
Efficient Algorithms based on Relational Queries to Mine
Frequent Graphs

Walter Garcia
UH-Downtown

Dept. of Computer Science
Houston, TX 77002, USA

Carlos Ordonez
University of Houston

Dept. of Computer Science
Houston, TX 77204, USA

Kai Zhao
University of Houston

Dept. of Computer Science
Houston, TX 77204, USA

Ping Chen
UH-Downtown

Dept. of Computer Science
Houston, TX 77002, USA

ABSTRACT

Frequent subgraph mining is an important problem in data
mining with wide application in science. For instance, graphs
can be used to represent structural relationships in prob-
lems related to network topology, chemical compound, pro-
tein structures, and so on. Searching for patterns from
graph databases is difficult since graph-related operations
generally have higher time complexity than equivalent op-
erations on frequent itemsets. From a practical standpoint,
databases keep growing with lots of opportunities and need
to mine graphs. Even though there is a significant body
of work on graph mining, most techniques work outside
the database system. Programming frequent graph min-
ing in SQL is more difficult than traditional approaches
because the graph must be represented as a table and al-
gorithmic steps must be written as relational queries. In
our research, we study three fundamental problems under
a database approach: graph storage and indexing, frequent
subgraph search, and identifying subgraph isomorphism. We
outline main research issues and our solution towards solving
them. We also present preliminary experimental validation
focusing on query optimizations and time complexity.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data Mining

General Terms

Algorithms, Experimentation, Performance

Keywords

DBMS, SQL, Graph Mining

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PIKM’10, October 30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0385-9/10/10 ...$10.00.

1. INTRODUCTION
Frequent subgraph mining is an active research topic in

the data mining community. The earliest studies to find sub-
graph patterns characterized by some measures from mas-
sive graph data were SUBDUE [5] and GBI [15]. SUBDUE
uses a computationally bounded inexact graph match that
identifies similar, but not identical, instances of a substruc-
ture and finds an approximate measure of closeness of two
substructures when under computational constraints. In ad-
dition to the minimum description length principle, other
background knowledge can be used by SUBDUE to guide
the search toward more appropriate substructures. GBI is
capable of solving a variety of learning problems by map-
ping the different learning problems into colored digraphs.
The generality and scope of this method can be attributed
to the expressiveness of the colored digraph representation,
which allows a number of different learning problems to be
solved by a single algorithm. In 1998, WARMR [6], a gen-
eral purpose inductive logic programming algorithm that ad-
dresses frequent query discovery was proposed by Dehaspe
and Toivonen. This algorithm offers the flexibility required
to experiment with standard and novel settings not sup-
ported by special purpose algorithms.

Recent subgraph mining algorithms can be roughly clas-
sified into two categories: depth-first search and level-wise
search. Algorithms in the first category use a depth-first
search for finding candidate frequent subgraphs. One ex-
ample algorithm in this category is G-SPAN(graph-based
Substructure pattern mining) [14] which is the first algo-
rithm that explores depth-first search in frequent subgraph
mining. This algorithm builds a new lexicographic order
among graphs, and maps each graph to a unique minimum
DFS code as its canonical label. G-SPAN discovers all the
frequent subgraphs without candidate generation and false
positives pruning. It combines the growing and checking
of frequent subgraphs into one procedure, thus accelerat-
ing the mining process. Recently, a new mining framework,
LEAP [13], was developed to exploit the correlation between
structural similarity and significance similarity in a way that
the most significant pattern could be identified quickly by
searching dissimilar graph patterns. This mining method
revealed that the widely adopted branch-and-bound search
in data mining literature is indeed not the best.

17

In the second category the algorithm uses a level-wise
search scheme like Apriori to enumerate the recurring sub-
graphs. Inokuchi et al. [8] proposed a computationally effi-
cient algorithm, AGM, that can be used to find all frequent
induced subgraphs in a graph database. This algorithm finds
all frequent induced subgraphs using an Apriori-based ap-
proach similar to [1] which extends subgraphs by adding
one vertex at each step. FSG [9] is another computation-
ally efficient algorithm proposed by Kuramochi et al. This
algorithm, on the other hand, finds all frequent connected
subgraphs in a graph database. FSG uses a sparse graph
representation which minimizes both storage and computa-
tion and it increases the size of frequent subgraphs by adding
one edge at each step. In [3] the authors proposed the DB-
SUBDUE algorithm which is the first attempt to mine sub-
structures over graphs using the database approach. This
algorithm uses standard SQL and stored procedures inside a
relational DBMS and overcomes the performance and scala-
bility problems that is inherent to main memory algorithms.

In this paper, we propose an efficient algorithm to gen-
erate frequent subgraphs inside a relational DBMS. We im-
plement all the graph mining steps with SQL. The repre-
sentation of graphs using indices could be applied to most
graphs. We also implement the canonical ordering technique
to identify similar subgraphs with different order of vertex
and edge labels. Our algorithm achieves good performance
and is scalable to large graph datasets.

Here is an outline of the structure of this paper:

1. Introduction

2. Definitions

• General Definitions

• Subgraph Isomorphism

• Frequent Subgraphs

3. Efficient Algorithms in SQL to Mine Graph Databases

• Graph Storage and Indexing

• Frequent Subgraph Search

• Subgraph Isomorphism

• Algorithm

4. Preliminary Experiments

5. Related Work

6. Conclusion and Future Work

2. DEFINITIONS

2.1 General Definitions

Definition 1. A labeled graph G, as shown in Figure 1, is
a five element tuple G = {V, E,ΣV ,ΣE , l} where V is a set
of vertices and E ⊆ V × V is a set of directed edges. ΣV

and ΣE are the sets of vertices and edge labels respectively.
The labeling function l defines the mapping V → ΣV and
E → ΣE .

Definition 2. Graph dataset GD is a set of labeled graphs,
GD={G1, G2, . . . , Gn}, and |M | denotes the number of graphs
in a graph dataset, that is the size of the graph dataset. |E|
denotes the number of edges of the graph dataset.

Figure 1: Example of a graph.

Figure 2: Example of graph isomorphism.

Definition 3. The size of a graph G is the number of edges
in E(G).

Definition 4. A subgraph of a graph G1 = {V, E} is a
graph G2 = {W,F}, where W ⊆ V and F ⊆ E. A subgraph
G2 of G1 is a proper subgraph of G1 if G2 6= G1.

Given two labeled graphs G1 = {V, E,ΣV ,ΣE , l} and

G2 = {V
′

, E
′

,Σ
′

V ,Σ
′

E , l
′

}, G2 is a subgraph of G1 iff

1. V
′

⊆ V

2. ∀u ∈ V
′

, (l(u) = l
′

(u))

3. E
′

∈ E

4. ∀(u, v) ∈ E
′

, (l(u, v) = l
′

(u, v))

2.2 Subgraph Isomorphism

Definition 5. A labeled graph G1 = {V, E,ΣV ,ΣE , l}, as

shown in Figure 2, is isomorphic to graph G2 = {V
′

, E
′

,Σ
′

V ,

Σ
′

E , l
′

}, iff there exists a bijection f : V → V
′

such that

1. ∀u ∈ V, (l(u) = l
′

(f(u)))

2. ∀u, v ∈ V, (u, v) ∈ E ⇔ (f(u), f(v) ∈ E
′

)

3. ∀(u, v) ∈ E, (l(u, v) = l
′

(f(u), f(v)))

Definition 6. A labeled graph G2 is subgraph isomorphic
to labeled graph G1, denoted by G2 ⊆ G1, iff there exists a

subgraph G2
′

of G1 such that G2 is isomorphic to G2
′

.

18

Definition 7. Given a set of graphs GD(graph database)
and the support of a graph G1, denoted by supG1 is defined
as the fraction of graphs in GD to which G1 is subgraph
isomorphic.

supG1=
|{G2∈GD|G1⊆G2}|

|M|

2.3 Frequent Subgraphs

Definition 8. G is frequent iff supG ≥ σ. The frequent
subgraph mining problem is given a threshold σ where 0 ≤
σ ≤ 1 and a graph database GD, to find all frequent sub-
graphs in GD.

An example of labeled graphs and subgraph isomorphism
is presented in Figure 3. All three graphs in Figure 3 are
labeled graphs, and graph 1 is subgraph isomorphic to graph
2.

3. EFFICIENT ALGORITHMS IN SQL TO

MINE GRAPH DATABASES
We have identified the following problems as being fun-

damental in graph mining. Solving them with SQL [4] is
likely to have a broad impact. (1) Graph storage and index-
ing: since performing a sequential scan on the whole graph
dataset is inefficient, it is necessary to build a graph index in
order to help with the processing of the graph queries. (2)
Frequent subgraph search: the possible number of subgraphs
increases with the size of graph dataset, so it is important to
find an efficient candidate generation approach which is scal-
able to large datasets. (3) Subgraph isomorphism: subgraph
isomorphism, which has been proven to be NP-complete [7],
is used to determine whether a given subgraph occurs in the
input graph or not.

In this section we will describe the technical details of
how our algorithm overcomes the three problems mentioned
above inside a relational DBMS.

3.1 Graph Storage and Indexing
In order to accommodate mining over a set of graphs

we extend the graph representation of DB-SUBDUE [3, 2].
Since data is stored in relational DBMS as tables we need
to present graphs as rows in a table. Normally a graph is
a set of edges and vertices, so we represent graphs using
two tables: one is V ertex(V No, V L,GID) and another is
Edge(E No, V 1, V 2, EL,GID). Figure 3 gives an example
of a graph dataset. The vertices of the graphs are stored
in the V ertex table as shown in table 1 and the edges are
stored in the Edge table as shown in table 2.

The V ertex table contains three attributes: V No is the
number of the vertex, V L is the label of vertex and GID is
the id of the graph that the vertex belongs to. The Edge ta-
ble contains five attributes: E No is the number of the edge,
V 1 is the number of the vertex where the edge originates,
V 2 is the number of the vertex where the edge terminates,
EL is the label of the edge and GID is the id of graphs that
the edge belongs to. The GID(Graph Id) attribute helps to
identify the vertices and edges belonging to the same graph.
In other words, each graph is given a unique identification
number that is also stored as part of the representation.
The value of the E No(number of edge) attribute is unique
to an edge. By imposing the constraint that the new edge
number should not be equivalent to any edge that is already

Figure 3: Example of graph dataset.

V No VL GID
1 A 1
2 B 1
3 C 1
1 A 2
2 B 2
3 C 2
4 D 2
1 A 3
2 B 3
3 D 3

Table 1: Vertex: Structure of Vertex table.

E No V1 V2 EL GID
1 1 2 AB 1
2 2 3 BC 1
3 1 2 AB 2
4 1 4 AD 2
5 2 3 BC 2
6 1 2 AB 3
7 1 3 AD 3

Table 2: Edge: Structure of Edge table.

19

present in the instance, we avoid the expansion of subgraphs
on edges that are already present in the instance.

The Edge table cannot represent one-edge subgraphs since
this table does not contain information about vertex labels.
Therefore, we create a new table called Subgraph 1 by join-
ing the V ertex table and the Edge table. The Subgraph 1
table will contain all the subgraphs of size one as shown
in table 6. For one-edge subgraphs, the edge direction is
always from the first to the second vertex. This is why
there are no attributes in the Subgraph 1 table that specify
the direction. For higher edge subgraphs, we introduce the
connectivity attributes to denote the direction of edges be-
tween vertices. Since the edges having less frequency than
the minimum support will not expand to subgraphs that
satisfy the minimum support, we remove those edges from
the Subgraph 1 table.

Since the base table Subgraph 1 is created by a join op-
eration on attribute V No of the V ertex table and the V 1,
V 2 attributes of the Edge table, so we create index(V No)
for V ertex table and index(V 1, V 2) for the Edge table. The
Subgraph 1 table is the base table for the frequent subgraph
search process and we create index(E No, V L1, V L2) for
this base table. With the index, the speed of the join oper-
ation on these tables will be improved significantly.

3.2 Frequent Subgraph Search
In order to count the isomorphic subgraphs across graphs,

we need to systematically generate subgraphs of increasing
size in all of the input graphs and count them. In our algo-
rithm, the subgraphs are allowed to expand on any matching
vertex(belong to the same graph) along the edges that do
not exist in the subgraphs that are being expanded. This
unconstrained expansion can generate all the possible sub-
graphs. For example, to expand a one-edge subgraph into a
two-edge subgraph we join the Subgraph 1 table with itself
on matching vertices. To make sure that the expansion is
done within the same graph we use the constraint that of
GID of both one-edge subgraphs should be the same. In
general, subgraphs of size i are generated by joining the
Subgraph (i − 1) table with the base table Subgraph 1.
Since the join operation is performed on the vertex label
and edge label attributes, we also need to set vertex la-
bel attributes V L1,. . . ,V L(i + 1) and edge label attributes
EL1,. . . ,ELi to be the primary key of the Subgraph i table.

The edge label attribute does not give any information
about the vertex it is originating or terminating to. The
directions and the vertices associated with the edge can be
obtained from the connectivity attributes Fi and T i, which
tell us that the edge i originates from Fi and terminates at
T i.

A graph may have many subgraphs of the same substruc-
ture. If we count the frequency of the subgraph from the
candidate table, it will be counted many times. Hence, in
order to obtain the correct frequency of a subgraph in the
graph dataset, we need to include one instance per subgraph
within one graph. For this purpose, we project distinct ver-
tex labels, edge labels, connectivity map, and GID and store
them in the Distinct i table. Then we perform a GROUP
BY operation on the vertex labels, edge labels, and connec-
tivity map in Distinct i to obtain the correct frequency of
each subgraph. Since the subgraphs with less frequency than
provided support value will not contribute to future gener-

ID V VL Pos
2 1 A 1
2 4 D 2
2 3 C 3
3 3 C 1
3 4 D 2
3 1 A 3

Table 4: Unsorted Vertex.

ation, we prune the Subgraph i table by removing those
subgraphs.

3.3 Subgraph Isomorphism
To obtain the frequency of a subgraph G2, we should

count the number of graphs to which the given subgraph G2
is subgraph isomorphic. According to the definition, if G2 is
subgraph isomorphic to G1, there is a subgraph of G1 which
is isomorphic to G2. So in order to obtain the frequency of a
subgraph after the candidate generation step, we just need
to count the number of graphs that contain this subgraph.
During the frequent subgraph search step, the expansion of
subgraphs may cause similar subgraphs to grow in differ-
ent ways. This will make the frequency counting incorrect.
Our algorithm introduced the canonical ordering technique
to identify the similar subgraphs.

Table 3 represents an example of some similar subgraphs
of size 2. Here we introduce an additional attribute called
ID in unordered table 3. Each row in the table should have
a unique ID. In order to obtain the correct frequency of the
subgraphs, we need to identify similar subgraphs regard-
less of their growing order. This problem is addressed by a
canonical ordering step. Canonical ordering is an expensive
process that involves maintaining six intermediate tables,
sorting of two intermediate tables, one 3-way join, and one
2n+2 way join where n is the size of subgraph.

In order to identify two similar subgraphs, vertex labels
and the connectivity attributes, which denote the direction
of the edges, need to be used. If two subgraphs have the
same vertex labels and edge directions, then they can be
identified as similar subgraphs. Since a DBMS does not
allow rearrangement of columns to obtain canonical order-
ing, we have to transpose the rows of each subgraph into
columns, sort them, and then reconstruct them to get the
order. We show the canonical ordering of table 3 as an ex-
ample.

First, we project the vertex number(V i) and vertex labels
(V Li) from the original table and insert them into a table
called Unsorted V ertex as shown in table 4. We also include
the position in which the vertex occurs in the original table.
Next we sort table 4 on ID and vertex label(V L) and insert
them into the table called Sorted V ertex as shown in table
5. The New Pos attribute denotes the new position of the
vertex in the Sorted table and the Old Pos attribute denotes
the old position of vertex in the Unsorted table.

Similarly we also transpose the connectivity attributes
into a table called Old Conn as shown in table 7. Since
the sorting on vertex numbers has changed its position we
need to update the connectivity attributes to reflect this
change. We perform a join of the Sorted Vertex table and
the Old Conn table on the Old Pos attributes to get the
updated connectivity attributes and store them in the table

20

ID V1 V2 V3 VL1 VL2 VL3 F1 T1 F2 T2 EL1 EL2 GID
1 1 4 3 C D C 1 2 2 3 AD DC 2
2 3 4 1 D D A 2 1 3 1 DC AD 3

Table 3: Similar Subgraph Instances.

ID V VL Old Pos New Pos
2 1 A 1 1
2 3 C 3 2
2 4 D 2 3
3 1 A 3 1
3 3 C 1 2
3 4 D 2 3

Table 5: Sorted Vertex.

E No V1 V2 VL1 VL2 EL1 GID
1 1 2 A B AB 1
2 2 3 B C BC 1
3 1 2 A B AB 2
4 1 4 A D AD 2
5 2 3 B C BC 2
6 1 2 A B AB 3
7 1 3 A D AD 3

Table 6: Subgraph 1: the base table for expansion.

called New Conn as shown in table 8. Then we sort the
New Conn table on the ID,F , and T attributes and store
them in the Sorted Conn table as shown in table 9.

Since we also need the GID attribute to generate new
subgraphs, we transpose the GID attribute to a table called
Sorted GID as shown in table 10. Now we have the or-
der vertex table Sorted V ertex as well as the connectivity
table Sorted Conn. We can perform a join on the n+1
Sorted V ertex, Sorted Conn, and Sorted GID tables to
reconstruct the original subgraphs in canonical order.

Subgraph isomorphism is the most time consuming step
in our algorithm. In the future we plan to create a User De-
fined Function to read each subgraph into a adjacency ma-
trix and then transpose the adjacency matrix into canonical
form which is the same for all the similar subgraphs. This
method will greately reduce the number of join operations
in the DBMS.

3.4 Algorithm
Our algorithm to find the frequent subgraphs takes a sim-

ilar apporach to the Apriori algorithm [12]. The main dif-
ference is that instead of using set containment we use sub-
graph ismorphism. As shown in Figure 4, the first step in
our algorithm is to generate all the possible subgraphs of

ID EL F T
2 AD 1 2
2 DC 2 3
3 DC 2 1
3 AD 3 1

Table 7: Old Conn.

ID EL F T
2 AD 1 3
2 DC 3 2
3 DC 3 2
3 AD 1 3

Table 8: New Conn.

ID EL F T
2 AD 1 3
2 DC 3 2
3 AD 1 3
3 DC 3 2

Table 9: Sorted Conn.

increasing size and count each one. The next step is to
join the found subgraphs with the base subgraph and prune
this table to find the candidate subgraphs. We then scan the
graph dataset to get the support of each candidate subgraph
and compare it to the specified minimum threshold support
value. The subgraphs that meet the minimum threshold
support value are added to the table of frequent subgraphs.
In the next step, we check the candidate subgraph table to
see if it is emtpy. If it is we terminate the algorithm, other-
wise, we repeat step number two and cyle until the candidate
subgraph table is empty.

4. PRELIMINARY EXPERIMENTS
Our experiments focus on evaluating the performance of

our algorithm on graph datasets with varying size and thresh-
old. The basic idea behind the data generator of synthetic
datasets is described in [9] and the parameters are shown in
table 11. All the experiments were performed with a DBMS
server with 3.2GHz CPU, 4GB of RAM, and 600GB of stor-
age space.

The first set of experiments were conducted to analyze
the performance of our algorithm on graph datasets with
varying size. The size of the datasets |M | varied from 100K
to 300K graphs. The other parameters were set as follows:
|T | = 20, |I | = 5, |L| = 200 and N = 30. The minimum
threshold σ was set to 1% . Table 12 and Fig 5 show the
processing time of our algorithm on the dataset.

The second set of experiments were conducted to analyze
the performance of the algorithm with varying minimum
threshold. The graphs contained in the datasets are also

ID GID
1 2
3 3

Table 10: Sorted GID.

21

Figure 4: Flowchart of algorithm.

Notation Parameter

|M| The total number of graphs
|T | The average size of graphs

|I| The average size of potentially frequent subgraphs
|L| The number of potentially frequent subgraphs
N The number of edge and vertex labels

Table 11: Synthetic dataset parameters.

|GD| |E| Time(s)
100K 4M 1063
150K 6M 1874
200K 8M 3027
250K 10M 3916
300K 12M 4755

Table 12: Processing time with varying size of

dataset.

Figure 5: Processing time with varying size of

dataset.

σ |GD| Time(s)
5% 100K 659
4% 100K 744
3% 100K 872
2% 100K 937
1% 100K 1063

Table 13: Processing time with varying support

threshold.

Figure 6: Processing time with varying support

value.

without cycles or multiple edges. All the parameters for the
synthetic dataset were set as follows: |M | = 100K, |T | = 20,
|I | = 5, |L| = 200 and N = 30.. We varied the minimum
threshold σ from 1% to 5% while keeping the max size of
subgrphs as 5. Table 13 and Fig 6 show the experiment
results on varying support value.

5. RELATED WORK
In recent years, a number of efficient and scalable algo-

rithms have been developed for frequent subgraph mining.
The most famous are AGM [8], FSG [9] and G-SPAN [14]. In
this section we will briefly overview these three algorithms.

The AGM [8] algorithm was initially developed to find
frequently induced subgraphs. This paper introduced the
mathematical graph representation of adjacency matrix.
This normal form representation is general but not unique
for a graph. To perform the support counting efficiently,
canonical form is defined for normal forms of adjacency ma-
trices representing an identical induced subgraph. FSG is
the first work on finding frequent connected subgraphs from
a set of labeled graphs. It uses a breadth-first approach to
discover the lattice of frequent subgraphs. The size of these
subgraphs is grown by adding one edge at a time, and the fre-
quent pattern lattice is used to prune non-downward-closed
candidate subgraphs. FSG [9] employs a number of tech-
niques to achieve high computational performance including
efficient canonical labeling and various optimization during
frequency counting. The G-SPAN [14] algorithm finds the
frequent subgraphs following a depth-first approach. Two
techniques, DFS lexicographic order and minimum DFS

code are introduced in this paper. To ensure that the sub-
graph comparisons are done efficiently, they use the canon-
ical labeling scheme based on depth-first traversals.

22

6. CONCLUSION AND FUTURE WORK
In this paper we proposed an efficient algorithm to gen-

erate frequent subgraphs with SQL. We extend the graph
representation of DB-SUBDUE [3, 2] by adding the GID

attribute to accommodate the mining algorithm to a set of
graphs. We also create some necessary indices in the Edge,
V ertex and Subgraph i tables to improve the speed of the
join operation which is necessary in the frequent subgraph
search process. In the frequent subgraph search step we im-
plement unconstrained expansion to generate subgraphs of
increasing size. This expansion method, which expands sub-
graphs on any matching vertex along the edges that do not
exist in the subgraphs, allows our algorithm to generate all
the possible subgraphs. Although unconstrained expansion
is efficient at generating all subgraphs, it allows the similar
subgraphs to grow in different order, making the frequency
counting incorrect. In order to solve this problem, we in-
troduced the canonical ordering technique in the subgraph
isomorphism step. With the canonical ordering technique,
we reorder all the subgraphs based on their vertex labels,
edge labels, and connectivity attributes. After the reorder-
ing process, the similar subgraphs growing in different way
will have the same order of vertex labels, edge labels, and
connectivity attributes which help to identify the subgraph
isomorphism.

There are some issues to be considered for future work.
Our current algorithm uses vertex labels and edge labels
to determine the frequent subgraphs. This means that fre-
quent subgraphs will have the same vertex labels and edge
labels. This greatly reduces the amount of true frequent
subgraphs that are found since they must contain the same
labels. The next step in our research is to use our algo-
rithm but in a modified form that uses the actual form of
the graph to determine the frequent subgraphs. This would
yield a greater number of frequent subgraphs since labels
would not be taken into consideration for subgraph isomor-
phism. One way to attempt to solve this problem is to use
approaches similar to the ones presented in [10] and [11],
which can aid in building models for the input graphs.

7. ACKNOWLEDGMENTS
This work was partially supported by NSF grants CCF

0937562 and IIS 0914861.

8. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. In VLDB
Conference, pages 487–499, 1994.

[2] R. Balachandran, S. Padmanabhan, and
S. Chakravarthy. Enhanced db-subdue: Supporting
subtle aspects of graph mining using a relational
approach. In PAKDD, pages 673–678, 2006.

[3] S. Chakravarthy, R. Beera, and R. Balachandran.
Db-subdue: Database approach to graph mining. In
PAKDD, pages 341–350, 2004.

[4] Z. Chen, C. Ordonez, and C. Garcia-Alvarado. Fast
and dynamic OLAP exploration using UDFs. In
SIGMOD, pages 1087–1090, 2009.

[5] D. J. Cook and L. B. Holder. Substructure discovery
using minimum description length and background
knowledge. J. Artif. Intell. Res. (JAIR), 1:231–255,
1994.

[6] L. Dehaspe and H. Toivonen. Discovery of frequent
datalog patterns. Data Min. Knowl. Discov.,
3(1):7–36, 1999.

[7] M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[8] A. Inokuchi, T. Washio, and H. Motoda. An
apriori-based algorithm for mining frequent
substructures from graph data. In PKDD, pages
13–23, 2000.

[9] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In ICDM, pages 313–320, 2001.

[10] C. Ordonez. Models for association rules based on
clustering and correlation. Intelligent Data Analysis,
13(2):337–358, 2009.

[11] C. Ordonez and Z. Chen. Evaluating statistical tests
on OLAP cubes to compare degree of disease. IEEE
Transactions on Information Technology in
Biomedicine (TITB), 13(5):756–765, 2009.

[12] C. Ordonez, K. Zhao, and Z. Chen. Bounding and
estimating association rule support from clusters on
binary data. In IEEE FDM, 2008.

[13] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining
significant graph patterns by leap search. In SIGMOD
Conference, pages 433–444, 2008.

[14] X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. In ICDM, pages 721–724, 2002.

[15] K. Yoshida, H. Motoda, and N. Indurkhya.
Graph-based induction as a unified learning
framework. Appl. Intell., 4(3):297–316, 1994.

23

