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ABSTRACT
Large amounts of data are stored in relational DBMSs. How-
ever, statistical analysis is frequently performed outside the
DBMS using statistical tools, such as the well-known R
package, leading to slow processing when data sets cannot
fit in main memory and going through a file export bottle-
neck. In this article, we propose algorithms for large data
set processing of principal component analysis (PCA) and
stochastic search variable selection (SSVS) that can work en-
tirely inside a DBMS, using SQL queries and User-Defined
Functions (UDFs). Both of our algorithms consist of two
main phases: a first phase to compute sufficient statistics
in one pass with SQL queries and a second one to derive
the model from such such sufficient statistics, in main mem-
ory with UDFs. PCA is efficiently solved with SVD via
UDFs in main memory after sufficient statistics are derived.
On the other hand, the traditional SSVS algorithm requires
multiple passes to compute a model. In contrast, our im-
proved Bayesian algorithm performs a single table scan on
the input data set and then the UDF performs thousands
of iterations on small matrices. In addition, we incorporate
optimizations that exploit DBMS multi-threaded process-
ing capabilities to compute multidimensional aggregates in
data summarization. Specifically, we present low-level opti-
mizations to distribute the workload among multiple cores,
accessing records by block and caching in main memory.
Experiments with large data sets results demonstrate the
efficiency of our optimizations to compute sufficient statis-
tics and show our algorithms have linear scalability on the
size of the data set. Finally, a detailed comparison against
R, the standard open-source package for statistical research,
shows correctness and superior speed of our DBMS-based
algorithms to process very large datasets.
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1. INTRODUCTION
The efficient computation of very large datasets is a major

concern of data mining, machine learning and statistics. Ex-
ploratory techniques, such as principal component analysis
(PCA), are widely used to evaluate attributes of a dataset.
PCA not only finds linear hidden relationships between vari-
ables, but also it is used for unsupervised dimensionality re-
duction. On the other hand, when the purpose is to find the
explanation for certain output, variable selection is required.
The traditional methodology is stepwise regression, where
one variable is added or removed from the model at a time.
The best set of explanatory variables is selected after an
exhaustive search through all possible combination of vari-
ables, which can be computationally demanding and often
untenable in large datasets with many variables. In contrast,
stochastic search variable selection (SSVS) evaluates models
based on a stochastic probabilistic search over the possible
model configurations best explaining the output variable.
Based on the configuration yielding the highest posterior
probabilities, the best model can be evaluated without con-
ducting an exhaustive search over the model space.
Even though, DBMSs are extremely fast to process large
amounts of data, the majority of work in statistics and data
mining focuses on processing flat files outside the DBMS
with statistical packages like R. The main limitations for
external tools are disk I/O and the amount of the data they
can handle. Moreover, exporting large datasets for analysis
is time consuming, and it compromises security of sensitive
data. Nowadays, specific functionality can be attached to
modern DBMSs [7]. Furthermore, DBMSs provide applica-
tion programming interfaces (APIs) [4] for their user-defined
functions (UDFs) [16] that support multi-threading. Our
contributions are to extend the DBMS functionality with
a combination of SQL and UDFs for data mining opera-
tions, while exploiting the efficient computation of aggregate
functions [22]. We focus on computing PCA and SSVS[10]
with only one scan over the input table, and maintaining
exact results. The algorithms proposed split the process in



the major steps of data summarization with aggregate func-
tions, and computing the model using the summarization
matrices. Even though we consider only data residing in a
DBMS, our algorithm can be implemented in other storage
systems with programming languages like C, or tools like
MapReduce [29]. We also explore caching, efficient memory
manage, and multi-threading in order to make the most of
current state of hardware technology.
This paper is organized as follows. Section 2 presents an
overview of definitions. Section 3 discusses our algorithms
for efficiently computing PCA and SSVS for large datasets.
Experimental results, in Section 4, evaluate accuracy and
performance of different methodologies when integrated to
a DBMS. Section 5 discloses related work. Finally, Section
6 concludes the article.

2. PRELIMINARIES

2.1 Definitions
Assume the input data X = {x1, . . . , xn}, with d dimen-

sions and n data points xi as column vectors. Consequently,
the matrix X has size d× n. The response Y , or variable of
interest, is a matrix 1×n. To indicate matrix transposition
we use the superscript T . The ath dimension is referred with
the subscript Xa, while a superscript γI is used for the Ith

iteration in stochastic search variable selection, and X(I) for
the Ith iteration in singular value decomposition. We will
use the terminology 1n to represent a column unit vector of
n elements (as in [18]). Finally, X is used for the augmented
version of X in linear regression.

2.2 Data Summarization
There are three summarization computations shown to be

essential for data mining and statistical models [13]: n, L
and Q (see Equation 1, 2). The value n is a count of points in
the input data set X. L is the linear sum of the d dimension
in X, and forms a vector of d values. Since the matrix Q
is the quadratic sum of the cross-products of points, it has
a size d × d. Y can be included in the data summarization
to compute: XY T , Y Y T , and Y 1n. Let the data set X be
stored in a table inside the DBMS, which has an attribute
or column for each dimension, and a row entry for every
data point. Also, the output Y is stored as an additional
attribute in the same table. Only one scan over the input
data is needed to obtain the data summarization. Moreover,
aggregations in n, L and Q are distributive [14]; thus, they
can be computed in parallel over different sections of the
data, where the global aggregation is given by the addition
of all partial results.

L = X1n =
n∑
i=1

xi (1)

Q = XXT =

n∑
i=1

xi · xTi (2)

Since the summary matrices can be computed efficiently
with aggregate functions, they are used in data mining to
generate several statistical models [22]. Our focus is to ex-
ploit the summarization matrices n, L and Q for dimension-
ality reduction, and variable selection of large datasets.

2.3 Dimensionality Reduction with PCA
Principal Component Analysis (PCA) is the most popu-

lar statistical technique used for dimensionality reduction.
PCA is a set of linear combinations or vectors, each of them
associated to the variability of data it holds. Therefore, by
selecting the top k vectors, we can project the data into
a space with less dimensions than the original data while
maintaining the most of the information present in the orig-
inal data. The linear combination of PCA can be found by
performing eigenvalue decomposition on either the covari-
ance or the correlation matrices. Both of this matrices are
d× d matrices which values are measurements of the linear
dependency between two dimensions of the original data.
Equation 3 shows the eigenvalue decomposition problem of
PCA. Using the covariance or correlation matrix for XXT ,
the problem is to find a set of eigenvectors U and the set of
eigenvalues in the diagonal elements of Λ2. Consequently,
the linear transformation UT can be applied to the original
data set to have its projection in the space of its principal
components. Moreover, the subset of k vectors of UT , with
the largest eigenvalues, will be the linear combination that
maximizes the variance kept of the original data in terms of
least square error.

XXT = UΛ2UT (3)

Since PCA is a tool with exploratory purposes, it helps find-
ing hidden relationships between attributes or variables of
the input data. However, many statistical applications re-
quire finding the relationship between the explanatory vari-
ables and certain response. We avoid having to evaluate
all the possible subsets of explanatory variables by doing a
stochastic search based on Markov chains, and the Gibbs
sampler [11].

2.4 Bayesian Variable Selection
Linear regression models the relationship between an out-

put or response variable Y, and a set a set of explana-
tory variables or estimators X. The regression model Y =
β0+β1X1+ . . .+βdXd+ε, is defined by β = (β0, β1, . . . , βd),
the regression coefficients and a Gaussian white noise error
ε. Since increasing d (the number of estimators) not nec-
essarily increases the quality of the model, the problem of
variable selection is to find a set of explanatory variables
that best predicts the output variable Y , among the 2d pos-
sible subsets of X. In variable selection via Gibbs sampler
[11], a modelMγ is represented by a γ ∈ Γ = {0, 1}d, where
the variable Xa is part of the model if γa = 1. The estima-
tion for the probability distribution π(γ|Y,X) obtained by
convolving the likelihood and the prior distribution is com-
puted with the number of appearances of each model Mγ

taken S iterations. Therefore, stochastic search variable se-
lection (SSVS) generates a sequence γI , where I = 1, . . . , S.
Given that γI(a) = (γI1 , . . . , γ

I
a−1, γ

I−1
a+1 , . . . , γ

I−1
d ), the sample

γI is obtained by evaluating the probabilities of γIa = 0 and
γIa = 1 for each explanatory variable a, using the probability
function π(γIa|Y,X, γI(a)).
In contrast to stepwise variable selection which does an ex-
haustive search to find the model that better explains the
output variable, SSVS is a stochastic search which finds this
subset of variables based on posterior probabilities. Our
contribution pursues to compute SSVS using summarization
matrices, without more than one pass over the input dataset.



Operations are done completely inside the DBMS with ag-
gregate functions, and extensibility alternatives; thus, re-
sulting in high gains in computational efficiency.

2.5 DBMS Extensibility
Most DBMSs provide alternatives to attach code or func-

tionality to the database. We assume the capability to ei-
ther implement aggregate functions, store procedures, or ta-
ble valued functions not programmed in standard SQL, yet
with C or C-like languages. By generalizing database con-
nectivity features to different programming languages, we
expect such APIs to include tools for: (1) executing SQL
queries, and (2) accessing results sets. A result set gives ac-
cess to rows in a table one at a time. Consequently, records
are read sequentially and oblivious of the size of the table
until reaching the end of the result set. In order to return
values of a computation, we can use SQL statements to cre-
ate one or various tables storing results. However, there are
also table-valued functions (TVFs) [4], which return a table
instead of a single value.
The set of functions that need to be implemented by the
user to define an aggregate user-defined function (UDF) are
[28]: initialize, accumulate, merge, and terminate. With the
definition of a UDF, several working threads are created.
All threads compute an aggregation on a partition of the
input table. The global aggregation is obtained by merging
the aggregations on pairs, its elements are used to compute
the value of the function [7]. Aggregate UDFs are a power-
ful framework to control multi-threading, and leaving to the
DBMS the control of the working threads However, the user
is constrained to the parameterization defined by the inter-
face, and little can be done to introduce specific optimization
driven to the optimal use of hardware resources. Finally,
aggregate functions in the DBMS are used to compute the
summarization matrices efficiently, and extensibility alter-
natives to compute PCA and SSVS, completely inside the
DBMS.

3. ALGORITHMS
In this section we propose the algorithms to compute PCA

and Bayesian variable selection. The algorithms are divided
in two main phases: (1) summarize the input data with n,
L, Q, and (2) compute the specific model. The algorithms
developed exploit aggregate functions of DBMSs to compute
sufficient statistics. Furthermore, operations in PCA and
SSVS are expressed in terms of the summary matrices n,
L, and Q, so only one scan to the input table is needed to
obtain the exact model. We include optimizations for large
scale processing inside the DBMSs with SQL and UDFs.
Finally, we present optimizations to exploit hardware with
multi-threading, accessing records by blocks, and caching in
memory.

3.1 Efficient Computation of PCA
PCA can be computed using the covariance or the cor-

relation matrix of the input data. The loading vectors of
PCA are obtained by solving the eigenvalue decomposition
of either of these two matrices. We use the covariance Σ
or the correlation matrix ρab, since Σ is equivalent to XXT

when X is centered to the mean, and when X is standard-
ized with a z-score it is equivalent to ρab. In order to have
only one scan over the input dataset, we use the summariza-
tion matrices n, L, and Q to express the covariance matrix

Algorithm 1: Principal Component Analysis
Input: Table X
1 : Compute data summarization: n, L, and Q .
2 : Obtain Σ or {ρab} from n, L, Q.

3 : A(0) ← Σ or A(0) ← {ρab}
4 : (U,Λ2) ← SVD(A(0))
Return: loadings Ua, and variances Λa,a

as in Equation 4, or the correlation matrix as in Equation
5. To solve the eigenvalue decomposition problem we use an
algorithm based on the QR factorization.

Σ =
1

n
Q− 1

n2
LLT (4)

ρab =
nQab − LaLb√

nQaa − L2
a

√
nQbb − L2

b

(5)

The steps to compute singular value decomposition or SVD:
(1) Refer to Σ or {ρab} as A(0), and Apply Householder for
reducing the correlation matrix to an equivalent tridiagonal
matrix, with a linear transformation T . B(0) = TTA(0)T ,
where T−1 = TT . (2) Find the eigenvalue decomposition of

the tridiagonal matrix B(0) = C(S)B(S)C(S)T by applying
the QR factorization method, where the diagonal of B(S) is
the matrix of eigenvalues, C(S) is the orthogonal matrix and
S is the number of iterations taken to satisfy the error cri-
terion. (3) Finally, we can combine both decompositions to

get A(0) = (TC(S))B(S)(TC(S))T . As a result, the diagonal
matrix of eigenvalues Λ2 is constructed by the diagonal ele-
ments of B(S) and rows in U = TC(S) are the eigenvectors
or principal components of X.

Summary of Contributions
PCA is computed with only one scan over the input dataset.
The summarization step of the algorithm is a key factor to
efficiently process a large number of records. As it can be
seen in Algorithm 1, after summarization, the model is com-
puted by operating matrices of dimensionality d. Finally, we
have that aggregate functions, and DBMS extensibility op-
tions can be used by other data mining techniques, such as
variable selection.

3.2 Bayesian Variable Selection
Data summarization can be used to compute the poste-

rior probability distributions in variable selection with only
one table scan over the input data. In order to include
XY T , Y 1n, and Y Y T in the summarization step, the ex-
planatory variable Y is included in the summarization as
another attribute of the table X. Therefore, we compute
n, L and Q for (X1, . . . , Xd, Y ). Since β ∈ Rd+1, we use
the augmented X , defined in Equation 6, to represent lin-
ear regression as Y = βTX + ε. For the model Mγ , we
have that βγ = (β0, {βa : γa = 1}), the number of dimen-
sion in the model dγ = 1Tnγ, and the explanatory variables
Xγ = {Xa : γa = 1}. By expressing probability density
functions in stochastic search variable selection (SSVS) with
summarization matrices, we overcome the main disadvan-
tage, especially for large datasets, of having to scan the in-
put dataset multiple times to compute a model.

X =

[
1Tn
X

]
(6)



Algorithm 2: Stochastic Search Variable Selection
Input: Table (X1, . . . , Xd, Y ), iterations S
1 : Compute data summarization: n, L, and Q

2 : Pick a random γ(0) .
3 : For I ← 1 to S
4 : For a ← 1 to d
5 : p0 ← π(γIa = 0|Y,X, γI(a))*
6 : p1 ← π(γIa = 1|Y,X, γI(a))*
8 : If Rand([0,1]) < p0/(p0 + p1)
9 : γIa ← 0
10: else
11: γIa ← 1
Return: π(γ|X,Y ) from γ1, . . . , γS

*π(γIa|Y,X, γI(a)) is evaluated, as shown in Equation 8,
where X is substituded by n, L, and Q.

We use Zellner’s G-prior [18], which is conditional on the

error variance, σ2, a constant c and a hyperparameter β̃ is
defined as β|σ2, X v N (β̃, cσ2(XX T )−1). To complete the
hierarchical formulations we define another prior on the er-
ror variance as σ2 v π(σ2|X) = σ−2, i.e. a non-informative
prior distribution. Therefore, the prior distribution of βγ
for the model Mγ is shown in Equation 7, where β̃γ =

(XγX Tγ )−1XγX T β̃. Even though there are multiple prior
functions available, our choice is due the feasibility to ex-
press the probability function π(γ|Y,X) (see Equation 8)
of the Zellner’s informative G-prior in a closed form and
in terms of summarization matrices, which greatly aids our
Bayesian computations.

βγ |γ, σ2 v N (β̃γ , cσ
2(XγX Tγ )−1) (7)

π(γ|Y,X) ∝ (c+ 1)−(dγ+1)/2[Y Y T

− c

c+ 1
Y X Tγ (XγX Tγ )−1XγY T (8)

− 1

c+ 1
β̃Tγ XγX Tγ β̃γ ]−n/2

Since the multiplication Xγ1n = {La : γa = 1}T , and the
cross-product XγX

T
γ has as elements {Qab : γa = 1 ∧ γb =

1}, the cross-product XγXγT of the augmented set of vari-
ables of the model Mγ can be derived from summarization
matrices (see Equation 9). Likewise, the matrix multiplica-

tion XγX T (see Equation 10), in β̃γ , is constructed know-
ing that XγX

T = {Qa,[1:d] : γa = 1}. The remaining ma-

trix multiplication in the probability distribution, XγY T or
(Y X Tγ )T , is derived from the fact that XγY

T = {Qa,d+1 :
γa = 1} (see Equation 11). Finally, the dot product of the
explanatory variable Y Y T = Qd+1,d+1.

XγXγT =

[
1Tn1n 1TnX

T
γ

Xγ1n XγX
T
γ

]
=

[
n Lb

T

La Qab

]
(9)

XγX T =

[
1Tn1n 1TnX

T

Xγ1n XγX
T

]
=

[
n LT[1:d]
La Qa,[1:d]

]
(10)

XγY T =

[
1TnY

T

XγY
T

]
=

[
Ld+1

Qa,d+1

]
(11)

Summary of Contributions
In our algorithm to compute SSVS, results are exact (see
Algorithm 2). Only one scan to the input table is required,
after that, operations are done using the summarization ma-
trices n, L, and Q; without reading X every iteration. SSVS
is computed efficiently for very large datasets, because the
number of records only affects performance of the summa-
rization step. Since summarization is fundamental for our
algorithms, it is important to optimize aggregate operations
inside the DBMS.

3.3 SQL Optimizations
Data summarization can be expressed in terms of the SUM

aggregation. A single SQL statement is used to calculate all
values of the summary matrices. A property of Q is to be a
symmetric matrix, so it is enough to include the d(d+ 1)/2
upper or lower triangular elements. When including all sum-
marization values, we have the following SQL statement:

SELECT SUM(1.0) /*n*/

,SUM(X1),SUM(X2)...,SUM(Xd) /*L or X1n*/
,SUM(X1 ∗X1) /*Q or XXT */

,SUM(X2 ∗X1),SUM(X2 ∗X2)
...

,SUM(Xd ∗X1),SUM(Xd ∗X2),...,SUM(Xd ∗Xd),
/*Variable of interest*/

,SUM(Y ) /*Y 1n*/
,SUM(Y ∗ Y ) /*Y Y T */
,SUM(X1∗Y ),SUM(X2∗Y ),...,SUM(Xd∗Y ) /*XY T */

FROM X;

The result table has a single row and a column for each
value in n, L, and Q. Since a limitation exists for the num-
ber of columns in a table depending on the DBMS provider,
there is also a limit for the number of dimensions that can
be summarized with a single scan. By using only the SUM

aggregate function, data summarization is computed with-
out modifications to the DBMS.
Aggregate UDFs are used to overcome the limitation on the
number of dimensions that can be summarized with a single
scan [25]. Only one function which computes summarization
of a given set of dimensions is defined. Since the accumu-
late function receives only one parameter, dimensions are
packed with a user-defined type. Values for the d attributes
of a data point have to be stored as a binary object which
can be accessed following the user-defined type definition.
Therefore, to implement data summarization, the required
methods are: (1) a parsing function, and (2) a serialization
functions for reading and writing the binary objects. The
parsing function creates a value of the type when given a
string value concatenating all the values of the dimensions.
The aggregate UDF for summarization receives all values for
the dimensions of a data point packed as a binary object,
and returns all the elements in n, L, and Q also packed using
the user-defined type. We have the following SQL statement
to compute the aggregation:

SELECT Agg(CAST(CAST(X1 AS VARCHAR)+’,’+

CAST(X2 AS VARCHAR)+’,’+
...

CAST(Xd AS VARCHAR) AS Type))
FROM X;



Execution performance of the aggregate UDF can be im-
proved by materializing a table with a single column storing
the packed dimensions with the user-defined type. Even
though the aggregation can be computed efficiently when
data is already in binary format, creating such table is a
time consuming pre-step which can be avoided with specific
optimizations for data summarization.

3.4 Hardware Optimizations
The algorithm design focuses on using multithreading to

distribute the workload, while keeping the hard drive access
sequential for performance, and following the common API
of DBMSs to access query result sets. Furthermore, concur-
rent threads have to guarantee deterministic results without
race conditions, deadlocks or starvation.
On the design of aggregate functions, we included several
changes that increase the speed for hardware configurations
where computing the aggregations is faster than retrieving
records from the storage device. To obtain sequential read-
ing, one thread is uniquely in charge of retrieving records
from the input table, caching blocks of records in main mem-
ory, and calling a monitor to dispatch the job to other thread
that actually performs the calculations or working thread.
All the threads share memory to update the global aggre-
gate computation. Moreover, we define techniques to con-
trol the number of threads executing simultaneously, and
the amount of memory used by the aggregation process.
Since each worker thread is assigned the task of computing
the aggregation of one block, portions of the data are cached
at all the time during execution. The reading process is
oblivious to the multithreaded execution since its only task
is to allocate memory space to fit a fixed number of rows
and fill the current block with records from the input ta-
ble. The characteristic difference with a parallel aggregate
is the way the threads access the data. Instead of having the
threads requesting blocks from the input device, threads are
assigned a block as workload by the monitor process. Read-
ing from the input and monitoring the process, both tasks,
are done by the main thread. Thus, additionally to the cost
of reading the input sequentially and allocating blocks in
main memory, we have to take into account the overhead
of dispatching the worker threads. There is little overhead
caused by the monitor calls, due to the speed difference be-
tween reading records from disk and computing flops by the
processor.
In order to manage the multiple worker threads, we include
a monitor process. The monitor executes as part of the main
thread; it is in charge of dispatching workload, and termi-
nating the execution when all worker threads have finished
their computations. We propose three monitor alternatives:
(1) create a thread for every upcoming task (2) create a
thread pool (3) use a fixed number of threads.
The simplest approach for the monitor is to create a thread
for every request of dispatching a workload, and then add
the thread to a list. Such configuration has the reading pro-
cess allocating blocks in memory, with disregard whether
the processing power is enough to complete the tasks before
causing stack or memory overflow. Moreover, the policy of
the operating system assigns time slices of the processors to
threads. A higher priority could not be necessarily given to
tasks closer to finish, and uncompleted tasks will keep hold-
ing memory space until done.

Table 1: Time Compexity of n, L and Q
n L Q

elements 1 d (d+1)×d
2

flops per accumulate step 1 d (d+ 1)× d
flops per merging 1 d (d+1)×d

2

overall time complexity O(n) O(nd) O(nd2)

To control the number of threads executing in the system
and to have a FIFO policy for the upcoming workload, our
second alternative includes a thread pool managed by the
monitor process. With such configuration, all tasks created
by the monitor are added to the thread pool. As such, when-
ever a thread finishes its current task, it is assigned the next
task in queue. Even though completed tasks free memory
space, each task in the thread pool queue has a data block
associated to it. Moreover, if the waiting queue grows big
enough it could cause memory overflow.
The maximum amount of memory used for caching can be
controlled by our third alternative for the monitor process.
While this approach does have a circular list to keep a fixed
number of working threads, the queue is eliminated since
there can be at most one task waiting to be executed. Al-
though the circular list limits the amount of memory used
for caching, the reading process has to be stopped every time
the list is full. Finally, stopping the sequential read for long
periods of time could severely impact the performance of the
algorithm.

3.5 Time and Space Complexity
Time complexity, and the number of operation for the

summarization matrices can be seen in Table 1. Even though,
the overall time complexity of the summarization process
is O(nd2), with multi-threading the problem becomes disk
bandwidth bound. Therefore, the lowest bound for summa-
rization is an execution time close to a table scan or O(nd).
On the other hand, the space complexity of the aggregation
process has the global aggregation invariant, and it fluctu-
ates depending on the number of working threads existing
in the system at any time. Thus, we have that the amount
of memory used is given by:

Memory Used = ((t+ u)((b× d) + e) + e)f, (12)

where t is the number of threads executing in the system,
u is the number of tasks created and waiting for a thread,
b is the block size, d is the number of dimensions, e is the
number of elements in the aggregation and f are the bytes
used to store a number.
In addition to the table scan to compute the covariance or
correlation matrix in PCA, it has a Householder decomposi-
tion, and d QR factorizations. Solving Householder is O(d3),
with d − 2 steps of O(d2) each. Each QR factorization is
O(d2), and computed d times S iterations. Consequently,
the global complexity of solving the eigenvalue decomposi-
tion in PCA is O(d3) (see Table 2). On the other hand,
time complexity of SSVS also includes the table scan to
calculate sufficient statistics. Each probability estimation
π(γIa|Y,X, γI(a)) has a complexity of O(d3). For each itera-
tion I, 2×d probabilities are computed. Therefore the global
complexity of SSVS is O(nd2 + d4). In the next section, we
present our experimental results, and the impact of efficient
data summarization when computing PCA and SSVS.



Table 2: Time Compexity PCA and SSVS
Technique Summarization Model

PCA O(nd2) O(d3)
SSVS O(nd2) O(d4)

Table 3: PCA Loading for the wpbc Dataset
R DBMS

U1 U2 U1 U2

X1 0.310 -0.397 0.311 -0.396
X2 -0.146 0.008 -0.146
X3 0.335 -0.371 0.336 -0.370
X4 0.312 -0.392 0.313 -0.392
X5 0.254 0.370 0.253 0.371
X6 0.375 0.261 0.374 0.262
X7 0.442 0.441 0.091
X8 0.456 0.456 -0.024
X9 0.247 0.309 0.246 0.309
X10 0.159 0.469 0.158 0.470

4. EXPERIMENTAL RESULTS
For this paper, we conducted our experiments on a com-

mercial DBMS installed on a server with an Intel Core 2
Quad CPU with four cores of 2.83 GHz each, and 3.24GB of
RAM. The hard drive had 320GB of capacity, with a SATA
interface of 3.0Gb/s, and 7200 RPM. We used the implemen-
tation of PCA already included in R, and for SSVS we used
the code given by [18]. DBMS extensibility was done using
aggregate user-defined functions (UDFs), table-valued func-
tions (TVFs), and store procedures (SPs). We use one real
dataset wpbc, of breast cancer diagnostic information, from
the UCI Machine Learning Repository [1]. Other datasets
used were created following normal distributions, and they
are test cases for constructing linear models. Finally, we
have that all experiments were repeated five times before
reporting an average.
Experiments are organized as follows. First, we perform
PCA and SSVS on the breast cancer dataset. We compare
the accuracy of our algorithms in the DBMS with results
obtained by the statistical package R, which is a standard
in statistics and data mining. The second set of experi-
ments shows the performance of our optimizations to control
multi-threading, caching in memory, and accessing records
by blocks during the data summarization step. Also, we in-
clude a performance analysis of all the different alternatives
to compute data summarization in the DBMS. Finally, the
efficiency of our algorithms is shown in a comparison of the
time measurements of computing PCA and SSVS with R.

4.1 Evaluation of Model Accuracy
In this section we analyze the accuracy of the models com-

puted with our algorithms. For comparison purposes, we
have executed PCA over 10 dimension of the wpbc dataset
picked at random. In both R and our implementation, the
eigenvalues λa are greater than the unit only for the first
two loading vectors. Table 3 shows the loading of these two
principal components for each variable. Clearly, results are
the same; the only difference with R is because it gets rid of
the less significant loadings.

Table 4: SSVS of the wpbc Dataset
R DBMS

a : γa = 1 π(γ|X,Y ) a : γa = 1 π(γ|X,Y )
2,7,10 0.0748 2,7,10 0.0828

1,2,3,10 0.0724 1,2,3,10 0.0686
2,6,10 0.0387 2,6,10 0.0423
2,3,9 0.0289 2,7,9,10 0.0287

2,7,9,10 0.0273 2,3,9 0.0275
2,3 0.0271 2,3 0.0237
1,2 0.0247 2,3,10 0.0234
2,4 0.0233 1,2 0.0228

2,6,9,10 0.0221 2,4 0.0226
2,3,10 0.0198 2,6,9,10 0.0205

We also used the wpbc dataset to find the best subset of di-
mensions or explanatory variables to predict the recurrence
time for the patients. Estimations for the probability distri-
bution π(γ|X,Y ) are presented in Table 4. The distribution
was computed over 10000 iterations, after a burning period
of 10000 iterations. For the priors, we used β̃ = 011 and
c = 100. Our results match with R in the top 10 most
frequent samples, and the same ranking order is shown for
the three models with highest probability estimation. Even
though, SSVS is a stochastic search based in probabilities,
the results obtained by the DBMS are equivalent to R. Nev-
ertheless, the optimizations we introduced to efficiently com-
pute aggregates have a significant impact on time perfor-
mance to compute the models.

4.2 Evaluation of Optimizations
In this section, we analyze the performance impact of the

alternatives to control multi-threading by: (1) creating a
thread for every task or block to aggregate (MT-UDF), (2)
using a maximum fixed number of threads with at most one
task waiting to start (FT-TVF), and (3) using a thread pool
with fixed number of threads and a queue of waiting tasks
(TP-TVF). The parameters for summarization are the ag-
gregate computation agg, the block size b, and the number of
working threads t. All the alternatives are compared against
the execution time of a table scan, using the sequential data
access primitive given by the connectivity interface of the
DBMS.
Results in Figure 1 show the execution performance of the
three alternatives when computing the Q aggregation, n =
1M , and working threads t = 4. We can see that the moni-
toring process of multi-threading adds little or no represen-
tative overhead to the table scan. For the cases when d ≤ 32,
the impact of performing the aggregation while reading the
table is minimal. On the other hand, the trend becomes
evident when d ≥ 64; there is a difference on performance
given by the monitoring policy used for the working threads.
Nevertheless, the time impact of any of the policies is not
enough to consider a higher complexity than a table scan.
The biggest overhead between the policies is caused when
the OS is left to manage all the threads. Such results were
somehow expected, because there is no memory control, and
the policy to assign workload is suboptimal for aggregations.
The scheduler will try to assign equal time-slides to the ex-
isting threads in the system, adding context switching to the
picture, and letting the system to saturate with unfinished
workload. The best performance is acquired by TP-TVF



Figure 1: Concurrency Control Comparison
(task=Q, n=1M, d=64, t=4)

because there is little saturation to the OS components by
the number of threads to manage. As for FT-TVF, control-
ling the maximum memory used by the aggregation does
not representatively affect the execution time, and the per-
formance is comparable to a table scan while being faster
than MT-TVF.
Caching data blocks of the input table, with disregard of the
amount of memory used for this matter, could cause mem-
ory overflow issues. Aware of this potential catch, we have
proposed methods to limit memory usage, and implemented
them in FT-TVF. Since our experimental study focuses on
d << n, such limitation is never reached by varying values
of d ≤ 128. Furthermore, we found that in all our exper-
imental cases, a reduced number of threads are enough to
compute sufficient statistics efficiently. Table 5 displays the
performance of our monitor policies, when varying the num-
ber of working threads additional to the reading thread. For
d = 64, execution time is almost invariant by increasing the
number of threads assigned to the accumulate part of the ag-
gregation. Such behavior is caused because the time to read
a record of size d from the input table is greater than the
time it takes to the processor to calculate the O(d2) flops in
the accumulate step. For instance, in the data set of d = 128,
there are about 16 Mflops per record to aggregate, and the
Core 2 Quad executes about 90 Gflops/second. The reading
time of accessing records with the database programmabil-
ity API is expected to be higher than the theoretical disk
bandwidth of 3 Gbits/second. When d increases, we need
more threads to catch up with the reading speed. This is
the case for d = 128, the performance of FT-TVF reaches
a pick when t = 3. When t < 3, the sequential read has
to be stopped every time the limit for the number of work-
ing threads (t) is reached. In contrast, TP-TVF does not
stop whenever there are t working threads busy, instead it
places all waiting workload in a queue. Furthermore, the
cases when d = 128 with t > 3 for FT-TVF, and t > 1 for
TP-TVF show the tradeoff caused by using more threads
than the required by the aggregation. Since data summa-
rization is bound by the disk bandwidth, scalability due to
the number of threads is very limited. Even though summa-
rization with one reading and one working thread has very
similar time to a table scan, the difference with executing
both tasks with a single thread is evident.

Table 5: Execution time when varying the number
of threads (time in seconds) (n=10M)

d control working FT-TVF TP-TVF
threads threads (t)

64 1 0 311.80 311.80
64 1 1 172.98 155.23
64 1 2 173.26 155.35
64 1 3 173.24 155.40
64 1 4 173.03 155.68

128 1 0 893.50 893.50
128 1 1 385.90 324.44
128 1 2 380.60 324.43
128 1 3 378.81 326.07
128 1 4 379.87 329.68

4.3 Time Complexity of Summarization Ag-
gregates

For comparison purposes, we tested standard SQL aggrega-
tions, aggregate user-defined functions, and multithreaded
TVFs. We include a comparison with a TVF that does not
use multi-threading to distribute workload (REG-TVF). Ta-
ble 6 contains the execution performance when solving the
Q aggregation for n = 1M . FT-T VF, and TP-TVF have
the same number of threads t = 4. The three TVFs with
multi-threading have a block size b = 1000.
Execution performance of REG-TVF is severely affected by
d; only for the cases when d ≤ 8 is the execution time
comparable with the multithreaded TVFs. The impact of
multithreading is shown for d = 128 where the time of the
single-threaded TVF (REG-TVF) is more than double the
time of the other TVF implementations. On the other hand,
BIN-UDF aggregates rows packed in binary structures that
follow the user-defined type definition. It has a better perfor-
mance than the multithreaded TVFs for d ≥ 32. However,
BIN-UDF is better only if we do not consider the pre-step of
physically materializing the table inside the DBMS. The sec-
ond implementation of aggregate UDFs (STR-UDF) moves
the CAST function, for packing rows into a user-define type
object, into the SQL statement of the aggregation. Yet,
STR-UDF still has higher execution time than any of the
TVFs, because of the overhead of the parsing function in
the user-defined type.
It can be seen in Figure 2 that tendencies hold when in-
creasing the size of n. Although, SQL is the fastest way
to compute the aggregates in all the cases when d ≤ 16,
for d = 32 the performance decreases in a slight amount.
Unfortunately, limitations of the number of rows in a query,
prevents experimenting with d ≥ 64. Since the complexity of
REG-TVF is O(nd2), the performance of TP-TVF demon-
strates its efficiency to exploit primitives for accessing data
in the DBMS. Consequently, the time difference with REG-
TVF increases with d, while TP-TVF remains comparable
with the aggregate step of BIN-UDF.
The final set of experiments is to verify linear execution time
with respect to the size of the input table. The execution
results for Q, with a number of dimensions d = 16, are pre-
sented in Figure 3. The multithreaded monitoring algorithm
with a tread pool (TP-TVF) is parameterized with threads
t = 4, and a block size of b = 1000. The three methods



Table 6: Muti-threading Comparison with Aggregate User-define Functions (time in seconds) (agg=Q, n=1M,
t=4, b=1000)

d Plain REG-TVF BIN-UDF BIN-UDF STR-UDF MT-TVF FT-TVF TP-TVF
SQL Pre-step

2 0.8 3.1 18.1 6.0 8.0 3.7 3.3 3.2
4 0.7 3.4 21.3 6.0 8.6 3.9 3.7 3.7
8 1.4 4.5 28.1 6.1 10.5 4.8 4.8 4.5

16 4.9 7.0 41.6 6.4 14.2 6.4 6.3 6.3
32 86.3 13.4 68.4 7.4 21.2 9.8 9.6 9.4
64 * 31.8 126.7 10.7 38.1 17.4 17.5 16.1

128 * 89.7 244.9 22.9 78.3 38.0 37.9 33.1

Figure 2: Aggregate Comparison when Varying d
(agg = Q, n = 10M , t = 4, b = 1000)

(SQL. BIN-UDF and TP-TVF) show linear scalability with
respect to the data size n. Finally, experimental results have
provided evidence that our algorithms for multi-threading
scale linearly in both n and d. Such achievement is obtained
by efficiently taking advantage of DBMS primitives, and in-
tegrating them with multithreaded aggregates.

4.4 Comparison with R
The current work has focused on optimizing aggregate

operations to compute data summarization. The perfor-
mance impact of efficiently calculating sufficient statistics
is evident for data analysis of large datasets or n >> d.
Only one table scan is needed to obtain the principal com-
ponents or a probability distribution of the best subset of
attributes to predict an output variable. For the TVF im-
plementation, we have used the monitor with a fixed number
of threads, and at most one task waiting to be assigned a
working thread (FT-TVF); the number of threads is t = 4,
and the block size b = 1000. The SQL implementation uses
standard SQL to compute the summarization step. Also, ag-
gregate user-define functions or UDFs are defined without
a pre-computing a table for the attributes packed with the
user-defined type (STR-UDF). Finally, we have that sum-
mary matrices computed with these methodologies are used
by implementations inside the DBMS to perform PCA and
SSVS.
Table 7 presents the execution time performance of solv-
ing PCA with our algorithms inside the DBMS, and outside
the DBMS with the R statistical package. Experimental
results show that data summarization is a key step for an-
alyzing large datasets. The performance tendencies, seen

Figure 3: Aggregate Comparison when Varying n
(agg = Q, d=16, t=4, b=1000)

Table 7: Execution Performance for Solving PCA
(time in seconds) (* out of memory)

DBMS
n d R FT-TVF SQL STR-UDF

100k 8.0 6.3 2.0 1.5 4.8
100k 16.0 13.3 2.4 4.4 7.1
100k 32.0 31.4 2.7 11.5 10.8

1M 16.0 218.1 8.6 7.4 21.6
1M 32.0 * 14.8 94.9 30.4

10M 16.0 * 65.1 51.4 204.5
10M 32.0 * 106.5 198.6 291.6

during the analysis of optimization, hold for PCA. The FT-
TVF has linear scalability with the size of the input data.
On the other hand, summarization with standard SQL has
good scalability with the size of the input data n, yet poor
with the increase of the number of dimensions d. The main
disadvantage of the STR-UDF is having to parse attributes
packed with the user-defined type during each accumulate
step. Therefore, performance of the STR-UDF scales poorly
on n, but it has good scalability with the increase of the
number of dimensions d. In all the cases, we have that our
algorithms outperform execution outside the DBMS.
Not only PCA benefits from efficient data summarization,
Table 8 contains the execution performance of solving SSVS
for several test cases. We can see the performance improve-
ment of our algorithm to compute SSVS for large datasets
by comparing with R. Since the time taken in R to load the



Table 8: Execution Performance for Solving SSVS
(S = 1K) (time in seconds) (* out of memory)

DBMS
n d R FT-TVF SQL STR-UDF

100 8 16.5 0.6 0.7 0.9
1K 8 605.2 0.7 0.9 1.1

10K 8 >2K 0.7 0.9 1.5
100K 8 >2K 1.3 1.6 5.4

1M 8 >2K 5.5 2.7 17.8
10M 8 * 47.2 18.1 169.2
1M 16 >2K 8.6 9.1 23.5
1M 32 * 29.7 131.4 49.5
1M 64 * 302.6 * 328.4

Table 9: Time Percentage of Summarization and the
Model Computation with FT-TVF (S = 1K)

PCA SSVS
n d n,L,Q Model n,L,Q Model

1M 8 76% 24% 94% 13%
1M 64 90% 10% 6% 98%

10M 8 96% 4% 97% 2%
10M 64 98% 2% 38% 32%

dataset in main memory is minimal compared to computing
SSVS, there is a significant drop in execution time in our
methodologies caused by the use of summarization matri-
ces. Furthermore, benefits of choosing a specific optimiza-
tion, depending on the input dataset, remain for a relatively
small number of iterations. However, the time difference
between optimizations for the summarization step becomes
less representative when S increases, due the execution time
taken up by the O(d4) iterative step. It can be seen in Table
9, the time percentage summarize the data, and to compute
the model from n, L, and Q. We can see the benefit from
our algorithm to compute PCA and SSVS, especially for very
large datasets. Finally, we have that models are constructed
from the complete data set, and the results obtained with
our algorithms are exact.

5. RELATED WORK
There is a wide range of related work to apply PCA in

image processing [12], pattern recognition [30], data com-
pression [6], clustering [8] and classification [15]; thus, the
importance to efficiently compute PCA for large dataset.
Even though, the use of sufficient statistics was previously
introduced for linear models [22], our novelty is to extend the
use of the summarization matrices for Bayesian statistics,
Markov chains, and the Gibbs sampler [11]. Variable or fea-
ture selection is well-research topic in both data mining and
statistical literature, leading to a variety of algorithms for
searching the model space and selection criteria for choosing
between competing models [19]. In the Bayesian framework,
Markov chain Monte Carlo methods can be used for infer-
ence and estimation, such in [3]. Thus, the model selection
problem is transformed to the form of parameter estima-
tion, in which rather than searching for the single optimal

model, attempts to estimate the posterior probability of all
models within the considered class of models (in our case,
we focus on linear regression [2]). The primary task then is
to estimate the marginal posterior probability that a given
set of variables should be in the model. Such a setup has
been used in various variable selection settings by Mitchell
and Beauchamp [20], Clyde, Desimone and Parmigiani [17],
George and McCulloch [10], Smith and Kohn [27] and Chip-
man et. al. [5] but were limited to cases when the size and
dimensionality of the data is relative small. The DBMS ap-
proach we propose here is not only highly computationally
efficient but also scales well to large databases.
Integrating data mining and statistical techniques into a
DBMS has been paid little attention by the research com-
munity. Due to the importance of sufficient statistics to
process large matrices [26, 9], it is a desirable capability to
be integrated into the DBMS. Some of the applicability of
constructing models based on correlation and clustering is
presented in [23]. Resent work has focused on optimizing the
computation of sufficient statistics by exploiting caching and
sampling [25]. In contrast, we propose specific changes to
the aggregation algorithm to avoid intermediate steps, and
concentrating on hardware performance. Our present arti-
cle extends our previous work computing SVD with SQL
and TVFs [24, 21]. In our new article we show both PCA
(based on SVD) and SSVS (based on Gibbs sampler) can
be solved with the same underlying sufficient statistics n,
L, and Q. Solving both models highlights the importance
of pushing computation of summary matrices using SQL
and UDFs. Also, we incorporate OS level optimizations:
multi-threaded processing and RAM memory management
for threads, which turned out to be challenging to incorpo-
rate into UDFs.

6. CONCLUSIONS
In this paper, we have studied how DBMS functionality

to compute aggregates can be exploited in linear models.
By seeing the importance of data summarization, we pro-
posed algorithms to yield DBMSs with the crucial function-
ality of PCA and SSVS. Experimental results show that
results are not compromised by representing operation of
both techniques in terms of summary matrices. Therefore,
after one table scan to summarize the input data, the mod-
els computed with our algorithms are the same than the
ones obtained with the R statistical package. Our optimiza-
tions show how to efficiently execute aggregate operations
to summarize data in large data sets. The performance of
the algorithms was tested with standard SQL and aggregate
UDFs. Even though for most cases an efficient summariza-
tion can be done using few threads, there is a significant dif-
ference with the summarization performance without multi-
threading. Our algorithms for data summarization exhibit
linear scalability on both the data size n and on the number
of dimensions d. On the other hand, the time to compute
the model depends uniquely on the number of dimensions d,
and their performance does not get affected by the increase
of the number of records in the dataset. By efficiently using
DBMSs capabilities to process large datasets, it is possible
to achieve better performance, and overcome limitations of
external tools for statistics and data mining.
There are several issues for future research. Since not all
data fits a linear model, it is important to investigate meth-
ods to improve the models obtained with SSVS to fit non



linear distributions of the data. Since information with high
dimensionality is of great interest for diverse applications,
other problem to improve SSVS for large datasets and d > n.
Our optimizations for performing aggregate operations fit
the MapReduce paradigm; further research to speed up data
summarization can be done under this framework, which
is an alternative to UDFs. Also, we have proposed several
changes to the steps in a multithreaded UDF. Although, our
modifications are specific to compute data summarization,
we think that further research should adjust the definition
of multithreaded UDFs to solve a broader set of problems.
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