obeying the summarizability
property (e.g. sum(), count()). If a user of an OLAP tool
wants or requests it, using our method the queries that use join
operators may be rewritten and he or she may be warned of the
referential integrity condition of the underlying database and
the answer sets may present alternative consistent results in the
case aggregate functions are involved. Preliminary experimental
evaluation shows rewritten queries provide valuable information
on referential integrity and take almost the same time as original
queries, highlighting efficiency is good and overhead is minimal.

Categories and Subject Descriptors

H.2.4 [Information Systems]: Systems - Query processing

General Terms

Algorithms, Experimentation, Performance

Keywords

DBMS, SQL

I. INTRODUCTION

Databases with referential integrity errors commonly arise
in scenarios where several organizations have their databases
integrated, where exchanging or updating information is fre-
quent, or where table definitions change. Source databases may

∗This is the authors version of the work. The official version of this article was
published in Proc. ACM Workshop on Data Warehousing and OLAP (DOLAP, CIKM
2010 Workshop), p.61-66, 2010.
∗∗Instituto Politécnico Nacional
∗∗∗Universidad Nacional Autónoma de México

violate referential integrity and their integration may uncover
additional referential integrity problems. In a data warehousing
environment it is essential to repair referential integrity errors
as early as possible in the ETL process, as it is recommended
in [8]. A common strategy to repair referential integrity errors
is to substitute invalid references with a “valid one” that refers
to a row in the dimension table that is marked explicitly as
undefined or not available (e.g. NA or 99). This solution,
although it repairs the referential error, does not help much
if the user wants to compute particular aggregated groups of
answer sets of aggregate functions because valuable informa-
tion that really belongs to “real” groups is lost in an undefined
group [5]. Database applications and OLAP tools have to deal
with these realistic databases. Applications may dynamically
generate SQL queries and send them for execution to databases
using interfaces such as JDBC. Developers usually pay scant
attention to foreign keys with null and invalid or undefined
values that are ubiquitous in databases with inconsistent or
incomplete content. The outcome is that at query time, several
issues arise mostly as inconsistencies in answer sets, difficult
to detect and explain by users of OLAP tools.

In this work we propose a query rewriting method to be
included in OLAP tools that may allow a user to request a
referential integrity evaluation or an estimated answer set in
the case the SQL code calls aggregate functions. The method
consists in rewriting queries that use joins where foreign keys
and equalities are involved. Queries with equijoins using for-
eign keys are the most common OLAP queries. We materialize
a pre-aggregate temporal table which is used to obtain the
requested answer set and appropriate data related to referential
integrity problems. The user may request an evaluation and the
system can send statistics about the referential integrity condi-
tion of underlying tables. An OLAP tool, when precomputing
a cube, can also use our method to detect referential integrity
problems.

The article is organized as follows. Section II contains
definitions for join computation. Section III explains the
generated SQL queries and how these queries are rewritten
in order to consider referential integrity issues. Section IV
contains an experimental evaluation over a synthetic database.
Related work is discussed and compared in Section V. The
article concludes with Section VI.

2

II. DEFINITIONS

To provide a formal framework of study we use relational
algebra notation for join operations, but queries are evaluated
with SQL statements in the experimental section.

A. Referential Integrity

A relational database is denoted by D(R, I), where R is
a set of N tables R = {T1, T2, . . . , TN}, Ti is a set of rows
and I a set of referential integrity constraints. A referential
integrity constraint, belonging to I , between two tables Ti and
Tj is a statement of the form: Ti(K) → Tj(K), where Ti is
the referencing table, Tj is the referenced table, K is a foreign
key (FK) in Ti and K is the primary key or a candidate key
of Tj . In general, we refer to K as the primary key of Tj . To
simplify exposition, we assume simple primary and foreign
keys and the common attribute K has the same name on both
tables Ti and Tj .

Let ti ∈ Ti, then ti [K] is a restriction of ti to K. In
a valid database state with respect to I , the following two
conditions hold for every referential constraint: (1) Ti.K and
Tj .K have the same domains. (2) for every row ti ∈ Ti there
must exist a row tj ∈ Tj such that ti [K] = tj [K]. The
primary key of a Table (Tj .K in this case) is not allowed to
have nulls. But in general, for practical reasons the foreign
key Ti.K is allowed to have nulls when its value is not
available at the time of insertion or when rows from the
referenced table are deleted and foreign keys are nullified [3].
We refer to the valid state just defined as a strict state. In
a data warehouse environment, a commonly used strategy to
avoid joins that return answer sets with excluded rows is by
inserting records into dimension tables to explicitly indicate
not available or undefined references. When two tables are
joined and aggregations are computed, rows with an undefined
foreign key value that reference the undefined dimension row
are aggregated in a group marked as undefined. Since this
strategy effectively discards potentially valuable information,
we also define a rigorous state. A rigorous state is a strict
state where all dimension rows are defined, as opposed to the
undefined dimension rows explained above.

B. Join on a Foreign Key

In this article, we concentrate on computing queries with
natural joins between two tables linked by a foreign key and
possibly with aggregate functions. We focus on joins with
a simple key, consisting of one column. More specifically,
we study join computation between two tables T1, T2 on a
common column K: T1 onK T2. Table T1 may or may not have
a measure attribute, say M , an attribute over which aggregate
functions may be computed. The primary key of a table is
underlined (e.g. T1(A, K,M)). This relational operation is
called a natural join and it is the most common type of join in
a relational database. For shorthand, we call this operation a
FK/PK join. In an OLAP (multidimensional) database model
in the form of a star schema for a data warehouse, there are
two kinds of tables: a fact table and multiple surrounding
dimension tables referenced by foreign keys K1, . . . ,Kk.

Fig. 1: Example of T1, T2, F , G1 and G2 .

We focus on star-joins to compute aggregations. That is,
computing joins between the fact table and several dimension
tables.

C. Table Definitions and Aggregations

We now provide table definitions for T1 and T2 to compute
queries with natural joins and aggregate functions. For a
FK/PK join T1 is defined as T1(A, K,M) with K being a
foreign key, possibly with duplicate, null, invalid or undefined
values, and T2 as T2(K, B), where primary key T2.K has at
every moment all valid values foreign key T1.K may hold.
In an OLAP environment, T1 could be the fact table and T2

a dimension table. Let Table F store the join query results:
F = T1 onK T2. Result Table F shares the same primary key
with T1 and therefore it is defined as F (A, K,B). Let Table
G1 store the join group by query results with the aggregate
answer set in case an aggregate function is computed over the
foreign key K or an attribute determined by K, say B. Let
Table G2 store the total aggregate answer set. Figure 1 shows
an example illustrating definitions. Table T1 contains one row
with an invalid key, two rows with null keys, and one with
an undefined key. Result Table F does not contain any row
with null or invalid foreign keys. In Table G1 we are assuming
the aggregate function sum() was computed over the joined
Table T1 onK T2 grouping over attribute B and aggregating
attribute M . Finally, in Table G2 we find the total aggregate
considering rows with a valid, defined foreign key. Rows in
Figure 1 were rearranged for a better layout.

In our work, we assume aggregate functions are sum-
marizable [9], [7]. A summarizable aggregate function is a
distributive aggregate function that applied to an attribute
is equal to a function applied to aggregates, that, in turn,
are generated by the original aggregate function applied over
the attribute of each partition of a table. Common aggregate
functions such as count(*), count(), sum(), max(), min()
meet this property. Other algebraic aggregate functions can
be computed from these summarizable aggregates like, for
instance, the avg() function, so our method may be used also
with these kind of aggregates.

III. REPAIRING SQL QUERIES WITH

3

REFERENTIAL INTEGRITY ISSUES

OLAP tools generate SQL code to obtain answer sets like
for instance F , G1 or G2 of our running example. Suppose
the application was developed in Java. The Java code that
could have generated the SQL query to obtain tables F and
G1 could be the following:

ResultSet getLabels(String refing, String refed) {

String joinquery = “SELECT ”

+ “A, K, B FROM ” + refing + “ JOIN ” + refed

+ “ ON ” + refing + “.K = ” + refed + “.K ;” ;

return sqlclause.executeQ(joinquery);

}

ResultSet getJoinAgg(String refing, String refed,

String agg) {

String joinaggquery = “SELECT ”

+ “ B, ” + agg +“(M) FROM ” + refing + “ JOIN ”

+ refed + “ ON ” + refing + “.K = ” + refed + “.K ”

+ “ GROUP BY B ;”;

return sqlclause.executeQ(joinaggquery);

}

Observe that the execution of the SQL code depends on
the state of the database the moment the Java object code is
executed. At the Java compile time, nothing is known about the
database. At execution time, the user of the Java application
may be ignorant about the database state, particularly about
referential integrity issues. Rows 1, 5 and 8 of Table T1

are effectively ignored. Data of row 9 do not participate in
any “real” group, see Figure 1. Observe there are rows with
referential errors.

A. Example

We illustrate the rewriting approach with the next example.
Suppose the database application generates the following
query:

1 SELECT B , sum (M)
2 FROM T1 JOIN T2 ON T1 .K = T2 .K
3 GROUP BY B ;

Here the user wants a grouping by attribute B, the di-
mension description. This query corresponds to the one that
produced Table G1 of our running example. As we have seen,
three rows were discarded because of an invalid value: value
7 and two null values in foreign key T1.K. Also an undefined
group was created. The user may consider unacceptable the
fact that several rows were ignored or the existence of an
undefined group holding valuable data.

The following SQL statements obtain the same answer set
1 CREATE TABLE temp1 AS
2 SELECT T2 . B , T2 .K AS FK ,
3 count (∗) AS rowss ,
4 count (T1 .K) AS d i f f n u l l ,
5 count (T2 .K) AS v a l i d v ,
6 sum (M) AS agg1
7 FROM T1 LEFT OUTER JOIN T2
8 ON T1 .K = T2 .K
9 GROUP BY B , FK ;

10
11 SELECT B , sum (agg1)

TABLE I: Contents of Table temp1
B FK rowss diffnull validv agg1
One 1 2 2 2 88
Two 2 2 2 2 57
Three 3 1 1 1 12
Not Avail. 99 1 1 1 7
null null 3 1 0 32

12 FROM
13 (SELECT B , agg1
14 FROM temp1
15 WHERE temp1 . FK i s not n u l l) AS foo
16 GROUP BY B ;

The following small variant of the last SQL statement will
obtain Table G2 from Table temp1

1 SELECT sum (agg1)
2 FROM
3 (SELECT B , agg1
4 FROM temp1
5 WHERE temp1 . FK i s not n u l l
6 AND temp1 . FK <> 99) AS foo ;

However, we have a table, temp1, that holds valuable data
that can be used to determine the condition of the foreign
key K, with respect to referential integrity. Also, it holds
information related to the undefined value (99). In Table I we
show the contents of Table temp1. This table is normally much
smaller than the referencing table since it holds the different
valid values of foreign key T1.K including the undefined
value, plus a row with a null value in FK that represents
rows with an invalid value, assuming null is invalid. From
this row we can obtain the number of invalid values different
from null. Notice that the overhead to compute the answer set
by creating Table temp1 consists only in a double scan over
Table temp1. The double scan is because values of attribute
C may be duplicated. If this is not the case, only one scan is
needed.

B. Query Rewriting Method

To generalize the previous example we proceed as follows.
Given a star-join query of the form:

1 SELECT a t t r 1 , a t t r 2 , . . . , a t t r n ,
2 agg1 (M1) , agg2 (M2) , . . . , aggm (Mm)
3 FROM T1 JOIN T2 ON T1 . K2 = T2 . K2
4 JOIN T3 ON T1 . K3 = T3 . K3
5 JOIN , . . . ,
6 Tk ON T1 . Kk = Tk . Kk
7 GROUP BY a t t r 1 , a t t r 2 , . . . , a t t r n ;

where T1 is the referencing table or a fact table and T2, . . . , Tk

are the referenced tables or dimension tables. K2, . . . ,Kk are
foreign keys that correspond to the primary keys in tables
T2, . . . , Tk respectively. attr1, attr2, . . . , attrn are attributes
in tables in set {T1, . . . , Tk}. agg1(M1), agg2(M2), ...,
aggm(Mm) are aggregate functions taken from {count(*),
count(), sum(), avg(), max() and min()} over (measure)
attributes of Table T1.

The rewriting is the following
1 CREATE TABLE temp1 AS
2 SELECT a t t r 1 AS C1 , a t t r 2 AS C2 , . . . ,
3 a t t r n AS Cn ,
4 T2 . K2 AS FK2 ,
5 T3 . K3 AS FK3 , . . . , Tk . Kk AS FKk
6 count (∗) AS rowss ,
7 count (T1 . K2) AS d i f f n u l l 2 ,

4

8 count (T2 . K2) AS v a l i d v 2 ,
9 count (T1 . K3) AS d i f f n u l l 3 ,

10 count (T3 . K3) AS v a l i d v 3 , . . . ,
11 count (T1 . Kk) AS d i f f n u l l k ,
12 count (Tk . Kk) AS v a l i d v k ,
13 agg1 (M1) AS agg1 , agg2 (M2) AS agg2 , . . . ,
14 aggm (Mm) AS aggm
15 FROM
16 T1 LEFT OUTER JOIN T2 ON T1 . K2 = T2 . K2
17 LEFT OUTER JOIN T3 ON T1 . K3 = T3 . K3 . . .
18 LEFT OUTER JOIN Tk ON T1 . Kk = Tk . Kk
19 GROUP BY C1 , C2 , . . . , Cn , FK2 , FK3 , . . . , FKk ;
20
21 SELECT C1 AS a t t r 1 , C2 AS a t t r 2 , . . . ,
22 Cn AS a t t r n ,
23 func1 (agg1) , func2 (agg2) , . . . ,
24 funcm (aggm)
25 FROM
26 (SELECT C1 , C2 , . . . , Cn , agg1 , agg2 , . . . ,
27 aggm
28 FROM temp1
29 WHERE temp1 . FK2 i s not n u l l AND
30 temp1 . FK3 i s not n u l l AND . . . AND
31 temp1 . FKk i s not n u l l) AS foo
32 GROUP BY C1 , C2 , . . . , Cn ;

The rewritten variant to obtain the total aggregate, like
Table G2 in our running example is similar. Notice that
the summarizable property is important since it allows us to
compute the answer set in two steps. First we compute Table
temp1 with a precomputation of the aggregate functions and
the information related to the referential integrity conditions.
Next, we finish the computation of the answer set. In parallel,
with data in Table temp1, if there is a row with a null value
in column FK we know there are referential integrity issues.
Using columns rowss, diffnulli and validvi the system can
compute the number of rows of a given group including the
null group (rows with invalid values in foreign keys) and the
undefined group, and for each foreign key, the number of rows
with a value different from null as well as rows with valid
values. This way a query with referential integrity issues is
detected. Observe that the aggregate computation is safe in
the sense that if there are no referential integrity errors, that
is, if the database is a strict database, the row with a null
value in FK in Table temp1 will not appear, and the answer
set will be correct. Notice that OLAP processing can be slow,
but techniques [10], such as precomputation by aggregating on
all dimensions, help improve performance. Our method can be
used in the precomputation of cubes or in the ETL process in
order to detect referential integrity issues. It can be applied on
cube exploration (slice/dice, pivoting, x tab).

Aggregate functions, aside from the sum() aggregate shown
in our example, such as count(*), count(), max(), min()
and avg() can also be computed with this method. Aggregate
function count(*) derives from column rowss, adding (sum())
partial counts. Aggregate count() can be computed from
column validv. To compute max() and min() just we need
to add these aggregates in Table temp1. Function avg() can
be computed with functions sum() and count(). If the user
requests it, undefined rows may be omitted and the aggregate
may be computed using a referential partial probability vector
as it is explained in [5] in order to dynamically estimate the
answer set of the aggregation functions. This way, the user
will get an estimated answer set of a rigorous database.

A variant of the computation of Table temp1 presented
above, consists in computing first a table grouping the ref-

TABLE II: PDFs used to insert invalid values.

PDF Probability function Parameters
Uniform 1

h h = |T2|
Zipf 1/ks

HM,s
M = |T2|
s = 1

Geometric (1− p)n−1p p = 1/2

erencing (fact) table, by the set of foreign keys. That is, on
all dimensions in order to help improve performance when
computing equijoins. This reduced table that may or may
not be materialized, can hold aggregate computations that
correspond to the number of rows, the number of rows with
foreign keys different from null and the measure attributes.
This table holds extra rows and aggregations that correspond
to invalid foreign key values. We proceed then to compute with
this table left outer joins with the corresponding dimension
tables in order to obtain the number of rows with valid values
and values that correspond to attributes of dimension tables
(attribute B in Table I).

Finally, observe that if there is a small fraction of referential
errors, a left outer join should use the same join algorithm
as an equijoin (mergesort join, hash join or indexed join)
therefore our method is efficient in these cases.

IV. EXPERIMENTAL EVALUATION

We conducted our experiments on a database server with
one CPU running at 1.6 GHz with 2 GB of main memory and
146 GB on disk. Evaluations were carried out on the public
domain DBMS PostgreSQL.

A. TPC-H Database

Our synthetic databases were generated by the TPC-H
DBGEN program. We did not define any referential integrity
constraint to allow referential errors. We inserted referential
integrity errors in the referencing fact table (lineitem) with
different rates of errors and in three foreign keys
(l orderkey, l partkey and l suppkey).

The referencing table, lineitem has cardinalities 6M and
12M, referenced tables orders, part and supplier have the
following cardinalities: 1.5M, 200k and 10k rows, respectively.
Invalid values were randomly inserted according to three
different pdfs, that follow the parameters shown in Table
II where T2 stands for the referenced table. The minimum
number of errors generated was approximately 6,000 and the
maximum 600,000. One value of each set of valid values was
considered the Not Available group.

B. Time Performance

We evaluated two optimization variants to compute the
preaggregated table temp1 described in Section III-B. The
first variant, left outer join first (LOJF), obtains temp1 by
first computing left outer joins between the referencing (fact)
table and the referenced (dimension) tables. Afterwards the
grouping computation of compound foreign keys takes place.

5

TABLE III: Table temp1 computation with different com-
pound foreign keys groupings. Time in seconds.

FK (group size) LOJF variant GF variant
|lineitem| 6M 12M 6M 12M

l suppkey (600) 134 27 113 343
l partkey (30) 143 254 247 517
l orderkey (4) 133 276 253 528
l suppkey,l partkey (7,5 avg) 236 396 202 519

The SQL rewrite template of this variant is the one that
appears in Section III-B. The second variant, grouping first
(GF), computes temp1 by first grouping the compound foreign
keys of the referencing table. This is done to obtain aggregate
computations first, without considering the referential integrity
errors. Then follows the computation of left outer joins. The
second variant prove to be more efficient when the number of
distinct values of the compound foreign keys were significantly
less than the cardinality of the referencing table. Otherwise,
computing left outer joins first was the best option.

In Table III we present performance considering compound
foreign key value groups of different sizes (meaning each
compound foreign key value appeared in a number of rows
on average). Observe how times become better for groups of
larger size (with more rows) when using the GF variant.

Summarizing the performance of our proposal, computation
depends on the size of the referencing table, the size of groups
of compound foreign key values and the number of distinct
compound foreign key values.

V. RELATED WORK

There are several articles that study the quality of dynami-
cally created SQL queries [2], [6]. In [6] the authors present a
technique that considers data type errors, however referential
integrity is not taken into consideration. In [2] the purpose is to
analyze relationships between tables, among other structures,
and to extract programmatic joins and cascading deletes, and
summarize data access. Also, several metrics are defined for
quantifying quality aspects of systems that contain embedded
SQL queries. In [1] the authors present a consistency check
model that can handle a subset of SQL. The model handles
foreign keys via the NOT EXISTS SQL set operator. Although
the user receives a warning, the system does not give a clue
about the size of the problem. Moreover, aggregate functions
are not considered. Several other articles study SQL query
consistency taking into consideration referential integrity, such
as [12]. In contrast, our proposal considers embedded SQL and
aggregate functions.

The process of finding a query rewrite of a cube view as
another query that uses a precomputed cube view is known
as aggregate navigation [8]. Summarizability has been studied
in the OLAP context, particularly in the aggregate navigation
process, to compute cube views more efficiently [9]. However,
to the best of our knowledge, the use of summarizability in the
aggregate navigation process has not been used to obtain data
quality information, specifically to detect referential integrity
issues.

Next, we summarize past research on improving database
systems to handle referential integrity issues. In [11] we
propose measuring referential integrity errors. In [4] we con-
sider an additional metric to measure consistency in table
replicas. In [5] we presented our studies of how to improve
aggregations. In contrast, in this work we study how to rewrite
queries with potential referential integrity violations, generated
by OLAP tools. Here we do not compute a new extended
aggregation as in [5]. By using the summarizable property
of certain aggregations, during the query generation process,
we collect valuable information and we use it to diagnose
data quality issues and warn the user about correctness of
referential integrity in a queried table.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a query rewriting method to repair dynami-
cally generated SQL queries combining join operators and ag-
gregate functions, in order to detect referential integrity issues
hidden in the underlying database. Our method takes advan-
tage of the summarizability property of common distributed
aggregate functions such as count(∗), count(), sum(), max()
and min(), to generate statistics related to referential integrity
issues. With referential integrity related data, the system is able
to warn the user about referential integrity in queried tables.
Observe that our proposed method can be easily incorporated
into OLAP tools. The overhead to compute the additional ref-
erential integrity related statistics has a low impact in overall
performance. Our query rewriting method can be incorporated
in the precomputation of cube views. Our experiments show
the proposed method scales well.

There are several issues for future work. Some of our
ideas can be extended to other non-summarizable aggregates
and other types of SPJ queries. We need to study query
optimization with compound keys in more depth. Also, we
need to study how to efficiently reuse referential integrity
statistics in future queries. We are currently exploring how
to apply our techniques over materialized views during the
query computation.

Acknowledgments. The first author was partially supported
by the IPN - Secretarı́a de Investigación y Posgrado. The
second author was partially supported by NSF grants CCF
0937562 and IIS 0914861.

REFERENCES

[1] Stefan Brass and Christian Goldberg. Proving the safety of SQL queries.
In QSIC ’05, pages 197–204, 2005.

[2] H. Brink, R. Leek, and J. Visser. Quality assessment for embedded SQL.
In SCAM ’07, pages 163–170, 2007.

[3] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems.
Addison/Wesley, Redwood City, California, 3rd edition, 2000.

[4] J. Garcı́a-Garcı́a and C. Ordonez. Consistency-aware evaluation of
OLAP queries in replicated data warehouses. In ACM DOLAP ’09,
pages 73–80, 2009.

[5] J. Garcı́a-Garcı́a and C. Ordonez. Extended aggregations for databases
with referential integrity issues. Data Knowl. Eng., 69(1):73–95, 2010.

[6] C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically
generated queries in database applications. In ICSE ’04, pages 645–
654, 2004.

[7] J. Horner, I. Song, and P. Chen. An analysis of additivity in OLAP
systems. In DOLAP ’04, pages 83–91, 2004.

6

[8] R. Kimball and J. Caserta. The Data Warehouse ETL Toolkit: Practical
Techniques for Extracting, Cleaning, Conforming, and Delivering Data.
John Wiley & Sons, 2004.

[9] H. J. Lenz and A. Shoshani. Summarizability in OLAP and statistical
data bases. In SSDBM Conference, pages 132–143, 1997.

[10] C. Ordonez and Z. Chen. Evaluating statistical tests on OLAP cubes to
compare degree of disease. IEEE Trans. Info. Tech. Biomed., 13(5):756–
765, 2009.

[11] C. Ordonez and J. Garcı́a-Garcı́a. Referential integrity quality metrics.
Decision Support Systems Journal, 44(2):495–508, 2008.

[12] J. Tuya, M.J. Suárez-Cabal, and C. Riva. A practical guide to SQL
white-box testing. SIGPLAN Not., 41(4):36–41, 2006.

