
Query Recommendation in Digital Libraries using OLAP∗

Carlos Garcia-Alvarado
University of Houston

Dept. of Computer Science
Houston, TX, USA

Carlos Ordonez
University of Houston

Dept. of Computer Science
Houston, TX, USA

Zhibo Chen
University of Houston

Dept. of Computer Science
Houston, TX, USA

ABSTRACT
Query suggestion is well-known to enhance the user’s search
for relevant documents. In this work, we propose a novel
technique that emulates a human skill when searching or ex-
ploring digital collections. In general, a user begins search-
ing by providing a näıve query and then analyzes the re-
trieved documents in order to refine the query search. We
decided to emulate this behavior by generating alternative
queries using OLAP. Such queries are the result of perform-
ing multiple data summarizations on digital libraries, and
then generating cuboids depending on the correlation be-
tween the keywords of the collection and the subset of key-
words belonging to the previous search. Moreover, we intro-
duce techniques to efficiently obtain query suggestions inside
the DBMS by exploiting UDFs and SQL queries.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database applications

General Terms
Algorithms, Experimentation

Keywords
OLAP, IR, Query Processing

1. INTRODUCTION
Exploring and searching large digital collections such as

the ACM Digital Library, IEEE Xplore, or even metadata
collections such as DBLP, have become cumbersome when
the user possesses only incomplete facts or is missing in-
formation for properly choosing the keywords to search [1].
However, as the user performs a certain number of searches,
he begins to realize the keywords needed for obtaining the
desired information by analyzing the retrieved documents.
As a result, the user will eventually arrive at his target query,
which returns the desired information. For example, “data
summarization” may be our initial näıve search, but even-
tually, through a set of search iterations, we realize that the

∗This research work was partially supported by NSF grants
CCF 0937562 and IIS 0914861.

c© ACM, 2010 . This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proc. ACM Workshop onKeyword
Search on Structured Data (KEYS, SIGMOD 2010 Workshop).
http://doi.acm.org/10.1145/1868366.1868372

proper subset of documents is not really about“data summa-
rization,” but rather “data cubes.” Following this behavior,
we believe that an initial näıve query is not independent of
the target query. Consequently, we emulated this searching
behavior by providing the user with a set of query sugges-
tions that are the result of analyzing the frequency of the
keywords of a subset of the documents per query.

2. TECHNICAL DETAIL
Our application relies on a ranking model for retrieving

the top-k documents after an initial search by the user.
Thereafter, the recommendation is obtained by analyzing
this subset of documents. An additional step during the pre-
processing phase includes the computation of the correlation
matrix between keywords. The keywords with frequencies
higher than a certain value, as defined by the user, are se-
lected, and by using the keyword-document pairs, the final
correlation matrix is obtained. Hence, the total frequency
of each term in the collection must be computed, resulting
in the most costly step in the application. However, the cor-
relation matrix is only computed once per collection, and
can also be computed incrementally when new keywords are
added. Additionally, to compute a measurement between
more than two keywords, we multiplied all the related coef-
ficients to obtain a discrimination measure.

Also, this recommendation tool also relies on the summa-
rization properties of OLAP[4]. We perform OLAP on top
of a DBMS without the need to alter any of the underly-
ing source code or use a separate OLAP Server. For our
research, we use OLAP to generate a keyword data cube in
which each node of the lattice represents one specific com-
bination of keywords (d). The data cube stores both the
number of occurrences of the combination in the document
space, as well as the total number of documents in which
the set of keywords appears (e). For example, suppose the
node “Data Cubes” stores the values 150 (frequency) and 10
(number of documents). Then we know that in our filtered
document space, this combination of keywords appears a to-
tal of 150 times in 10 different documents. Thus, the p-th
level of the lattice would contain all possible combinations
of p keywords. For keywords, the dimensionality is often too
high to generate the entire lattice at once, and we will cer-
tainly run out of resources and time. Moreover, presenting
all the possible combinations of keywords would overwhelm
the user with too much information at once. As a result, we
perform a user-driven traversal of the dimensional lattice.
In this process, we first provide the user with a set of key-
words in a p level, which is selected by the user (e.g. level



Figure 1: Query Search.

2 of the dimensional lattice will return all the pairs of key-
words), found within the document space. From here, the
user can activate further calculations by drilling down the
lattice. For example, suppose the user wants to drill into
the keywords “Information Retrieval”. Then our application
would calculate only those nodes involving these two key-
words at the next level to form sets of three keywords, such
as “Information Retrieval Query”. Hence, we avoid comput-
ing large portions of the lattice at once while still providing
the user with the flexibility to drill as far into the lattice
as needed. Currently, we have explored two ways in which
we can execute OLAP queries: a pure SQL approach and
a User-Defined Function (UDF) approach. Further details
regarding these two methods can be found in [2].
The computation of the frequency of a set of keywords in a

document can be obtained by using two different approaches:
single match or distance match. While both are considered
an independent level of the cube, each metric returns results
of differing qualities. Single match is the result of consider-
ing a keyword set occurrence as the result of an appearance
of all the keywords in the set independently. Thus, if key-
word1 appears three times in the document and keyword2
appears one time in the same document, the combination
{keyword1,keyword2} is considered to have a frequency of
one. Distance match, on the other hand, takes into consid-
eration the distance between both keywords in a document
(the distance is given by the user). However, using the dis-
tance method can be troublesome to adjust. If the distance
is too small, the cube may not have enough occurrences to
aggregate; if the distance is too large, the final quality of
the results may be equivalent to those in the single match
without the overhead of the distance computation.

3. SYSTEM DEMONSTRATION
We developed our system as a standalone application us-

ing the Vector Space Model for retrieving the top-k doc-
uments and connecting to the DBMS via ODBC. The user
interface is a thin client for sending and retrieving SQL state-
ments, and the core of the computations is performed in the
DBMS. Traditional data structures for supporting IDF-TF
are built inside the DBMS to allow the ranking of the doc-
uments (see [3]). In this demonstration scenario, our goal
is to show how we can explore four different collections of
documents from the UCI Repository (ENRON, KOS, NIPS,
NYTIMES), and an additional collection of documents re-
lated to Water Pollution from the Texas Commission on

Figure 2: OLAP Keyword Cube Parameters.

Environmental Quality. The first set of collections will be
used exclusively for the single match metric, and the Wa-
ter Pollution collection will be used to test both metrics.
The fact that they can be navigated by a series of sugges-
tions given by the applications following the content of the
users’ queries will be easily appreciated. The demonstration
will be divided into two sections: the preprocessing phase,
and the retrieval and exploration phase. The preprocessing
phase (see Figure 2) will show the creation of the correla-
tion matrix of a small collection, due to the time constraint
for showing a larger collection. The construction of the re-
quired data structures will be shown by displaying the SQL
employed for the keyword preprocessing stage and the lineal
algebra operations required to obtain the final results. The
second phase of the demonstration will be focused on search-
ing and mostly on the query suggestion. The users will have
the opportunity to select the collection on which they would
like to perform the query. The query recommendation will
require setting parameters such as the threshold for the ice-
berg queries, and the size of the combination of keywords
used in the keyword suggestion (see Figure 1). Then a set of
näıve queries will be given, and the audience will have the
chance to explore the collection by choosing from given sug-
gestions. Finally, the users will appreciate that a such query
suggestion is the result of an on-the-fly OLAP Cube com-
putation by using in-database extensions and SQL queries
to explore and query digital collections. In addition, the
user will experience that using the OLAP query suggestions
allows a clever navigation of all of the keywords associated
with an initial query, in order to find the target query that
displays the desired results. This is a capability that it is
not possible when performing a simple search in a collection.

4. REFERENCES
[1] Y. Chen, W. Wang, and X. Lin Z. Liu. Keyword Search

on Structured and Semi-structured Data. Tutorial
Description. In SIGMOD, 2009.

[2] Z. Chen, C. Ordonez, and C. Garcia-Alvarado. Fast
and Dynamic OLAP Exploration Using UDFs. In
SIGMOD, pages 1087–1090, 2009.

[3] C. Garcia-Alvarado and C. Ordonez. Information
retrieval from digital libraries in SQL. In WIDM

Workshop, pages 55–62, 2008.

[4] C. Ordonez and Z. Chen. Evaluating Statistical Tests
on OLAP Cubes to Compare Degree of Disease. IEEE
TITB, 13(5):756–765, 2009.


