Keyword Search Across Databases and Documents:

Carlos Garcia-Alvarado
University of Houston
Dept. of Computer Science
Houston, TX, USA

ABSTRACT

Given the continuous growth of databases and the abun-
dance of diverse files in modern IT environments, there is a
pressing need to integrate keyword search on heterogeneous
information sources. A particular case in which such inte-
gration is needed occurs when a collection of documents (e.g.
word processing documents, spreadsheets, text files and so
on) is derived directly from a central database, and both
repositories are independently updated. Finding hidden re-
lationships between documents and databases is difficult,
given the loose connection between them. This problem is
especially complicated when database integration techniques
must be extended to handle semi-structured data (i.e. doc-
uments). Our research focuses on exploiting a relational
database system for integrating and exploring complex in-
terrelationships between a database and a collection of po-
tentially related documents. We focus on the discovery and
ranking of keyword links (relationships) at different gran-
ularity levels between a database schema and a collection
of documents. We adapt, extend, and combine information
retrieval techniques into the DBMS. As such, we provide al-
gorithms for efficient exploration of discovered relationships
among a collection of documents and a DBMS. We experi-
mentally show that our system can discover, query and rank
complex relationships discovered between a database and
surrounding documents.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms

Algorithms, Experimentation

Keywords

Keyword Search, Database, Documents

*This research work was partially supported by NSF grants
CCF 0937562 and IIS 0914861.

(© ACM, 2010 . This is the author’s version of the work. It is pexbt
here by permission of ACM for your personal use. Not for rettigtion.
The definitive version was published in Proc. ACM Workshogeyword
Search on Structured Data (KEYS, SIGMOD 2010 Workshop).
http://doi.acm.org/10.1145/1868366.1868368

Carlos Ordonez
University of Houston
Dept. of Computer Science
Houston, TX, USA

1. INTRODUCTION

Keyword search has become a ubiquitous concept for end-
users since the emergence of web search engines such as Ya-
hoo! or Google. As a result, traditional query languages
for structured sources such as SQL appear to be a compli-
cated option for inexperienced users whose desire is to be
able to query without knowing the structure of the data.
Keyword search in databases has been widely explored in
recent papers [7, 3, 1, 9, 16, 4]. However, there are multiple
unstructured collections whose origin is a structured source.

A typical example of a collection of documents created
from a structured source is found in the registrar’s office
at a university. It has a central database with information
about current students in the university, including student
ID, name, major, grades, and financial information, among
others. Aside from this database, each department and pro-
fessor has documents about these students, such as med-
ical information, homeworks, reports, theses and papers,
and many more types of documents. These unstructured
sources are all modified and created independently, with-
out the database’s support. Nevertheless, the links between
both sources are no longer obvious, and there is an increas-
ing need to perform searches that will allow us to relate and
rank these data sources again. Hence, a way to relate these
two areas represents an immediate need for the organization.

Despite the fact that the scenario is clear, a number of
challenges arise in solving such a complex problem of re-
lating a database with a collection of documents. Some of
these problems involve discovering links between the docu-
ment’s data and the database in the DBMS. An initial way
of finding these links is by performing keyword matching be-
tween both sources. As a result, our objective in this paper
is to achieve structured and unstructured data linkage using
elements residing in the DBMS, and to allow the user to
explore and perform searches in both data sources.

The information stored in a database system contains
structure and hierarchy. Hence, the data stored in a database
is already associated with an explicit meaning, as compared
to the data spread throughout unstructured sources. In ad-
dition, most data stored in the DBMS undergoes a validation
process in order to guarantee the integrity constraints[13].
On the other hand, the semistructured and unstructured
sources do not undergo this validation process, and they
are modified independently of one another. Without loss of
generality, for the purpose of this paper, all semistructured
and unstructured documents are going to be considered in-
distinguishable. These unstructured documents are created
outside of the “rigorous” structure and enforcement of cor-

rectness given by the referential integrity of the database
(controlled tabular environment) with information explain-
ing the content of the database. This lack of validation has
made the task of matching difficult. Despite this, the data
that reside outside the database system have become valu-
able, mostly due to the ability to describe these structured
data in further detail. We claim that it is possible to ex-
plore, search, and in some cases rank, how these portions
of the database are related to documents, and at the same
time provide some typical Information Retrieval (IR) capa-
bilities to the user for querying medium-sized collections of
interrelated documents with an acceptable performance.

The organization of this paper is as follows: In Section 2,
we present the common notation and basic definitions for the
rest of the paper. In Section 3, we describe our novel pro-
posal for linking structured and unstructured sources, and
our proposed data layout and implementation for manag-
ing ranked relationships and searching for results. Section
4 presents an analysis on the feasibility and performance of
the implementation of our approach, and discusses the ex-
perimental results. In Section 5, we describe some previous
research in the areas of keyword search and schema match-
ing. Finally, in Section 6, we present our final remarks.

2. DEFINITIONS

We focus on keyword search between a central database
and a collection of documents. As a result, the definitions
include elements from both domains. In the structured do-
main, let a database D be a set of m tables ¢, in which each
table contains a set of columns ¢ and |¢;| rows. In addition,
let e be an element stored in D in a level of granularity ~.
We assume that every element in the DBMS can be mapped
directly to a keyword k with an average size of k. Moreover,
let the granularity level v address a table, column or record
in D. As a result, an element in the database e with a gran-
ularity level equal to a row will require an address in the
database represented by a set of primary keys and column
references, or a reference to a column in the column level or
a reference to a table in the table level. In the unstructured
domain, let C' be a corpus of vazl d; documents residing
around D. In addition, let Appxi be a set of all the approx-
imate keywords of k given that the edit distance of keyword
k' from keyword k is less than or equal to MAX (1, x |k|),
where 3 is a real number between 0 and 1. Intuitively, we
can safely assume [to be about 10% to obtain good approx-
imation results for mistyped keywords. Moreover, let 6 be
the edit distance and let EditDistance(k,k’) be a boolean
function that returns true if k' is an approximate keyword
of k. Following the basic definitions, let us focus on the
linkage of both sources. In order to do so, we propose some
definitions for obtaining such “links”.

Definition 1. Let S be the superset of all the possible
links between D and C.

The universe of all possible links that exist between both
sources is contained in S. As such, S contains links that can
be inferred from analyzing both collections, which are the
focus of this paper, and some others that are the result of
links given by some previous knowledge of both sources (e.g.
a user-defined object mapping). By extending the definition
of e, let e =< k,v >. A link between a database element
and a document keyword is as follows:

Figure 1: Relationships p,.

Definition 2. Let p be a relationship representing a link
between a document keyword and an e based on the finding
of approximate keywords of a given element in D.

p = (e,d;) € S|Appzi, # 0, x — k.

These newly inferred “links” now are identified as rela-
tionships between both sources. As a result, we will focus
on finding all the e that are related to all the keywords in
the documents (see Figure 1). Moreover, let L be a set of all
unique keywords existing in D without considering v and let
E be the set of all the elements in the database considering
~. The construction of E is the result of creating a set of
unique keywords L and a dictionary that references each k
to a granularity level.

Notice that the p, (relationships in each granularity level)
are independent sets. As a result, a relationship existing be-
tween a keyword of a granularity level in the database may
not exist in another granularity level. Despite this, by the
transitive properties that exist between the granularity el-
ements in the DBMS (e.g. a table contains attributes and
records), we can “assume” new relationships by performing
aggregations. However, we do not consider these types of
inferences to be direct links between elements in the DBMS
and documents. For example, assume a small database
with a single Ti(a1,a2) and a corpus of a single document
di = {a1}. The number of relations inferred from both
sources will be p1 = (a1,d1). With further aggregations, we
could assume that there is a new relation p = (71, d1); how-
ever, this type of derived relationships will not be considered
relevant for this work.

Once these relationships have been found, we focus on
querying these links. In this paper, we propose two meth-
ods for querying the set of p. A initial method is performed
by returning all the p sorted by the importance of the el-
ement based on 7, to the searched keyword and finally
by the importance of the link between the keyword and the
document. A second method also relies on the importance
of the element in the database and ¢ of the keyword to the
searched element. However, we use a more complex weight-
ing scheme, in which the importance of a document for a
given keyword will be defined as the average of the edit dis-
tance multiplied by the frequency of approximate keywords
in each document.

3. KEYWORD MATCHING

The process of extracting and querying all the relation-
ships is the result of a preprocessing phase, which includes
the inference of the relationships, and a querying phase of
the final data structures. The preprocessing phase, or re-
lationship construction, obtains all the p, relationships and
stores them in an efficient data structure for querying. The
second phase presents an algorithm for querying and ranking

Input: D, C, 3
01: L+ (0, E<+~ QR+ 0
02 : foreach k in D

03 : if(k¢ L)

04 : L+ Lu{<k>}

05 : foreach k in L

06 : tr < 0,dtr < 0

07 : foreach d; in C

08 : Appzy <+ ABM(k,d;, B)

09 : if(Appzy # 0) B
10 : R <+ RU{< k,d;, |Appz|, |Appz|d >}
11 : ty <tr + |Appz|

12 : foreach p in Ry

13 : w4 w/tg|lw € p

14 : if(tp #0)

15 : foreach k' in D

16 : if(k=k)

17 : E+— EU{<k,~vy>}

18 : else

19 : L+ L—-k

20 : return R, FE

Figure 2: Relationship Construction.

the final results.

3.1 Matching Algorithm

The relationship inference can be seen as seen as a simple
but costly operation defined by querying every element of
the database and every document in the collection. However,
such an approach is extremely inefficient, and will result in
a large space and time complexity. As a result, the purpose
of our new algorithm is to reduce the number of elements to
be searched and maximize the number of relationships that
can be found between the two data sources.

The maximization of the number of keywords that can be
found in a document was obtained by performing an approx-
imate string matching instead of assuming a perfect match
scenario. The Approximate Boyer-Moore algorithm (ABM)
described in [15] was adapted to search for approximate key-
words in the collection of documents in the DBMS. In addi-
tion, the number of mismatches allowed by the algorithm to
be considered as an approximate match is controlled by a
parameter, which guarantees that the number of mistakes is
proportional to the size of the keyword instead of fixing the
number of mismatches.

In Figure 2, we present an efficient approach for discov-
ering all the relationships. The input for the algorithm is
a Database D, a Corpus C' and parameter § for the ABM
algorithm. In line 01, the output sets are initialized to the
empty set. R contains all the matches between a keyword
and a document p existing in C. L contains all the differ-
ent keywords existing between the elements. E contains all
the elements of the database and is also initialized to the
empty set. Lines 02-04 obtain the set of all the possible
elements to look for (in their respective granularity levels)
and obtains the set of unique keywords to search. Lines 05
to 19 iterate through all the keywords in L to search, and
find all approximate keywords that exist in the corpus of
documents. In line 11, the tx temporary variable stores the
cumulate value of the number of approximate matches that
link a document to a keyword. As such, in line 13 a weight is
assigned to each document for every relationship. Between
lines 15-17 each existing keyword is matched against any
existing element in the database. This step is performed at
this stage to guarantee that E occupies the least space pos-
sible. Line 19 removes the keywords that could not be found

Input: Q,R, FE
01 : Result < 0, Presult <
02 : foreach p in R

03 : foreach k in Q

04 : if (BEditDistance(k’, k)|k’ € p)
05 : R « R U{<p, 5>}

06 : foreach< p,§ > in R’

07 : foreach e in FE

08 : if(tepAkee)

09 : Result «+ ResultU

09 : {< P, 0, Wk i0k,i >}

10 : Rank Result by v, 6 and wg ;0x,s
11 : return Result

Figure 3: Relationship Querying.

in the collection of documents. Finally, line 20 returns the
only important data structures that are required: a set of all
the elements in the database, and the existing relationships
and their weights.

3.2 Keyword Search

Querying the discovered relationships requires searching
only over the newly extracted relationships. As such, Fig-
ure 3 presents an efficient way to traverse the R and E data
structures. The input of this algorithm is a set of keywords
Q = {k1,k2,...}. In line 01, the Result set and a partial re-
sult container are initialized to the empty set. Lines 02 to 05
represent a join for extracting the keyword-document pairs
p in R that have keywords in a valid approximate distance
to a given query). Notice that this step can be performed
more efficiently if R is reduced by using L as an additional
data structure for indexing.

All the valid document-pairs p are stored in a partial set.
Lines 06-09 match the relationships with the elements resid-
ing in the DBMS. Notice that all of these joining steps are
presented in polynomial time. However, this time can be
reduced to close to linear by using hashes or indexes. Line
10 sorts the Result set by the granularity level, the edit dis-
tance of the keyword and the weight of each relationship.
The last step returns the sorted set.

3.3 Complexity Analysis

The processing algorithm can be divided into two steps
that need to be performed sequentially. The first step is the
storage of the unique set of keywords L from the database.
The second step is the extraction of all the p relationships.
A breakdown of the complexity of all the steps of the al-
gorithm in Figure 2 is described in Table 1. The first step
is the extraction of the unique step of keywords from the
database, which is performed in the time it takes to scan
all the elements in the database. The second step is the
computation of R, which is dependent on the size of |L|,
the average size of the keyword to search k and the average
size of a document in the collection. Notice that this step
represents the bottleneck of the time complexity of the al-
gorithm. The extraction of all the valid matches between
elements in D and F is dependent on the number of key-
words with matches in the documents L given by ABM.
In the worst case, |L| will be equal to |L|. Thus the total
complexity is O(m|t;|+ |L|(ABMp+|C|ABMs)+|L|m|t:|).
Despite the number of variables in the algorithm, the most
important variable is the set of unique keywords L.

In Table 2, the breakdown of the search algorithm is de-
scribed. The first step consists of obtaining the valid rela-

Table 1: Complexity of the Construction Algorithm.

Step Complexity

L O(mlts])

ABM-preprocess | O(k + Bk)

ABM-search O(|d;|Bk(1/(k — Bk)) + Bk)
R O(|LI(ABMp + |C|ABM3s))
E O(|L|mlt:])

Table 2: Complexity of the Querying Algorithm.

Step Complexity

" | OIRIQF)

Result | O(|R'||E|)

Sort O(|Result|log | Result|)

tionships that are within a valid edit distance from any of
the given queries in the keyword. The search complexity
can be optimized by reducing the size of R with a prese-
lection and then performing the loop. The second phase of
the search requires matching the elements in the database
with the keyword-document pairs. The last step requires
a sort based on the edit distance, the granularity level and
the importance of d;. The final complexity of the search is
O(|R||Q|k* + |R'||E| + | Result|log | Result|), in which early
selection and hashes can improve these “joins”.

3.4 DBMSImplementation

When implementing both algorithms in the DBMS, we
need an efficient storage and retrieval structure. A database
schema for storing the relationships is shown in Figure 4.
The existing elements of the DBMS (stored in E) are con-
tained in the table_level, column_level and row_level
tables. The layout for storing each relationship type has
different requirements in order to store their location in the
database. As such, a different vertical format is used for
each type. For example, primary keys’ values are different
among tables. The element-keyword table maps all the ex-
isting elements e into a keyword. The L set is stored in
the keyword table. The document collection is stored in
the collection table. The resulting keyword-document re-
lations R are stored in the relationship table. A final
weight is assigned to each relationship based on the number
of approximate matches found in a specific keyword and the
collection. In order to efficiently extract the type of rela-
tionships, indexes must be created in the PK/FK relations.
Additional indexes on keyword id kid must be included to
speed up the join conditions in the retrieval.

row_Tevel element_keyword collecion
PK | J: string Pk j: string PK i int
~4—PK FK| column_id: int PK | type: varchar data: blob
value: varchar FXFK | kid: int [metadata]
y column_level A
P —
il PK.FK| column_id: int
2 walue: varchar [relationship
/
Eeyword -
Table_level & PK.FH kid: int
— - PHOFH 1 int
-4—FR P IPK kid: int feint
PK FK| .,.aamee—'vﬂ,md,a, IPK | k: varchar d: float

Figure 4: Relationship Data Layout.

The relationship discovery phase requires a process for
querying the catalog and finding all the elements that exist
in the DBMS. A Stored Procedure that iterates through all
the tables extracts the unique set of keywords. An additional
process is required to validate whether or not this keyword
is a valid element (e.g. numbers are ignored). This step
is necessary when traditional search engines discard stop-
words or nonrepresentative words in the text. For further
reference, see [5]. The relationship discovery process is then
performed in two queries in the DBMS. The first query takes
the keyword table and analyzes each document through a
Table-Valued Function (TVF). This TVF performs as many
of the computations in main memory as possible, in order to
speed up the execution. Hash tables are used as backbone
data structures for computing the summarizations required
in this step. The following step removes all the keywords
without any occurrence. A final query in the preprocessing
step is performed to populate the element_keyword table
and each element table. This query compares the elements
in the DBMS to the list with possible matches.

The retrieval of the related relationships is performed with
an initial search in the keyword table to obtain the valid
keywords using a user-defined function for the edit distance.
The last query obtains the relationships from a hash join
based on the keyword id.

4. EXPERIMENTS

We conducted our experiments on a computer with an
Intel Core Duo E8400 processor at 2.53 GHz. The system
hardware configuration also has 8 GB of RAM and a hard
drive with 1.5 TB of space. The software configuration in-
cluded a running instance of Microsoft SQL Server. Our ap-
plication was developed using C# for dynamically generated
SQL as a thin front-end for running queries. The relation-
ship construction algorithm and the relationship query algo-
rithm were developed using User-Defined Functions (UDF's)
and Stored Procedures (SP).

Our motivation for developing this novel approach was
to find a reduced set of relationships in complex database
schemes which can be stored, used, and efficiently managed
in a DBMS, instead of using the original document collec-
tion. As a result, we decided to test our approach with two
data sets in different domains. The first set is a real scientific
database containing water pollution data from wells in the
state of Texas (TWWD), and a collection of public docu-
ments downloaded from the Texas Commission on Environ-
mental Quality (see Table 3). In addition, a second data set
of documents was created from the the ACM Digital Library
and a medium-sized database was built from DBLP (see Ta-
ble 4). For practical purposes, we ignored keywords smaller
than three characters, stopwords, symbols, and numbers.

4.1 Relationship Discovery

The initial set of experiments focuses on scalability and
performance of extracting the relationships between a cor-
pus and a database. In Table 5, the number of relationships
between C and D are presented. Table 6 shows an anal-
ysis of the time performance of the relationship construc-
tion algorithm. The first set of experiments shows how the
element-keyword relation does not vary significantly once
the size of the collection increases. This is due to the fact
that the increase is only produced in the relationship table.

Table 3: Texas Water Wells Data Set C and D.

Description | Value [Min | Max
Corpus
Documents 1000 - -
Avg. keywords per d; 217 1 250
Database
No. of Tables 32 - -
No. of Columns 214 - -
No. of Elements 36892343 - -
Avg. number of rows per ¢ 111488 0 | 706223
No. of different k& 278408 - -

Table 4: ACM DL Data Set C and D.

Description Value | Min Max
Corpus
Documents 1000 - -
Avg. keywords per d; 206 53 236
Database
No. of Tables 3 - -
No. of Columns 9 - -
No. of Elements 462778 - -
Avg. number of rows per ¢ | 469902 | 74498 | 1216779
No. of different k& 190233 - -

As a result, we observe that E increases in smaller intervals.
Depending on how “descriptive” the schema is, it may hap-
pen that a few or none of the relationships will be related
to an element in the tablename or columnname granularity
levels. For example, in the ACM DL collection, all of the
relationships were found in the row level.

In the second set of experiments, we observe that the bot-
tleneck of the algorithm for the TWWD collection is found
during the storage and extraction of the elements in the
database. Similar to the number of elements in D, the
performance times for extracting these elements does not
vary significantly. However, in the ACM DL collection, the
bottleneck occurs in the relationship computation. The ra-
tionale behind this is that the number of elements in the
database was much smaller in the ACM DL than in the
TWWD collection. In addition, we observed that 99% of
the time for building the F set was spent on obtaining the
elements contained in the lowest level of granularity. We
noticed that the algorithm has an acceptable performance
when obtaining all of the relationships. Despite this, the
performance is highly tied to the size of L, as we observed
in the complexity analysis. It is worth mentioning that the
preprocessing step is only executed once for every set of
documents, and is easily manageable for adding more docu-
ments incrementally.

4.2 Relationship Querying

In the second section of the experiments, we focus on
querying the extracted relationships in the preprocessing
step. This was achieved by selecting a set of 20 random
queries from the keyword table for each subset of documents.
Table 7 shows the average, the maximum, the minimum,
and the standard deviation performance times required by
each set of queries in every collection and subset of docu-
ments. In these sets of experiments, we noticed that the
query times were quite efficient and similar in all cases for

Table 5: Relationship Construction.

Cleint|einc| einr | R
TWWD

100 7 30 | 2406799 28768

250 9 41 | 2425013 72408

500 10 47 | 2437147 | 143820
1000 11 53 | 2451387 | 282364

ACM DL
100 0 0 8336 | 121908
250 0 0 8336 | 147071
500 0 0 8741 | 293583
1000 0 0 9305 | 595829

Table 6: Construction Performance (in sec).

C|] E| L] R] Total
TWWD

100 | 240 | 33 24 297

250 | 341 | 48 46 435

500 | 359 | 48 85 492

1000 | 386 | 48 | 183 617

ACM DL
100 | 119 | 6 | 119 244
250 | 122 | 5| 132 259
500 | 122 | 5| 179 306
1000 | 138 | 6 | 351 495

both ranking techniques (we only show the results for the
first ranking technique due to space limitations). In particu-
lar, we observed that the querying times are approximately
steady between the set of documents in the same collection.
However, as expected, the times increase when the number
of elements found is larger. The rationale behind this be-
havior is that the first query in the data set has to verify
the keywords that are in a valid edit distance. As a result,
a full scan in the keyword table is required. Once this step
has been performed, a join between the relationship table
and the element-keyword table on the indexed kid columns
is performed. As a result, the time for the join (hash joined)
is quite efficient, and the bottleneck of the query search be-
comes the early reduction of the keyword table which re-
quires a full table scan.

5. RELATED WORK

Searching keywords between a database and a collection of
documents has been approached slightly by keyword search
and schema matching. Schema matching is an important re-
search area that has been explored for quite a long time [14].
Early attempts were made in [10], in which the authors try to
match both schemes using a set of given rules. In [2], the au-
thors describe a system called MOMIS, which uses an Object
Data Model (ODM) that relies on a semantic approach to
match the structured and unstructured sources. In [8], an ar-
chitecture for creating a collaborative centralized infrastruc-
ture for sharing scientific data is proposed. The architecture
uses a search schema that allows users to locate data sets
by exploiting metadata information. In contrast to schema
matching, keyword search in databases has centered on find-
ing keywords in all of the elements in the database. Different
approaches have been developed using tuple trees and joins

Table 7: Relationship Querying (in ms).

C | Mean | StdDev | Max | Min
TWWD

100 327 16 343 | 312

250 437 189 656 | 328

500 312 12 328 | 296

1000 320 20 343 | 296
ACM DL

100 40 14 62 31

250 34 7 46 31

500 40 8 46 31

1000 37 8 46 31

[7, 3, 1, 9, 16, 4]. Finding links among these two sources
is not directly schema matching or keyword search exclu-
sively in the DBMS. However, ideas from both topics have
been improved for achieving this task. To the best of our
knowledge, EROCS is one of the few attempts at obtaining
database-document linkage [4]. EROCS focuses on linking
transactions and then performing data mining operations
over the newly discovered links. The linkage is performed
using templates for identifying entities. Finally, in [12, 6],
the authors suggest a method for relating schema-keywords
with terms in the documents, and extracting macro and mi-
cro relationships. The matching between both sources was
done using an ODM, as presented in [2], and the unstruc-
tured sources were managed using XML. We integrated the
schema matching and keyword search ideas, and extended
the papers by [12, 4, 6] to present a more complete anal-
ysis on the existing types of links between elements in the
DBMS and documents and we present a novel idea on how to
rank these relationships within the DBMS. In addition, we
do not require a given ODM for discovering these links, and
we perform the data linkage without any entity templates.
Moreover, clustering techniques can be used to obtain better
linking elements in the DBMS [11].

6. CONCLUSIONS

In this paper, we present a process for discovering “links”
between the elements of a central database and a collection
of documents. The links are defined as relationships in the
tablename, columnname and record level of granularity (p-).
In addition, an algorithm for discovering such relations was
presented. We found that that the bottleneck of the algo-
rithm is in searching for the elements in the database when
a set of keywords is given. In addition, the search of approx-
imate keywords appears to be a target for future optimiza-
tions. Moreover, an algorithm for searching in the newly
discovered relationships was presented. This algorithm per-
formed in an efficient manner, due to the fact that the search
is only performed in this smaller data structure containing
the set of valid relationships. Also, the proposed data lay-
out, indexing and querying strategies, optimized the search.

Future work in this research includes applying top-k tech-
niques for faster retrieval of the relationships. In addition,
we noticed that this algorithm can be computed in parallel,
which can speed up the execution of both tasks (preprocess-
ing and retrieval). The optimization for approximate string
matching with multiple keywords appears as an interesting
area of research. Also, the extraction of relationships result-
ing from the PK/FK relations in the database schema may

return additional interesting results. Finally, an analysis on
the derivate result obtained from the transitive properties of
the database schema (e.g. row belongs to a table) can give
results complementing the ones explored in this paper.

7. REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A
system for keyword-based search over relational
databases. In ICDE, pages 5-16, 2002.

[2] S. Bergamaschi, S. Castano, and M. Vincini. Semantic
integration of semistructured and structured data
sources. ACM Sigmod Record, 28(1):54-59, 1999.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
databases using BANKS. In ICDE, pages 431-440,
2002.

[4] M. Bhide, V. Chakravarthy, A. Gupta, H. Gupta,

M. Mohania, K. Puniyani, P. Roy, S. Roy, and
V. Sengar. Enhanced Business Intelligence using
EROCS. In ICDE, pages 1616-1619, 2008.

[5] C. Garcia-Alvarado and C. Ordonez. Information
retrieval from digital libraries in SQL. In ACM WIDM
Workshop, 2008.

[6] C. Garcia-Alvarado, C. Ordonez, and Z. Chen.
DBDOC: Querying and Browsing Databases and
Interrelated Documents. In ACM KEYS SIGMOD
Workshop, 2009.

[7] V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword Search in Relational Databases. In VLDB,
pages 670-681, 2002.

[8] A.R. Jaiswal, C.L. Giles, P. Mitra, and J.Z. Wang. An
architecture for creating collaborative semantically
capable scientific data sharing infrastructures. In ACM
WIDM Workshop, pages 75-82, 2006.

[9] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective
keyword search in relational databases. In SIGMOD
Conference, pages 563-574, 2006.

[10] T. Milo and S. Zohar. Using schema matching to
simplify heterogeneous data translation. In VLDB
Conference, pages 122—-133, 1998.

[11] C. Ordonez. Models for association rules based on
clustering and correlation. Intelligent Data Analysis,
13(2):337-358, 2009.

[12] C. Ordonez, Z. Chen, and J. Garcia-Garcia. Metadata
management for federated databases. In ACM CIMS
Workshop, pages 31-38, 2007.

[13] C. Ordonez and J. Garcia-Garcia. Referential integrity
quality metrics. Decision Support Systems Journal,
44(2):495-508, 2008.

[14] E. Rahm and P.A. Bernstein. A survey of approaches
to automatic schema matching. VLDB
Journal,10(4):334-350, 2001.

[15] L. Salmela, J. Tarhio, and P. Kalsi. Approximate
Boyer-Moore String Matching for Small Alphabets.
Algorithmica, 58(3):591-609, 2010.

[16] M. Sayyadian, H. LeKhac, A.H. Doan, and
L. Gravano. Efficient keyword search across
heterogeneous relational databases. In ICDE, pages
346-355, 2007.

