
On the Computation of Stochastic Search Variable Selection in Linear Regression
with UDFs

Mario Navas
University of Houston

Dept. of Computer Science
Houston, TX 77204, USA

Carlos Ordonez
University of Houston

Dept. of Computer Science
Houston, TX 77204, USA

Veerabhadran Baladandayuthapani
University of Texas

MD Anderson Cancer Center
Houston, TX 77030, USA

Abstract—Computing Bayesian statistics with traditional
techniques is extremely slow, specially when large data has to
be exported from a relational DBMS. We propose algorithms
for large scale processing of stochastic search variable selection
(SSVS) for linear regression that can work entirely inside a
DBMS. The traditional SSVS algorithm requires multiple scans
of the input data in order to compute a regression model. Due
to our optimizations, SSVS can be done in either one scan
over the input table for large number of records with sufficient
statistics, or one scan per iteration for high-dimensional data.
We consider storage layouts which efficiently exploit DBMS
parallel processing of aggregate functions. Experimental results
demonstrate correctness, convergence and performance of our
algorithms. Finally, the algorithms show good scalability for
data with a very large number of records, or a very high
number of dimensions.

Keywords-Bayesian statistics;variable selection;UDF

I. INTRODUCTION

The objective of data mining algorithms is to efficiently
compute models for large amounts of data. In variable selec-
tion, the major concern is to find the attributes which better
explain the output of interest. Since, finding the best set of
explanatory variables implies an exhaustive search through
all possible combination of variables, selecting a linear
model is demanding and often untenable in large datasets
with many variables. Stepwise regression is the conventional
approach to select attributes; evaluating whether to include
or exclude variables in the model one at a time. However,
only a limited fraction of the model space is visited, and
solutions could be suboptimal. On the other hand, stochastic
search variable selection (SSVS) [4] evaluates models based
on a stochastic probabilistic search over the possible model
configurations best explaining the output variable. Based on
the configuration yielding the highest posterior probabilities,
the best model can be evaluated without conducting an
exhaustive search over the model space.
Due the limitation of external tools to manage large amounts
of data, we have seen the feasibility to implement SSVS
within the DBMS context. Thus, the importance of combin-
ing SQL and UDFs (user-defined functions) to efficiently

This work was partially supported by NSF grants CCF 0937562 and IIS
0914861.

perform data mining of data stored in databases [6], [1]. Our
contribution is to yield the DBMS with the capability to per-
form Bayesian variable selection of large datasets. SSVS is
computed from summarization matrices after one scan over
the input table. However, high-dimensional data demand
further optimizations like caching submatrices with efficient
memory management algorithms. Finally, we include a set of
measurements to assess convergence of SSVS, and to select
the elements in the resulting sequence that better estimate
the posterior distribution.
This paper is organized as follows. Section 2 presents
an overview of definitions. Section 3 discusses our algo-
rithms for efficiently computing SSVS for large datasets.
Experimental results, in Section 4, evaluate accuracy and
performance of different methodologies when integrated to
a DBMS. Section 5 discloses related work. Finally, Section
6 concludes the article.

II. PRELIMINARIES

A. Definitions

Assume the input data X = {x1, . . . , xn}, with d dimen-
sions and n data points xi as column vectors. Consequently,
the matrix X has size d×n. The response Y , or variable of
interest, is a matrix 1× n. To indicate matrix transposition
we use the superscript T . The ath dimension is referred
with the subscript Xa, while a superscript γI is used for
the Ith iteration in stochastic search variable selection (γ is
defined bellow). We will use the terminology 1n to represent
a column vector of n ones (as in [7]). Finally, X is used for
the augmented version of X in linear regression.

B. Summarization Matrices

Data set summarization is fundamental is fundamental in
data mining and statistics [5]. The set of summarization
matrices which could substitute X in computations are [11]:
n, L, and Q. The value n is a count of points in the input
data set X . L is the linear sum of the d dimension in X ,
or L = X · 1n =

∑n
i=1 xi, and forms a vector of d values.

The matrix Q is the quadratic sum of the cross-products of
points, or Q = XXT =

∑n
i=1 xi · xTi , with size d× d.



Considering the data set X stored inside the DBMS, summa-
rization is computed with aggregate operations and only one
scan over the input table. Moreover, aggregate operations
are distributive; thus, they can be computed in parallel over
different sections of the data, where the global aggregation
is given by the addition of all partial results. The storage
layouts of points in the input table could be by row or by
column. In order to compute n, L, and Q with aggregate
operations, points are stored by row. Also, the matrix oper-
ations XY T , Y Y T , and Y 1n are computed as part of the
summarization by adding the variable Y as an attribute of
the input table (X1, . . . , Xd, Y ). Our focus is to exploit the
summarization matrices for Bayesian computations.

C. Bayesian Variable Selection

Linear regression models the relationship between an
output or response variable Y, and a set a set of explanatory
variables or estimators X . The regression model Y = β0 +
β1X1 + . . .+βdXd + ε, is defined by β = (β0, β1, . . . , βd),
the regression coefficients and a Gaussian white noise error
ε. Since increasing d (the number of estimators) not nec-
essarily increases the quality of the model, the problem of
variable selection is to find a set of explanatory variables that
best predicts the output variable Y , among the 2d possible
subsets of X. In variable selection via Gibbs sampler [4], a
model Mγ is represented by a γ ∈ Γ = {0, 1}d, where the
variable Xa is part of the model if γa = 1. The estimation
for the probability distribution π(γ|Y,X) obtained by con-
volving the likelihood and the prior distribution is computed
with the number of appearances of each model Mγ taken
S iterations. Therefore, stochastic search variable selection
(SSVS) generates a sequence γI , where I = 1, . . . , S. Given
that γI(a) = (γI1 , . . . , γ

I
a−1, γ

I−1
a+1 , . . . , γ

I−1
d ), the sample γI

is obtained by evaluating the probabilities of γIa = 0 and
γIa = 1 for each explanatory variable a, using the probability
function π(γIa|Y,X, γI(a)). In contrast to stepwise variable
selection which does an exhaustive search to find the model
that better explains the output variable, SSVS finds this
subset of variables based on posterior probabilities.

D. Posterior Probability Estimation

The general linear regression modeling of the output
variable is Y = βTX + ε, where β ∈ Rd+1, and the
augmented X is defined as in Equation 1. The Zellner’s
G-prior [7] is used to introduce prior information into the
Bayesian regression modeling. Model selection depends on
the G-prior function, which is conditional on the error
variance, σ2, a constant c and a hyperparameter β̃ defined
as β|σ2, X v N (β̃, cσ2(XX T )−1). To complete the hier-
archical formulations we define another prior on the error
variance as σ2 v π(σ2|X) = σ−2, i.e. a non-informative
prior distribution.

X =

[
1Tn
X

]
(1)

For the model Mγ , we have that βγ = (β0, {βa : γa = 1}),
the number of dimension in the model dγ = 1Tn · γ, and
the explanatory variables Xγ = {Xa : γa = 1}. Therefore,
the prior distribution of βγ for the model Mγ is shown in
Equation 2, where β̃γ = (XγX Tγ )−1XγX T β̃. Consequently,
the prior density function (see Equation 3) is used by
the Gibbs sampler to select models in the true posterior
distribution of π(γ|Y,X).

βγ |γ, σ2 v N (β̃γ , cσ
2(XγX Tγ )−1) (2)

π(γ|Y,X) ∝ (c+ 1)−(dγ+1)/2[Y Y T

− c

c+ 1
Y X Tγ (XγX Tγ )−1XγY T

− 1

c+ 1
β̃Tγ XγX Tγ β̃γ ]−n/2 (3)

Our choice is the prior function is due the feasibility to
express π(γ|Y,X) of the Zellner’s informative G-prior in a
closed form, and in terms of summarization matrices. We
define algorithms for efficiently computing SSVS inside the
DBMS, with one or few scans over the input table; thus,
resulting in high gains in computational efficiency.

III. ALGORITHMS

In this section we propose two algorithms to compute
Bayesian variable selection. The first algorithm performs
only one scan over the input table. The posterior distribution
is computed from the summarization matrices n, L, and Q.
Even though performing operations over matrices of size
d × d is very convenient when n >> d, high-dimensional
data demands further optimizations. A second algorithm
uses memory resources to efficiently update Xγ , without
a complete scan to the input table. Finally, the posterior
distribution π(γ|Y,X) is estimated based on the number of
appearances of a model γ in the output sequence.

A. SSVS with Summarization Matrices

Data summarization can be used to compute the posterior
probability distributions in variable selection with only one
table scan over the input data. The algorithm is divided
in two main phases: (1) summarize the input data with
n, L, Q, and (2) compute the Bayesian regression model.
In order to include XY T , Y 1n, and Y Y T in the sum-
marization step, the explanatory variable Y is added as
another attribute of the input table. Therefore, we compute
n, L and Q for (X1, . . . , Xd, Y ). By expressing probability
density functions in SSVS with summarization matrices,
we overcome the main disadvantage, especially for large
datasets, of having to scan the input dataset multiple times
to compute a posterior probability of a model.
Since the multiplication Xγ1n = {La : γa = 1}T , and
the cross-product XγX

T
γ has as elements {Qab : γa =

1 ∧ γb = 1}, the cross-product XγXγT of the augmented
set of variables of the model Mγ can be derived from



Algorithm 1: Stochastic Search Variable Selection
Input: Table data(X1, . . . , Xd, Y ),

iterations S, priors c, and β̃
1 : (n, L,Q) ← Summarization(data)
2 : Pick a random γ0 .
3 : For I ← 1 to S
4 : γI ← γI−1

5 : For a ← 1 to d
6 : γIa ← 0

7 : p0 ← PostProb(γI , c, β̃, n, L,Q, )*
8 : γIa ← 1

9 : p1 ← PostProb(γI , c, β̃, n, L,Q, )*
10: If Rand([0,1]) < p0/(p0 + p1)

11: γIa ← 0
12: else
13: γIa ← 1

Return: π(γ|Y,X) from γ1, . . . , γS

*π(γIa|Y,X, γ
I
(a)) is evaluated, as shown in Equation 3,

where X is substituded by n, L, and Q.

summarization matrices (see Equation 4). Likewise, the
matrix multiplication XγX T (see Equation 5), in β̃γ , is
constructed knowing that XγX

T = {Qa,[1:d] : γa = 1}.
The remaining matrix multiplication in the probability dis-
tribution, XγY T or (Y X Tγ )T , is derived from the fact that
XγY

T = {Qa,d+1 : γa = 1} (see Equation 6). Finally, the
dot product of the explanatory variable Y Y T = Qd+1,d+1.

XγXγT =

[
1Tn1n 1TnX

T
γ

Xγ1n XγX
T
γ

]
=

[
n Lb

T

La Qab

]
(4)

XγX T =

[
1Tn1n 1TnX

T

Xγ1n XγX
T

]
=

[
n LT[1:d]
La Qa,[1:d]

]
(5)

XγY T =

[
1TnY

T

XγY
T

]
=

[
Ld+1

Qa,d+1

]
(6)

In our algorithm to compute SSVS, results are exact (see
Algorithm 1). Only one scan to the input table is required,
after that, operations are done using the summarization
matrices n, L, and Q; without accessing the input table
again. SSVS is computed efficiently for very large datasets,
because the number of records only affects performance of
the summarization step.

B. SSVS for High-dimensional Data

The posterior distribution π(γ|Y,X) is estimated, for
high-dimensional data, taking advantage of memory re-
sources. The layout of the input table is to store points by
column. One dimension is accessed at a time, Xγ is changed
to include or exclude such dimension, and to compute the
selection probability for the new model. Therefore, only one
table scan is required to evaluate the d models in an iteration
of SSVS. As an initialization of SSVS, memory space is
allocated for caching a limited number of explanatory vari-
ables. Variables are evaluated one at a time. If the variable
is picked by SSVS then its value is cached, otherwise it is
removed from memory. Converge of SSVS depends on the
initial pick for γ0; if the memory space for caching is not
enough to store Xγ , we assume the sequence is not mixing

properly, and the algorithms is restarted with a different γ0.
The efficient execution of SSVS depends on appropriately
estimate the memory space for caching the variables Xγ of
the models Mγ in the true posterior distribution.

C. SQL and UDF Optimizations
We consider two storage layouts for the input matrix

X inside the DBMS. The first layout is to store points by
row, where columns are used to identify dimensions. The
second layout is to store points by columns, where each
row contains all the values for a dimension. Finally, we
have that optimizations in the DBMS are to reduce the
number of scans to the input table, in order to have good
scalability for large datasets.
Points in the input data are stored by row, when n >> d, to
express the summarization matrices n, L, and Q in terms
of the SUM aggregation. A single SQL statement is used to
calculate all values of the summary matrices. A property of
Q is to be a symmetric matrix, so it is enough to include
the d(d + 1)/2 upper or lower triangular elements. When
including all summarization values, we have the following
SQL statement:

SELECT SUM(1.0) /*n*/

,SUM(X1),SUM(X2)...,SUM(Xd) /*L or X1n*/

,SUM(X1 ∗X1) /*Q or XXT */

,SUM(X2 ∗X1),SUM(X2 ∗X2)
.
.
.

,SUM(Xd ∗X1),SUM(Xd ∗X2),...,SUM(Xd ∗Xd),

/*Variable of interest*/

,SUM(Y ) /*Y 1n*/

,SUM(Y ∗ Y ) /*Y Y
T
*/

,SUM(X1 ∗ Y ),SUM(X2 ∗ Y ),...,SUM(Xd ∗ Y ) /*XY
T
*/

FROM X;

The resulting table has a single row and a column
for each value in n, L, and Q. Since a limitation exists for
the number of columns in a table depending on the DBMS
provider, there is also a limit for the number of dimensions
that can be summarized with a single scan. Aggregate
UDFs can compute summarization by packing dimension
with a user-defined type [12]. However, parsing operations
and serialization of the user-define type is time costly, and
affects overall performance. Previous limitations are avoided
by implementing multithreading inside a TVF (table-valued
function) to distribute the workload, while keeping the hard
drive access sequential for performance. Also, the TVF
implementation follows the common API of DBMSs to
access query result sets. To obtain sequential reading, one
thread is uniquely in charge of retrieving records from the
input table, caching blocks of records in main memory,
and calling a monitor to dispatch the job to other thread
that actually performs the calculations or working thread.
We define techniques to control the number of threads



executing simultaneously, and the amount of memory used
by the aggregation process. The summarization matrices are
used to compute posterior probabilities of models, and the
TVF returns a table storing the generated sequence γ0,...,S .
The storage layout by column is used to compute SSVS for
data where d >> n. Therefore, points in X are stored as
columns in the table X. Data access and aggregations are
done dealing with vectors storing complete dimensions. Due
to its size, Xγ is used to compute posterior probabilities
of models. Each iteration, dimensions are evaluated one at
a time by including/excluding it from Xγ . Since database
programmability APIs provide access to tables by row, each
dimension vector is used to modify Xγ , and compute the
posterior probability of the new model. Like in storage by
row, the output sequence is returned as a table by the TVF.
An alternative implementation are stored procedures (SPs)
which can create the output tables directly in the DBMS.
In order to improve execution, further optimizations use
memory resources to avoid unnecessary model evaluations.
A hash table is used inside the TVF or the SP to have
quick access to values for the posterior probability
π(γa|Y,X, γ(a)) that have been calculated in previous
iterations of SSVS. Since, the space requirements for the
hash data structure could surpass memory limitations with
a bad choice for the initial γ0, the hash table is set with a
memory space limitation. Whenever the space requirement
goes above such boundary, the hash table can be restarted,
or it can be pruned. If the hash data structure is cleaned,
SSVS could also be restarted with a new γ0 to explore a
different region of parameter space.

D. Time and Space Complexity

Here we analyze complexity of the alternatives to per-
form SSVS. For each iteration I of SSVS, d estimates
for the probability π(γIa|Y,X, γI(a)) are computed. Without
optimizations, each posterior probability requires a complete
scan to the input dataset for the most representative oper-
ations: XγX Tγ or O(nd2γ), and an inverse computation or
O(d3γ). Since dγ varies for the d probabilities to compute
each iteration, we have that the overall complexity of SSVS
is O(nd4). Nevertheless, with the use of summarization
matrices to avoid several scans to the input table, probability
estimations are done over matrices of size d × d with
complexity O(d3). Since, the complexity of computing the
summarization matrices n, L, and Q is O(nd2), the overall
complexity of SSVS with summarization is O(nd2+d4). Fi-
nally, we have that the time complexity analysis is reflected
in the experimental results.

IV. EXPERIMENTAL RESULTS

For this paper, we conducted our experiments on a com-
mercial DBMS installed on a server with an Intel Core 2
Quad CPU with four cores of 2.83 GHz each, and 4GB
of RAM. The hard drive had 320GB of capacity, with a

SATA interface of 3.0Gb/s, and 7200 RPM. We used two
real datasets: the basket dataset of information about clients
retained by a market store, and the gene dataset of genetic
information of patients. The basket dataset has n = 95570
and d = 35; it was collected with the purpose of client
classification and for linear regression; the output variable
is the credit line of a new client. On the other hand, the
gene dataset was obtained from GEO Gene Expression Om-
nibus: a gene expression/molecular abundance repository.
The dataset has n = 176 and d = 36864; samples are from
kidney tissue with renal clear cell carcinoma and non cancer
tissue. In our experiments, the output variable is to predict
the one gene of interest given the rest of the gene values.
All experiments were repeated five times before reporting
an average. First, we evaluate convergence of sequences
obtained with our algorithms to compute variable selection.
The second set of experiments shows the performance of
our optimization to efficiently compute SSVS.

A. Evaluation of Convergence

In this section we analyze convergence of SSVS. Charts of
the cosine similarity sim(γI , γI+k), of consecutive elements
in a sequence with a lag k, are used to visualize dispersion.
the importance of the initial model γ0, and the influence of
the burn-in period to estimate the posterior distribution.
Figure 1 presents charts of measurements to assess con-
vergence of SSVS on the basket dataset, where d = 32,
n = 90K, and S = 10k iterations were drawn. After plotting
the similarity sim(γI , γI+100) of iterations I separated by a
lag k = 100, it can be seen that the sequence stabilized, and
models from the posterior distribution appeared repeatedly.
Even though Figure 1.a provides valuable information to
define a burn-in period, other measurements have also to be
taken into consideration. The similarity of the initial γ0 with
the rest of the sequence is shown in Figure 1.b. Draws in the
chain rapidly disperse from the initial parameter γ0, assuring
that exploration of the parameter space does not get stuck
in a local optimal. The measurement sim10(γburn,...,10K)
is the average similarity in the sequence γburn,...,10K when
the lag k = 10; it is used to evaluate candidate burn-in
periods. Figure 1.c provides little information to estimate
a burn-in period, as values for the measurement vary in a
tight range and there is no significant impact of the burn-in
period between the first 5K iterations. The output analysis
of the sequence has given enough information to define an
appropriate burn-in period of few iterations, and to expect
the sequence to be distributed from π(γ|Y,X).

B. Analysis of Optimization

In this section, we analyze execution performance of
SSVS inside the DBMS. Table I presents the execution
time of the main steps of the summarization matrices, and
the regression modeling. SSVS was performed over basket
information with n = 1M , and S = 10K iterations were



(a) sim(γI , γI+100) (b) sim(γ0, γI) (c) sim10(γburn,...,10k)

Figure 1. Output Analysis of an SSVS Execution (basket dataset: n = 90k, d = 32, S = 10k)

Table I
EXECUTION PERFORMANCE OF SSVS (n = 1M , S = 10K) (TIME IN

SECONDS)

d nLQ Model Model
with Hash

8 4.645 1.649 0.783
16 6.297 11.401 2.727
32 9.759 122.246 15.141
64 17.371 36.977 43.75

executed. The summarization step is efficiently computed
with UDFs with linear scalability on the number of dimen-
sions d. However, execution performance not only depends
on the number of dimensions d, but also on the problem
to solve. For SSVS from d = 32 to d = 64, there is no
increment on the execution time. In the model sequence of
d = 64 few variables are analyzed at a time. Therefore,
matrix operations have little number of variables involved,
and models are evaluated relatively fast. In contrast, when
d = 32 the number of variables which appear in the models
to evaluate are greater than d = 64. Consequently, the
average selection probability in d = 64 is computed faster
than in the sequence for d = 32. On the other hand, we
have that optimizations to the model computation improve
performance when the sequence converges. Since SSVS
converges within the S = 10K iterations for problems
where d ≤ 32, execution performance is improved with
the hash table optimization. Nevertheless, the sequence for
the problem d = 64 does not reach convergence; execution
performance of the optimization decreases in the model
computation step, due the overhead of looking for inexistent
probabilities in the hash table. Moreover, further iterations
must be done for d = 64 to reach the state of convergence,
and probably to see some benefit from the hash table
optimization. Since data summarization is computed once,
the number of iterations does not affect the summarization
step. It can be seen in Figure 2.a the impact of the hash

(a) iterations (b) records

Figure 2. Execution Performance of the SSVS from Summarization n, L,
and Q (n = 90K, d = 32, S = 10K)

table optimization during the model computation step. SSVS
has linear scalability on the number of iterations in the
sequence. Once the summarization step is completed, the
model computation does not require more scans to the input
table. Consequently, SSVS has also linear scalability on the
number of records n (see Figure 2.b). Since summarization
matrices of our experiments have size 32 × 32, the model
computation step is unaffected by the number of records n.

C. SSVS for High-Dimensional Data

In this set of experiment, we test execution performance of
our algorithm to compute SSVS for high-dimensional data.
Since the number of dimensions in the model is not expected
to surpass certain threshold set as a parameter, SSVS-HD
caches Xγ in main memory. The execution performance of
SSVS-HD is presented in Table II. Only when n = 32,
d = 1000, and S = 100 there is no time improvement
by hash table optimization, due the little exploration of
the posterior distribution. If S is increased, convergence of
the sequence is reached and the benefit of the hash table
optimization can be seen again when n = 32, d = 1000, and
S = 1000. Since convergence of SSVS is reached relatively
fast, the number of iterations can be increased with almost
linear scalability. During our experimental session, SSVS-
HD was restarted whenever the number of dimensions in
Xγ surpassed the threshold dγ ≤ 40. By restarting SSVS-



Table II
EXECUTION PERFORMANCE OF SSVS FOR HIGH-DIMENSIONAL DATA

(IN SECONDS)

n d S SSVS-HD SSVS-HD
with HASH

32 100 100 3.38 3.05
32 500 100 23.42 7.61
32 1000 100 52.47 62.24
32 100 1000 31.76 27.06
32 500 1000 233.60 36.69
32 1000 1000 949.49 173.98
64 100 100 10.805 10.225
64 500 100 61.965 34.128
64 1000 100 141.208 38.525

HD we avoid getting stuck into local optima, and search is
guided toward models bellow the desired threshold.
The experimental evaluation of our algorithms and measure-
ments for SSVS has shown the feasibility to efficiently im-
plement Bayesian statistics for large data inside the DBMS.
Converge evaluation is sufficient to define adequate burn-
in periods to estimate the posterior distribution of interest.
Finally, all the algorithms have good scalability on the
number of records n, and the number of dimensions d.

V. RELATED WORK

Variable or feature selection is a well researched topic in
both data mining and statistical literature, leading to a variety
of algorithms for searching the model space and selection
criteria for choosing between competing models [9]. In the
Bayesian framework, Markov chain Monte Carlo methods
can be used for inference and estimation, such in [2], [4].
The primary task then is to estimate the marginal posterior
probability, such a setup has been used in various variable
selection settings [8], but were limited to cases when the
size and dimensionality of the data is relative small.
Integrating data mining and statistical techniques into a
DBMS has been paid little attention. Most of the work
has focused on efficiently implementing sufficient statistics
for linear models [11], [12], [10]. Summarization of matrix
multiplication to compute models and probabilities in large
datasets has been explored in [3]. We have extended previous
work to yield the DBMS with Bayesian model computations
which turned out to be quite challenging to incorporate into
the DBMS.

VI. CONCLUSIONS

In this paper, we propose integrating SSVS into the
DBMS for processing large amounts of data. Our algorithms
show to efficiently perform variable selection for a large
number of record, and high-dimensional data. The algorithm
for a large n expresses model selection probabilities in
terms of summary matrices, where only one table scan
is done before computing SSVS. The model computation

is not affected by the number of records, while the sum-
marization step shows linear scalability on both n and d.
Since computations of order d are demanding for high-
dimensional data, we introduced an algorithm which exploits
caching to select models from a large number of explanatory
variables. Finally, the storage layout is defined to reduce I/O
operations, and to suit the data access of the database APIs.
There are several issues for future research. It is important
to investigate methods to improve the models obtained
with SSVS for high-dimensional data. Classification is an
important problem in data mining, which under the Bayesian
framework can be performed with logistic regression. Fur-
thermore, yielding the DBMSs with the basic operations in
Bayesian statics would greatly aid the analysis of large data.

REFERENCES

[1] J. Blakeley, V. Rao, I. Kunen, A. Prout, M. Henaire, and
C. Kleinerman, “.NET database programmability and exten-
sibility in microsoft sql server,” in Proceedings of the 2008
ACM SIGMOD international conference on Management of
data, (New York, NY, USA), pp. 1087–1098, ACM, 2008.

[2] V. Baladandayuthapani, B. Mallick, M. Hong, J. Lupton,
N. Turner, and R. Carroll, “Bayesian hierarchical spatially
correlated functional data analysis with application to colon
carcinogenesis,” Biometrics, vol. 64, pp. 64–73, March 2008.

[3] P. Drineas, M. Mahoney, and S. Muthukrishnan, “Sampling
algorithms for l2 regression and applications,” in Proc. SODA,
pp. 1127–1136, 2006.

[4] E. I. George and R. E. Mcculloch, “Variable selection via
gibbs sampling,” Journal of the American Statistical Associ-
ation, vol. 88, no. 423, pp. 881–889, 1993.

[5] G. Graefe, U. Fayyad, and S. Chaudhuri, “On the efficient
gathering of sufficient statistics for classification from large
SQL databases,” in Proc. ACM KDD Conference, pp. 204–
208, 1998.

[6] M. Jaedicke and B. Mitschang, “On parallel processing of
aggregate and scalar functions in object-relational DBMS,”
in ACM SIGMOD Conference, pp. 379–389, 1998.

[7] J. M. Marin and C. P. Robert, Bayesian Core: A Practical
Approach to Computational Bayesian Statistics. Springer
Publishing Company, Incorporated, 2007.

[8] T. J. Mitchell and J. J. Beauchamp, “Bayesian variable selec-
tion in linear regression,” Journal of the American Statistical
Association, vol. 83, no. 404, pp. 1023–1032, 1988.

[9] A. Miller, Subset Selection in Regression. Chapman &
Hall/CRC, 2002.

[10] M. Navas and C. Ordonez, “Efficient computation of PCA
with SVD in SQL,” in KDD Workshop on Data Mining using
Matrices and Tensors (DMMT), 2009.

[11] C. Ordonez, “Statistical model computation with UDFs,”
IEEE Transactions on Knowledge and Data Engineering
(TKDE), vol. 22, 2010.

[12] C. Ordonez and S. Pitchaimalai, “Fast UDFs to compute
sufficient statistics on large data sets exploiting caching and
sampling,” Data & Knowledge Engineering, vol. 69, no. 4,
pp. 383 – 398, 2010.


