
Database Systems Research on Data Mining

Carlos Ordonez ∗

University of Houston
Houston, USA

Javier García-García
Universidad Nacional Autónoma de México

Mexico City, Mexico

ABSTRACT
Data mining remains an important research area in database
systems. We present a review of processing alternatives,
storage mechanisms, algorithms, data structures and opti-
mizations that enable data mining on large data sets. We
focus on the computation of well-known multidimensional
statistical and machine learning models. We pay particular
attention to SQL and MapReduce as two competing tech-
nologies for large scale processing. We conclude with a sum-
mary of solved major problems and open research issues.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
Data mining

General Terms
Algorithms, Languages, Performance, Theory

1. INTRODUCTION
DBMSs represent the dominating technology to manage

and query structured data represented by tables. On the
other hand, there is an explosion of semistructured data on
the Internet represented by documents, web pages, files and
so on, which are stored and queried by search engines. In
both worlds, a major challenge is to efficiently analyze large
data sets, where data mining plays a central role. Data min-
ing research is extensive [1]: there exist many efficient algo-
rithms, data structures, and optimizations to analyze large
data sets. However, most of them work on flat files. This is
because most data mining algorithms perform complex and
demanding mathematical computations, which make their
integration with a DBMS difficult. We present a review
of processing alternatives, storage mechanisms, algorithms,
data structures and optimizations for data mining on large
data sets. We pay particular attention to SQL [1, 2] and
MapReduce [4] as two competing technologies.

2. PROCESSING ALTERNATIVES
We distinguish three fundamental solutions to compute

data mining models on large data sets, going from exter-
nal processing on flat files to extending the DBMS internal

∗Supported by NSF grants CCF 0937562 and IIS 0914861.

c© ACM, 2010 . This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in SIGMOD Conference 2010.
http://doi.acm.org/10.1145/1807167.1807335

source code: (1) Analyzing large data sets outside a DBMS,
creating an efficient program in a standard programming
language (e.g. C++, Java) that works directly on flat files.
(2) Performing processing on top of the DBMS with SQL
code generation [2] and User-Defined Functions (UDFs) [3].
(3) Modifying and extending the DBMS source code, yield-
ing algorithms tightly coupled to the DBMS.

Alternative (1) is the most flexible to develop new algo-
rithms and optimizations and hence it is the most popular.
However, exporting or importing large data sets is a bottle-
neck, even with bulk utilities. Statistical and data mining
packages working on exported flat files fall into alternative
(1). Alternative (2) is based on computing model equations
combining SQL queries and User-Defined Functions, if avail-
able. Alternative (2) leverages DBMS functionality, but it
provides less programming flexibility and it is slower due to
DBMS overhead and architecture. Some data mining pack-
ages have the capability of pushing some demanding compu-
tations into a DBMS with SQL queries or UDFs. Alternative
(3) is the preferred choice for commercial DBMSs, because
it can match speed of alternative (1) and gives DBMS devel-
opers programming flexibility. Nevertheless, it hinders users
from adding new algorithms or improving existing ones.

Both SQL and MapReduce exploit parallel processing by
partitioning the input data set. Therefore, both technolo-
gies benefit from even load balancing. However, SQL re-
quires relational tables as input, whereas MapReduce can
work on files. In SQL a relational operator is generally eval-
uated with data parallelism and query evaluation becomes
a sequence of physical operators acting on tables. UDFs
extend SQL by allowing efficient computation of mathemat-
ical equations in a high-level programming language (e.g. C,
C++) with arrays and flow control statements (if-then-else,
for, while). Unfortunately, their features vary widely across
DBMSs. On the other hand, in MapReduce functions are
programmed in a high-level programming language. MapRe-
duce has two phases: in the first phase a mathematical com-
putation is distributed and evaluated in parallel, whereas in
the second phase partial results are combined or summa-
rized. MapReduce can be categorized into each alternative,
depending on the level of integration with the DBMS.

3. DATA MINING ALGORITHMS
Even though it is difficult to generalize properties of data

mining algorithms, they typically have the following char-
acteristics: (1) Algorithms to compute models have an it-
erative behavior, which requires performing multiple passes
over the data set. (2) The input data set contains records



with a combination of numeric (dimension) and categori-
cal (discrete) attributes. Data set dimensionality makes the
problem mathematically more difficult, whereas data set size
can significantly increase computation time due to access
to secondary storage. (3) Models are computed and repre-
sented with vectors, matrices and histograms. Most models
require complex mathematical calculations.

We explain algorithms in two groups: unsupervised (clus-
tering, dimensionality reduction, association rules) and su-
pervised (classification, regression, feature selection, neural
nets). Association rule discovery and OLAP are deeply re-
lated problems solved by combinatorial search algorithms.
Bayesian models, a trend in statistics, are generally solved
with stochastic methods (MCMC methods), which in gen-
eral require exploring a huge probabilistic space and many
more iterations than classical methods.

4. STORAGE AND OPTIMIZATIONS
We consider two major database systems research aspects:

storage and optimizations. We further categorize them as
general optimizations (algorithmic, hardware) and specific
optimizations (in SQL or MapReduce).

Storage mechanisms include data layout on disk and in-
dexing. Storage is analyzed for the data set, model matrices
and intermediate results. There exist three main storage lay-
outs: row-based, column-based and cell-based. Cell-based
storage works at the intersection of a row and a column iden-
tifiers (i.e. one value per record). Row-based storage is the
default storage for large data sets in a DBMS, whereas cell-
based is the most common in search engines. Column-based
storage is a more recent alternative to support analytics. In-
dexing is generally defined on vector and matrix subscripts.
Most algorithms assume row-based storage.

There are two kinds of general optimizations: (1) algorith-
mic, which decrease mathematical operations, reduce I/O,
exploit parallel processing or accelerate convergence. (2)
exploiting hardware, like large RAM, cache memory, multi-
core CPUs, alternative technologies to disk storage and so
on. Algorithmic optimizations have received more atten-
tion, given their generality. Sufficient statistics represent
summaries of the data set, which help reducing the num-
ber of passes and developing incremental algorithms with
faster convergence. Sufficient statistics have been widely
used in clustering, PCA, regression and decision trees. Data
stream mining represents an extreme case requiring a sin-
gle pass. However, convergence to a stable solution and
parallel processing become more difficult. Sampling allows
model computation in main memory with small subsets of
the data set, but error in estimations needs to be controlled,
especially with skewed distributions. Sampling has been key
to accelerate clustering, decision trees and association rules.
Hardware optimizations have been a less popular direction
because they generally require programming in a low level
(assembly) language and they are architecture dependent
(less general). Caching matrices or representative subsets of
the data set minimize access to secondary storage.

We now discuss specific optimizations in SQL and MapRe-
duce. SQL query optimizations include forcing hash–based
or merge-sort joins to join large tables, using clustered in-
dices for efficient join and aggregation, denormalization to
avoid joins and reduce I/O, and pushing aggregation before
joins to compress intermediate tables. Aggregate UDFs can
help computing summary matrices on the entire data set

in one pass. Quadratic sufficient statistics computation has
been pushed into the DBMS to accelerate PCA and linear re-
gression. Table UDFs return tables instead of values and en-
able data stream-like processing. Extending SQL with new
clauses is not a promising alternative, because SQL syntax is
extensive and access to the DBMS source code is required.
On the other hand, in MapReduce sometimes it is better
to delay the reduce phase so that multiple jobs can exploit
the same map phase. Another important MapReduce op-
timization is to avoid parsing text files, by reading binary
files with a simple structure. Full scans on large files can be
avoided by following naming conventions on file names for
data subsets based on selection predicates or dates.

5. CONCLUSIONS
Data mining research is extensive, but most algorithms

and techniques work on flat files outside a DBMS. The stor-
age layout is related to the I/O pattern and optimized mem-
ory usage. Reducing the number of passes over a large
data set, exploiting summary matrices, developing incre-
mental algorithms, sampling for model approximation and
creating data structures for indexing or summarization re-
main fundamental optimizations. SQL and MapReduce are
two competing technologies for data mining on large data
sets, both based on automatic data parallelism on a shared-
nothing architecture. SQL and UDFs provide less program-
ming flexibility than MapReduce. Exporting or importing
large data sets is a bottleneck in SQL, whereas MapReduce
allows faster load and processing. When performing data
mining inside a DBMS the user can enjoy querying, but also
security and recovery. Most importantly, the export bottle-
neck can be avoided.

There are many research issues. SQL and MapReduce
can be combined as recent work has shown. Incremental
algorithms are difficult to develop in SQL or MapReduce.
DBMSs should provide more efficient mechanisms to export
data sets, especially when SQL or UDFs are not accept-
able. Column stores can accelerate data mining, especially
for high dimensional models. From the mathematical side,
the list is extensive. Hidden Markov Models, Support Vec-
tor Machines, time series, non-linear regression and neural
networks remain difficult to compute with SQL or MapRe-
duce. Adapting Bayesian methods to work with SQL or
MapReduce is an ambitious goal.

6. REFERENCES
[1] J. Han and M. Kamber. Data Mining: Concepts and

Techniques. Morgan Kaufmann, San Francisco, 2nd
edition, 2006.

[2] C. Ordonez. Integrating K-means clustering with a
relational DBMS using SQL. IEEE Transactions on
Knowledge and Data Engineering (TKDE),
18(2):188–201, 2006.

[3] C. Ordonez. Statistical model computation with UDFs.
IEEE Transactions on Knowledge and Data
Engineering (TKDE), 22(12):1752–1765, 2010.

[4] M. Stonebraker, D. Abadi, D.J. DeWitt, S. Madden,
E. Paulson, A. Pavlo, and A. Rasin. MapReduce and
parallel DBMSs: friends or foes? Commun. ACM,
53(1):64–71, 2010.


