
1

Optimization of Linear Recursive Queries in SQL
Carlos Ordonez

University of Houston
Houston, TX 77204, USA

Abstract—Recursion is a fundamental computation mechanism
which has been incorporated into SQL. This work focuses on
the optimization of linear recursive queries in SQL. Query
optimization is studied with two important graph problems:
computing the transitive closure of a graph and getting the power
matrix of its adjacency matrix. We present SQL implementations
for two fundamental algorithms: Seminaive and Direct. Five
query optimizations are studied: (1) Storage and indexing; (2)
early selection; (3) early evaluation of non-recursive joins; (4)
pushing duplicate elimination; (5) pushing aggregation. Exper-
iments compare both evaluation algorithms and systematically
evaluate the impact of optimizations with large input tables.
Optimizations are evaluated on four types of graphs: binary
trees, lists, cyclic graphs and complete graphs, going from best
to worst case. In general, Seminaive is faster than Direct, except
for complete graphs. Storing and indexing rows by vertex and
pushing aggregation work well on trees, lists and cyclic graphs.
Pushing duplicate elimination is essential for complete graphs.
Early selection with equality predicates significantly accelerates
computation for all types of graphs.

Index terms: Recursive query, SQL, query optimization, transi-
tive closure

I. INTRODUCTION

Recursion is fundamental in computer science. Most data
structures, like trees or lists, are recursive. Most importantly,
many search algorithms have a natural recursive definition.
Despite its prominent importance, recursion was not available
in SQL for a long time. But the ANSI ’99 SQL standard
introduced recursion into SQL with syntactic constructs to
define recursive views and recursive derived tables. This
article studies the optimization of linear recursive queries
[24], [26] in SQL, which constitute a broad class of queries
used in practice [2], [3], [17], [19]. Typical problems solved
by linear recursive queries include parent/child relationships,
path computations in a graph and bill of materials. Lin-
ear recursive queries have many applications in relational
databases. Consider an ancestor/descendant example, with
a table containing employee/manager information with the
employee id the employee id of the manager. Examples are
”who are all the employees that are managed directly or
indirectly by person X?” or ”is person X under person Y in the
organization?”. Suppose we have a table relating pairs of parts
in a manufacturing environment where one column identifies

Copyright 2010 IEEE. Published in Transactions on Knowledge and Data
Engineering (TKDE Journal).22(2):264-277,2010. Personal use of this mate-
rial is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works, must be obtained from the IEEE.
http://doi.ieeecomputersociety.org/10.1109/TKDE.2009.83

one part and the second column corresponds to a subpart in
a hierarchical fashion; this is the so-called bill of materials
example. Examples are “list all subparts of part X” and “how
many subparts does part X have two levels below?”. Assume
there is a geographical table with locations where each row
indicates there exists a road (with distance as an attribute)
between two locations. Examples are ”which is the shortest
path between X and Y?”, ”how many different routes are there
between X and Y?”, ”what is the distance between X and Y ?”
or ”what locations cannot be reached from X?.

Although recursive query optimization has been extensively
studied in the past, mostly in deductive databases [3], [9], [19],
[20], [24] and to a lesser extent in relational database systems
[2], [5], [6], [11], [13] there is no recent work that studies
the optimization of linear recursive queries in SQL. Most
research has proposed complex algorithms using sophisticated
data structures. Instead, our work studies how to optimize
recursive queries with existing storage organization and index-
ing mechanisms and relational algebra transformations. Thus
this paper revisits the classical problem of optimizing linear
recursive queries, but focusing on SQL.

This is a summary of contributions. We present implemen-
tations in SQL of two classical algorithms to evaluate linear
recursive queries: Seminaı̈ve [3] and Direct [2]. We study the
optimization of SPJA (selection-projection-join-aggregation)
queries, following traditional query optimization principles [7].
SPJA queries represent the most common and general queries
in a relational DBMS. Specifically, five query optimizations
are studied: (1) Storage and indexing of input, intermediate and
result tables; (2) early selection of rows by pushing predicates;
(3) early or late evaluation of non-recursive (external) joins;
(4 pushing duplicate and cycle elimination into intermediate
recursive steps; (5) pushing aggregation through recursion. We
also study how to improve performance when there are deep
recursion levels, many duplicate rows and cycles. We perform
a systematic experimental evaluation with large tables storing
graphs with different structure and levels of connectivity.

The article is organized as follows. Section II introduces
definitions and examples. Section III presents SQL imple-
mentations for two well-known recursive query evaluation
algorithms. Section IV studies query optimization. Section V
presents experiments focusing on query optimization and time
complexity. Section VI discusses related work. Section VII
presents the conclusions.

II. DEFINITIONS

A. Basic Definitions
To provide a mathematical framework for discussion we

use graphs. Let G = (V, E) be a directed graph with n

2

vertices and m edges. An edge in E links two vertices in V
and has a direction. Notice our definition allows the existence
of cycles in graphs. For instance, an edge can represent a
parent/child relationship or a road between two locations.
There are two common representations for graphs; one is
called the adjacency list and the other one is called the
adjacency matrix. The adjacency list representation of a graph
is a set L of edges joining vertices in V . If there is no edge
between two vertices then there is no corresponding element
in the list. Each edge has an associated weight (e.g. distance,
capacity or cost). A path is defined as a subset of E linking
two vertices in V . The adjacency matrix is an n × n binary
matrix A, where Aij represents an edge from vertex i to vertex
j and is 1/0 indicating presence/absence of an edge. If G is
an undirected graph then A is a symmetrical matrix.

Graph G is stored on table T (as an adjacency list) and
the result of the recursive query is stored on table R (to be
defined below in relational algebra and in SQL). Let the base
table T be defined as T (i, j, p, v) with primary key (i, j), p
representing a path count and v representing a numeric value.
Table T is the input for recursive queries using columns i and
j to join T with itself. Let R be the result table returned by
a recursive query, defined as R(d, i, j, p, v) with primary key
(d, i, j), where d represents recursion depth, i and j identify
an edge at some recursion depth, p is a count (number of
paths) and v represents a numeric value (typically recursively
computed). Columns p and v are used to count paths between
vertices and compute path lengths, respectively; we include
them in both T and R to have consistent definitions and
queries. A row from table T represents a weighted edge in G
between vertices i and j in list L, some value attribute of either
i or j or an entry Aij of the adjacency matrix A. Table T has
m rows (edges), i ∈ {1, . . . , n} and j ∈ {1, . . . , n}. In table
R, p counts the number of paths and v the value (e.g. distance,
capacity) of a path between two vertices. For practical reasons,
we assume there is a recursion depth threshold k.

B. Problems

In this article we study queries of the form:

R = R ∪ (R 1 T). (1)

In Equation 1 the result of R 1 T gets added to R itself.
Since R is joined once with T recursion is linear. Table R is
joined with T based on some comparison between R.j and T.i.
The most common predicate is based on equi-join R.j = T.i
(finding connected vertices). Within linear recursive queries
the most well-known problem is computing the transitive
closure of G, which accounts for most practical problems [2].
We focus on computing the transitive closure of G and the
power matrix Ak in SQL. Both problems are similar, but their
solution with relational queries is slightly different.

The transitive closure G+ computes all vertices reachable
from each vertex in G and is defined as: G+ = (V, E′), where
E′ = {(i, j) s.t. exists a path between i and j}. That is, G+ is a
new graph with the same vertices, but new edges representing
connectivity between two vertices.

The power matrix Ak (A multiplied by itself k times)
contains the number of paths of length k between each pair

of vertices, defined as: Ak = Πk
i=1A. The power matrix can

answer questions like: given a part, how many subparts does
it have and what is their total cost?, how many paths are there
between two cities below a certain distance and number of
intermediate cities visited?, how many flights with no more
that two stops are there between city X and city Y, and which
one is the cheapest?

C. Recursive Views

In this article we focus on optimizing the SQL recursive
view introduced below. Our discussion is based on tables T
and R. The standard mechanisms to define recursive queries
in the DBMS is a recursive view. We omit syntax for an equiv-
alent SQL construct for derived tables. A recursive view has
one or more base (seed) SELECT statements without recursive
references and one or more recursive SELECT statements.
Linear recursion is specified by a join in a recursive select
statement, where the declared view name appears once in the
“FROM” clause. In general, the recursive join condition can be
any comparison expression, but we focus on equality (i.e. equi-
join). To avoid long runs with large tables, infinite recursion
with cyclic graphs or infinite recursion with an incorrectly
written query, it is advisable to add a “WHERE” clause to set
a threshold on recursion depth (k, a constant). The statement
without the recursive join is called the base step (also called
seed step [3], [15]) and the statement with the recursive join is
termed the recursive step. Both steps can appear in any order,
but for clarity the base step appears first.

We define recursive views for the two problems introduced
in Section II. The following view R computes the transitive
closure of a graph G stored as an adjacency list in T with a
maximum recursion depth k. Columns i, j, p, v are qualified
to avoid ambiguity. The view computes the length/cost v of
each path. R is the fundamental linearly recursive view.

CREATE RECURSIVE VIEW
R(d, i, j, p, v) AS (

SELECT 1,i, j, 1, v FROM T /* base step */
UNION ALL
SELECT d + 1, R.i, T.j, R.p ∗ T.p, R.v + T.v
FROM R JOIN T ON R.j = T.i /* recursive step */
WHERE d < k);

Based on R, the transitive closure (TC) G+ is computed
as follows. We consider DISTINCT as an optional clause to
eliminate duplicates.

CREATE VIEW TC AS (
SELECT DISTINCT i, j FROM R);

The power matrix (PM) view, based on R, returns
A, A2, . . . , Ak and the second statement returns Ak only:

CREATE VIEW PM AS (
SELECT d, i, j,sum(p) AS p,max(v) AS v FROM R
GROUP BY d, i, j);

SELECT * FROM PM WHERE d = k; /* Ak */

This SQL code computes the total number of paths (sum(p))
at a certain depth (d) and the maximum length among all paths,
with respect to v (max(v)). PM can be applied as follows. For

3

T TC PM
i j p v
1 2 1 2
1 3 1 1
1 4 1 3
2 3 1 3
3 5 1 1
4 5 1 2
5 2 1 4

i j
3 2
3 5
4 2
4 3
4 5
5 2
5 3

i j p v
1 3 1 5
1 5 2 5
2 5 1 4
3 2 1 5
4 2 1 6
5 3 1 7

Fig. 1. Example: Input table T for G with n = 5,m = 7, TC (i ≥ 3, k = 5)
and PM for A2 (d = 2).

instance, we can compute: the number of paths at a certain
recursion depth d or across all depths (sum(p)), the total
cost/distance v for all paths (sum(v)), or the longest/shortest
length for all paths between two vertices with respect to their
value v (max(v)). Thus, the power matrix provides additional
information about R (i.e. about G+).

In general, the user can write queries or define additional
views on R treating it as any other table/view. Recursion must
be linear; non-linear recursion is not allowed (i.e. view name
R appearing twice or more times in the “FROM” clause).
Recursive views have several constraints. There must be no
“group by”, “distinct”, “having”, “not in”, “outer join”, “order
by” clauses inside the view definition. However, such syntactic
constructs can appear outside in any query calling the view,
leaving the optimization task open for the query optimizer.
Recursive views cannot be nested to avoid indirect infinite
recursion by mutual reference.

Figure 1 illustrates definitions. Table T stores all the edges
in G. Notice G has a cycle (2,3,5). TC shows all vertices
reachable from i excluding cycles; the longest path in this
case has three edges. PM shows A2; PM states there are two
paths (p = 2) with two edges (d = 2) between vertices 1 and
5 whose maximum v = 5 (e.g. distance).

III. ALGORITHMS TO EVALUATE RECURSIVE QUERIES

We introduce SQL implementations of two classic algo-
rithms to evaluate recursive queries: Seminaı̈ve and Direct.
Our proposed SQL implementations are based only on rela-
tional SQL queries and do not depend on any specific data
structures or database system architecture.

A. Seminaı̈ve Algorithm to Evaluate a Recursive Query

The standard algorithm to evaluate a recursive query comes
from deductive databases and it is called Seminaı̈ve [2], [3].
Seminaı̈ve solves a broad class of recursive problems called
fixpoint equations [2], [1]. Let Rd be the result table after step
d, where d = 1 . . . k. The base step produces R1 = T. The
recursive steps produce R2 = T 1 T = R1 1R1.j=T.i T ,
R3 = T 1 T 1 T = R2 1R2.j=T.i T , . . ., and so on. In
general Rd+1 = Rd 1Rd.j=T.i T. For each recursive step the
join condition is Rd.j = T.i. In each recursive step projection
(π) is needed to make partial result tables union-compatible.
Projection π computes d = d + 1, i = Rd.i, j = T.j, p =
R.p ∗ T.p and v = Rd.v + T.v at each iteration:

Rd+1 = π
d,i,j,p,v

(Rd 1Rd.j=T.i T). (2)

To simplify notation from Equation 2 sometimes we do not
explicitly write neither π nor the join condition between R
and T : Rd+1 = Rd 1 T. Finally, R = R1 ∪R2 ∪ . . .∪Rk. If
Rd becomes empty, because no rows satisfy the join condition,
then query evaluation stops (i.e. R reaches a fixpoint [1], [22]).
The query evaluation plan is a deep tree with k−1 levels. The
tree has k leaves with operand table T and k−1 nodes with a
1 between Rd and T . In practical terms the plan consists of
a while loop of k−1 joins assuming bounded recursion by k.

The following SQL code implements Seminaı̈ve. Cycles are
filtered out to avoid double counting paths.

INSERT INTO R1 /* base step */
SELECT 1, i, j, v, 1 FROM T ;

WHILE |Rd| > 0 DO
INSERT INTO Rd+1 /* recursive step */
SELECT d + 1, Rd.i, T.j,Rd.p ∗ T.p, Rd.v + T.v
FROM Rd JOIN T ON Rd.j = T.i
WHERE (Rd.i 6= Rd.j) and d ≤ k ;
INSERT INTO R SELECT * FROM Rd+1;
d = d + 1;

END;

B. Direct Algorithm to Evaluate a Recursive Query

Direct algorithms were adapted to evaluate a transitive
closure query in a database system [2]. Such algorithms are
called direct because their termination does not depend on
path length; each vertex is processed once. We adapt the
Warshall algorithm [25] (introduced as the fundamental direct
algorithm [2]), to get the transitive closure of G in SQL based
on a modified, but fast, binary matrix multiplication. There is
another direct version with better I/O characteristics [2] when
implemented in a high-level language like C, but it requires
two passes with careful row blocking, making it less efficient
when programmed in SQL. Assume we are manipulating G
as the binary adjacency matrix A defined in Section II. The
goal is to leave G+ stored “in-place” in A. We first write
the Direct algorithm with relational operators in order to
program it with SQL queries. The expression π(RK) below
makes the partial result union-compatible and performs the
following computations: d = Ri.d+Rj .d, i = Rj .i, j = Ri, j,
p = Ri.p ∗ Rj .p and v = Ri.v + Rj .v.

R = T
for K=1 to n do

Ri = σi=K(R); Rj = σj=K (R)
RK = Ri 1Ri.i=Rj .j Rj

S = πd,i,j,p,v(RK)
R = R ∪ S

end

There is no conditional logic to stop in the for loop. The
algorithm traverses G, one vertex at a time. Old edges from R
are replaced with new edges (i.e. they are left “in place” on R).
The join between Ri (Kth row of A) and Rj (Kth column of
A), for K = 1 . . . n, links the predecessors of vertex K with

4

its successors; this is the crucial step. ∪ eliminates duplicates
in case the edge (i, j) already exists. The number of paths
computed as p = Ri.p∗Rj .p can be explained by the number
of paths between Rj .i, Rj .j and the number of paths Ri.i, Ri.j
when Rj .i and Ri.j are linked by a new edge. Compared to
Seminaı̈ve, Direct does not need k, but it needs n iterations.
However, a path length threshold k may be included to avoid a
large number of paths in dense graphs. If some vertex J does
not have predecessors then there is no edge added by the join
operator. Similarly, no edge is added if J has no successors.
In Direct it is not possible to filter out cycles, because that
would produce incorrect results.

The SQL code below implements Direct. n is computed as
the maximum of i and j. Duplicates and embedded cycles are
not eliminated by default. Nevertheless, the path count p is
set to zero for cycles to make the count a tighter bound for
paths with embedded cycles. To avoid getting a large number
of edges in dense/cyclic graphs and to get the same output
as Seminaı̈ve the WHERE clause includes k (i.e. a maximum
path length). Notice K and k have a different meaning.

SELECT
max(CASE WHEN i ≥ j THEN i ELSE j END) AS n

FROM T ;
INSERT INTO R SELECT 1, i, j, v, 1 FROM T ;
FOR K = 1 TO n DO

INSERT INTO R SELECT
Ri.d + Rj .d, Rj .i, Ri.j
,CASE WHEN Rj .i 6= Ri.j THEN Ri.p ∗ Rj .p
ELSE 0 END

,Ri.v + Rj .v
FROM R Ri JOIN R Rj ON Ri.i = Rj .j
WHERE Ri.i = K and Rj .j = K and Ri.d + Rj .d ≤ k ;

END;

IV. QUERY OPTIMIZATION

We focus on optimizing queries based on the recursive view
R, introduced in Section II-C. Such queries can include any
valid SQL clause treating the recursive view R as an input
table. In particular, some queries refer to the transitive closure
computation (TC) and the rest refer to the power matrix
(PM). We study five optimizations: (1) Storage and indexing
for efficient join computation; (2) pushing aggregation; (3)
pushing duplicate row elimination; (4) early evaluation of non-
recursive joins; (5) early selection. Our proposed optimizations
cover SPJA queries (select-project-join-aggregation), which
are the most common queries in relational database systems.
Storage and indexing is an essential aspect in a database
system to efficiently process queries in SQL. All optimizations
are presented and compared for the Seminaı̈ve algorithm and
the Direct algorithm. Optimizations involve defining adequate
storage and indexing of T an R, rewriting queries through
sound transformations and changing the order of evaluation
of relational operations.

A. Storage and Indexing

We study the fundamental aspect about query processing:
storage and indexing of table T and partial result tables Ri

for efficient join computation. We consider graphs with and
without cycles and of varying connectivity. We first discuss
storage and indexing for Seminaı̈ve and then for Direct.

For Seminaı̈ve we study two schemes. Let k be the recursion
depth threshold. Recall that if the partial result table Rd

becomes empty then recursion stops sooner at step d < k.
The storage and indexing schemes explained below are defined
based on two facts. (1) Table T is used as a join operand
k − 1 times. (2) Table R is used as join operand k − 1
times, retrieving rows from Rd−1. The final result table R
is computed as R = ∪dRd (see Section II). We now discuss
the two schemes. Scheme 1 allows efficient retrieval by vertex.
This scheme pays particular attention to the efficient retrieval
of rows to evaluate the recursive join. For the two problems
the join expression is R.j = T.i, where i and j are columns in
both tables. Therefore, in T all edges with the same value for
i are stored together (clustered) on the same logical address
(block) and T has a clustered index on i. On the other hand,
R has all rows corresponding to vertex j on the same logical
address (block) and R has an index on j. That is, rows from T
are clustered by i and rows from R are clustered by j. Scheme
1 allows non-unique join values corresponding to multiple
edges to be retrieved in less I/Os in both cases. This storage
and indexing scheme is efficient for acyclic graphs (e.g. trees
and lists), but it can be inefficient for graphs whose transitive
closure computation generates many duplicates. Scheme 2
enables efficient retrieval by edge. Edges having the same
origin or destination vertex are not clustered. T has rows stored
and indexed by both columns i, j, whereas R has rows stored
and indexed by d, i, j. Scheme 2 can manage multiple edges
more efficiently when G is highly connected, but it ignores
the join condition for vertex connectivity. If there are multiple
paths between i and j or there are cycles this scheme is more
efficient to store and retrieve repeated edges. The justification
behind Scheme 1 is that T and R are optimally indexed to
perform a hash join based on R.j = T.i. But having many
rows satisfying the condition for each value of i may affect join
performance because of hashing collisions. On the other hand,
having a few rows (in particular one or zero) satisfying the join
condition can improve hash join performance. In Scheme 2
each recursive join cannot take advantage of the index because
the join condition differs from the indexed columns, but each
row can be uniquely identified efficiently. In such case the
query optimizer uses a merge join making a full scan on both
tables R and T at each step. However, only rows from Rd are
selected before the join.

In a similar manner to Seminaı̈ve, we now present two stor-
age and indexing schemes for the Direct algorithm. For Direct
R is joined with itself n times and T does not participate
in those n − 1 joins. That is, T is only used for initializing
R. Therefore, T impact on performance is marginal. Scheme
1 allows efficient retrieval by vertex. Therefore, R rows are
clustered on the same logical address (block) by vertex and R
has an index on i. In other words, all edges for the same vertex
i are clustered together on secondary storage. Thus Scheme 1
allows efficient retrieval of all edges departing from one vertex
i. During the n iterations we need to efficiently select the
ith row and the jcolumn from the binary matrix represented

5

by R. Therefore, Scheme 1 allows efficient retrieval by one
subscript (i), but not when using the other one (j). In an
analogous manner to Seminaı̈ve, Scheme 2 is designed for
efficient edge retrieval. During evaluation all repeated edges
are stored on the same address. Each row in R has an index
on vertices (i, j), allowing duplicates. Scheme 2 allows the
efficient elimination of duplicate edges during evaluation since
they are stored together by the previous iteration. In summary,
Seminaı̈ve considers storage and indexing for T , whereas T
is not important for Direct. On the other hand, in Seminaı̈ve
R is joined with T multiple times, whereas in Direct R is
joined with itself. Therefore, in Seminaı̈ve R and T have
index definitions optimized based on the joining condition
R.j = T.i, whereas Direct has index definitions only to join
R with itself based on a different join condition: Ri.i = Rj .j.

B. Early Selection

Pushing selection through recursion is one of the most well
studied aspects in recursive query optimization [2], [18]. Here
we revisit the problem. Early selection may be used when
there is a “WHERE” clause specifying a filter condition on
columns from R. Evaluating selection earlier is possible for
Seminaı̈ve, but not for Direct. We first explain how to evaluate
selection predicates earlier for Seminaı̈ve and then we explain
why this is not possible for Direct.

When G has cycles the recursion can be infinite; this is a
practical problem for many database applications. Therefore,
we emphasize the use of a “WHERE” clause with d ≤ k
because it is the only way to guarantee a recursive query will
stop, in general. The queries we study are of the form

SELECT i, j, p, v FROM R WHERE <condition>;

By default the WHERE clause is evaluated at the end
of recursion, producing correct results. One of the general
guidelines in traditional query optimization is to evaluate
selection (σ) of rows and projection (π) as early as possible.
The rationale behind such optimization is that a join (1)
operation can operate on smaller tables, thus reducing work.
This optimization involves transforming (rewriting) the given
query into an equivalent query that is evaluated faster. This
guideline also applies to recursive queries, but we distinguish
two cases. The first case is given by a condition on the columns
from the primary key of R other than d (i.e. i, j). The second
case is given by a condition on non-key columns d, p, v, that
change at each recursive step.

We explain the first case. If there is a “WHERE” condition
on a column belonging to the primary key (i or j), and the
column does not participate in the join condition then the
“WHERE” condition can be evaluated earlier. In this manner
each intermediate table is smaller. Let us recall the transitive
closure view introduced in Section II-C. Suppose we only want
vertices reachable from i = 1:

SELECT i, j FROM R
WHERE i = 1;

The clause “WHERE i = 1” can be evaluated earlier during
the recursion. It can be evaluated at the base step and at each
recursive step, with caution, as explained below. Therefore,

the earliest it can be evaluated is at the base step to produce
a subset of T , stored in R1. This optimization propagates a
reduction in the size of all intermediate tables Rd. Then the
base step of the recursive view SQL code, presented in Section
II-C, is rewritten as follows:

SELECT 1,i, j, v /* base step */
FROM T WHERE i = 1

Evaluating “WHERE i = 1” in the recursive step is tricky.
First of all, i must be qualified. Using “WHERE T.i = 1”
would produce incorrect results because it would only include
vertex 1. Observe the recursive step uses T.i in the “WHERE”
clause, but not on the projected columns. Conversely, it uses
R.i in the projected columns and not on the “WHERE”
clause. Evaluating “WHERE R.i = 1” produces correct results
because R.i is not part of the join condition, but in this
case it is redundant because the partial result table Rd, only
contains rows satisfying R.i = 1, propagated from the base
step. Therefore, in this case it is sufficient to evaluate selection
on key i on the base step. This optimization cannot be applied
to the next query:

SELECT d, i, j,sum(v) FROM R
GROUP BY d, i, j
WHERE j = 1;

The reason that hinders pushing the WHERE clause is
because R.j is part of the join condition R.j = T.i. Even
further, “WHERE T.j = 1” cannot be evaluated neither on
the base step nor on the recursive step.

A similar reasoning applies to more complex WHERE
expressions. For instance, selecting a row/column from the
power matrix Ak. Consider the query

SELECT d, i, j,sum(v) FROM R
GROUP BY d, i, j
WHERE d = 10 and i = 1 and j = 1;

This query can be evaluated more efficiently by filtering
with “WHERE T.i = 1” in the base step of R and “WHERE
R.i = 1” at each recursive step. However, “WHERE R.i =
1” cannot be pushed into the base step because it uses R;
“WHERE T.j = 1” cannot be pushed either.

We discuss the second case, involving predicates on p, v.
Row selection with general WHERE conditions on v is
difficult to optimize, whereas conditions on d are easier to
optimize. The corresponding WHERE clause may be pushed
into both the base and recursive step depending on how v is
computed. We distinguish two possibilities: v is recursively
computed (with addition or product) or v is not recursively
computed when it is a property of vertex i or vertex j (e.g.
employee age).

If there is no recursion depth k and the filter condition is
of type “WHERE v ≤ vU ” and v is recursively incremented
then the query can stop at some step. If all T rows satisfy
v > 0 and v is incremented at each step then the query will
stop. But if there exist rows such that v = 0 or v < 0 then
the query may not stop. Only in the case that v > 0 for all
rows and v increases monotonically we can evaluate “WHERE
v ≤ vU ” at each recursive step. By a similar reasoning, if the
condition is v ≥ vL and v > 0 in every row then the query

6

may continue indefinitely; then “WHERE v ≥ vL” cannot be
evaluated at each recursive step. For instance, the power matrix
may produce an infinite recursion for cyclic graphs selecting
rows with “WHERE v > 0” and d not having a threshold k.
The transitive closure will eventually stop when the longest
path between two vertices is found if there are no cycles, but
it may produce an infinite recursion if there are cycles. If v
is not recursively computed then v may increase or decrease
after each recursive step; then it is not possible to push the
“WHERE” predicate because discarded rows may be needed
to compute future joins.

We can think of d and p as particular cases of v. Depth
d monotonically increases at each recursive step since it is
always incremented by 1. The number of paths will be one
without pushing aggregation and p ≥ 1 when aggregation is
pushed. The filter expression “WHERE d ≤ k” sets a limit on
recursion depth and then query evaluation iterates at most k
steps; this is the case we use by default because recursion
is guaranteed to stop. With a WHERE predicate d ≥ k
recursive steps may continue beyond k, perhaps indefinitely;
we assume no recursive view is defined with such condition.
Also, “WHERE d ≥ k” cannot be evaluated earlier because it
would discard rows needed for future steps.

As mentioned earlier, it is not possible to evaluate selection
predicates earlier for the Direct algorithm. Direct depends
on the entire graph computed so far at each iteration. If a
selection predicate is applied earlier it may filter out edges that
may be needed by a future vertex (in the loop). To illustrate
this limitation, assume G is a list with vertices connected in
descending order with edges {(n, n−1),(n−1, n−2),..,(2, 1)}.
Then G is analyzed in inverse order by Direct, as presented
before. If we applied the selection “WHERE i = n” at every
iteration we would be left with T at the end of the n iterations:
no new edge would be added: G+ = T . This is because
the successor list of every vertex would be empty, given the
filter condition. Therefore, the transitive closure would be
incorrectly computed. On the other hand, if we applied the
filter in some of the first iterations we would eliminate edges
that belong to the path departing from i = n.

A cartesian product appearing in a recursive view can
produce huge tables since R size will grow fast as recursion
depth k grows. In general, this can be caused by a user error
because there is a missing join condition or such condition
is not correctly written. Also, dense and complete graphs
may lead to infinite recursion since each partial result table
is non-empty. These potential issues support always including
a recursion depth threshold (k) in the WHERE clause.

C. Evaluation of Non-recursive Joins

This optimization is applicable when a query has a non-
recursive join between the recursive view R and another table
(describing properties of vertices or edges in G) or when there
are non-recursive joins inside the view definition of R. Non-
recursive joins can also be understood as external joins because
they do not need to form part of the recursive definition
and therefore they can be evaluated outside of the recursion.
For graphs such queries are useful to get vertex properties.

Suppose we want to join R with another table N (N 6= T) to
get vertex names (e.g. given a city or product id we need their
full name). Assume vertex names and other vertex properties
are stored on table N , defined as N(i,name).

There exist two strategies to get vertex names: (1) per-
forming two joins between the final result table R and N
to get names for i and j, without changing the recursive view
definition; (2) creating a denormalized table TN joining T with
N and substituting T for TN inside R. Both strategies sit at
two extremes: perform join evaluation late (as given in the
query) and earliest (rewritten by the query optimizer). There-
fore, Strategy 1 is called late non-recursive join, and Strategy
2 is called early non-recursive join. We omit discussion on
a third strategy that evaluates external joins at each iteration
because it is straightforward and inefficient.

We now discuss the query plan for each strategy in more
detail. Strategy 1 is the simplest: R is evaluated first and
the external join is evaluated at the end between R and N .
Strategy 1 follows traditional optimization guidelines: a join
operation should be evaluated last. Strategy 2 represents the
other extreme. In this case the join operation is pushed all
the way through recursion and it is evaluated once, in the
base (seed) step. In this case, the query plan is similar: we
just substitute T for TN . Strategy 2 defies common query
optimization principles: a join operation is evaluated first. If
referential integrity is violated or there is a selection predicate
on N Strategy 2 is clearly the best choice since it filters out
T rows before recursion.

Our discussion focuses on the Seminaı̈ve algorithm, but
this optimization applies in a similar manner to the Direct
algorithm. We start by analyzing Strategy 1, which does
not change R. Consider the following query to compute the
transitive closure.

SELECT d, i,Ni.name,j,Nj.name
FROM R JOIN N AS Ni ON R.i = Ni.i

JOIN N AS Nj ON R.j = Nj .i;

After R is computed we just perform two joins to get each
vertex name; N must be aliased to avoid ambiguity. The I/O
cost for this query mainly depends on the size of R because N
is comparatively smaller. N can be optimally indexed on i, but
there are several indexing choices for R based on combinations
of {d, i, j}, as seen before.

Strategy 1 gets names in a lazy manner, after R is computed.
Since vertices names remain static (constant through recur-
sion) we can optimize the query by performing an early non-
recursive join before the base step to create a denormalized
table TN having vertex names for i and j. Then non-recursive
joins pass through R and are avoided during recursion. Hence
we call Strategy 2 early non-recursive join.

Strategy 2 may not always be more efficient than Strategy 1
(late non-recursive join). Strategy may be better when TN has
much bigger rows than T or there is also duplicate elimination.
A wide denormalized table TN with many property columns
for i and j will impact I/O. Notice vertex names could be
potentially retrieved from R1 since they are available for every
edge after the base step, but that would require joining T with
R twice producing a nonlinear (quadratic) recursion. That is

7

not feasible for SQL queries restricted to linear recursion.

D. Pushing Duplicate Row Elimination

We consider cycle detection and eliminating duplicate cy-
cles as a special case of this optimization.

We first discuss Seminaı̈ve. Consider the problem of com-
puting the transitive closure of G, but we are not interested
in v, the weight/distance of each path: we just want to know
all vertices reachable from each vertex. Refer to the recursive
view given in Section II-C. This query provides the answer.

Query efficiency is affected by how connected G is. If G is
dense or complete then there are many paths for each pair
of vertices. If G is cyclic then there are probably two or
more paths between vertices. This will produce duplicate rows
that in turn will increase the size of partial tables after each
recursive step. On the other hand, if G is acyclic then there are
fewer paths with less impact on join performance. In particular,
if G is a tree there is only one or no path between pairs of
vertices, resulting in good join performance without applying
this optimization.

Pushing duplicate elimination works as follows: Duplicate
rows are eliminated at each iteration, instead of doing it
at the end of the recursion. Using DISTINCT or a count()
aggregation grouping by i, j are equivalent. If there are dupli-
cate rows in any intermediate step this optimization reduces
the size of temporary tables. If there are no duplicate rows
this optimization has no effect on table sizes. The impact of
this optimization will depend on the type of graph. A last
“SELECT” statement on R (with DISTINCT or GROUP-BY)
is required at the end of recursion to get all distinct rows
regardless of path length.

We now turn our attention to Direct. In the Direct algorithm
duplicates can also be eliminated at each iteration. In SQL this
can be done using GROUP-BY, DISTINCT or set containment.
Duplicates can be efficiently eliminated exploiting an index on
either (i, j) for the transitive closure of (d, i, j) for the power
matrix. The impact of this optimization will depend on the
type of graph, like Seminaı̈ve.

We now explain how to manage cyclic graphs, which have
multiple paths at deeper recursion levels. In the Seminaı̈ve
algorithm duplicate cycles (i.e. an edge (i, i)) are eliminated
to avoid double counting paths. In such case existing cycles
are not extended with new edges. However, shortest cycles
are detected and are stored on R. On the other hand, for the
Direct algorithm it is not straightforward to filter out cycles
during iterations without producing incorrect results. This is
due to the fact that a new edge may create an embedded cycle
and such edge cannot be formed without the corresponding
vertex otherwise. Therefore, SQL queries do not exclude the
embedded cycle Ri.i, Ri.j or Rj .i, Rj .j when i = j, like the
Seminaı̈ve algorithm. However, duplicate cycles are eliminated
to achieve a partial reduction in size.

E. Pushing aggregation

Recall the power matrix Ak is computed from R as

SELECT d, i, j, sum(p), max(v) FROM R

GROUP BY d, i, j WHERE d = k;

We are concerned with efficient evaluation of aggregation
queries on the recursive view R. Our discussion is based
on the power matrix problem, defined in Section II. Notice
pushing aggregation can be used to eliminate duplicates (e.g.
by simply computing count(*) for each group). Therefore,
pushing aggregation is a generalization of pushing duplicate
elimination. We propose evaluating the “group by” clause
and the aggregate function at every iteration, when possible,
instead of doing it at the end of the recursion. This optimiza-
tion is applicable to all standard SQL aggregations(count(),
sum(), min(), max()) and when the given “group by” clause
includes both i and j. For Seminaı̈ve the GROUP-BY clause
is evaluated at each step, both base and recursive. On the
other hand, this optimization can also be applied to Direct
by pushing the GROUP-BY at each iteration, but it requires
careful interpretation when applied in cyclic graphs. The
equivalence between both the non-optimized and optimized
queries results from the distributive laws [8] of arithmetic
operations + and *.

For Seminaı̈ve the equivalent query for the base step is:

SELECT 1 AS d, i, j, sum(p), max(v)
FROM T /* base step */
GROUP BY d, i, j;

In general the base step query produces no performance
improvement if there are no duplicate keys (i, j) in T . The
equivalent query evaluated at each recursive step is:

SELECT d + 1 AS d,R.i, T.j,
sum(R.p ∗ T.p) AS p,max(R.v + T.v) AS v

FROM R JOIN T ON R.j = T.i /* recursive step */
WHERE R.d < k
GROUP BY d, R.i, T.j;

Going back to the transitive closure, this optimization is
applicable to the following query since it involves the primary
key of R. For instance, consider the query computes the
longest distance (based on v) between two locations at each
depth. This is useful when there are two or more paths between
locations.

SELECT d, i, j, max(v)
FROM R GROUP BY d, i, j;

This optimization can also be applied if the grouping is done
on i, j but not d. In practical terms, this is the same case as
having “group by” on all the primary key columns of R. The
important fact is that each step uses the primary key of the
partial aggregation table required, but a “group by” at then end
is required anyway. Also, each recursive step must still store
partial results at depth d = 1 . . . k. In the following query the
v maximum can be computed for every pair of vertices at each
depth pushing “group by i, j”. The final aggregation gets the
maximum across all depths.

SELECT i, j, max(v)
FROM R GROUP BY i, j;

This optimization is not directly applicable when the group-
ing columns do not include (i, j), but it can be partially

8

applied using all grouping columns eliminating redundant
rows (if any). For our two problems that means partially
grouping by either i or j. Examples are computing the total
sum of salaries of all employees under each manager or
finding the most expensive/cheapest subpart of each part. Such
computations require “carrying” the aggregated salary of each
sub-employee or the aggregated subpart cost at each step
for the future aggregation. Consider the query based on the
modified transitive closure view R, using v = T.v instead of
v = R.v + T.v:

SELECT i, max(v) FROM R GROUP BY i;

Performing an early “GROUP BY i” would incorrectly
eliminate rows with different paths from i to j. This would
in turn hinder recursive joins on the condition R.j = T.i and
would return a number different of terms from those in the
view. Therefore, early aggregation with “GROUP BY i” is
not possible because intermediate vertices at each recursion
depth are needed to perform the next recursive step. However,
“GROUP BY i, j” can be evaluated at each step saving work
by eliminating redundant rows; that is the case if there are two
or more paths between i and j. Therefore, if the the query has
“GROUP BY i” or “GROUP BY j” then “GROUP BY i, j”
is pushed. This optimization is applicable to any distributive
aggregation [8].

We now consider transitive closure, where we only want
to know all vertices reachable from each vertex. Pushing
aggregation has the desirable effect of eliminating duplicate
rows at each step because each group represents a partition of
the partial table Rd. Hence pushing aggregation can be used to
eliminate duplicates and accelerate computation where there
are many. In general a query optimizer evaluates “SELECT
DISTINCT” with a different plan from “SELECT/GROUP
BY”. Selecting distinct rows are generally obtained performing
a sort, whereas computing aggregation requires creating a
temporary table indexed by grouping columns.

We now turn our attention to the Direct algorithm. For
Direct we can evaluate the GROUP-BY at each iteration using
a temporary table RT to store the aggregation results and
then replacing R with RT , leaving the compressed table “in-
place”. This optimization reduces the size of R when there
are multiple paths between vertices. We omit this SQL code.
Evaluating aggregations with the Direct algorithm requires
careful interpretation of results. We distinguish two main
cases: acyclic and cyclic graphs. For acyclic graphs the Direct
algorithm computes the exact number of paths p for any pair
of vertices in the power matrix problem. If G is acyclic, but
not a tree, it can be decomposed into trees. Therefore, pushing
aggregation at each iteration may produce a reduction in the
size of R. However, such reduction is not as significant as it
can be for cyclic graphs. On the other hand, if G is cyclic
then the Direct algorithm computes an upper bound on the
number of paths between a pair of vertices if there is an
embedded cycle. If there are no cycles along the path then
p is accurate. This is an effect of analyzing V in some fixed
order (e.g. 1 . . . n), which causes new edges to be added to R
in a random order, producing embedded cycles. Then when G
is cyclic and dense (resembles a complete graph) the number

TABLE I
SUMMARY OF APPLICABILITY OF OPTIMIZATIONS.

Optimization Seminaive Direct
Storage and indexing Y Y
Early selection Y N
Non-recursive join Y Y
Push duplicate elimination Y Y
Push aggregation Y Y

of paths in R will grow as K increases producing a lower
number p for vertices analyzed earlier and a higher p for
vertices analyzed later. Unfortunately, it is not straightforward
to eliminate embedded cycles without keeping track of all
paths (storing all intermediate vertices), which would render
a different algorithm.

Table I summarizes our five optimizations and their appli-
cability to each algorithm. Notice duplicate elimination also
includes cycle elimination.

V. EXPERIMENTAL EVALUATION

A. DBMS Software and Hardware

This section presents experiments on a computer running
the Teradata DBMS V2R6. The system had one CPU running
at 3.2 GHz, 4 AMPs (parallel virtual processors), 4 GB of
main memory and 256 GB on disk.

B. Overview of Experiments

We perform an experimental evaluation with four types of
graphs: trees, lists, cyclic and complete graphs, summarized
in Table II. Each type of graph is described in detail below in
Section V-C. The first set of experiments compares Seminaı̈ve
and Direct. The second set of experiments evaluates the impact
of each optimization individually on simple queries. The
third set of experiments evaluates all optimizations interacting
together on complex queries. The fourth set of experiments
analyzes scalability varying problem sizes: n, the number of
vertices in G and k, the maximum recursion depth. Each
experiment was repeated five times and the average time
measurement in seconds is reported.

Due to the demanding nature of linear recursive queries
we had to carefully set defaults for optimizations. Storage
and indexing by vertex was used for trees, lists and cyclic
graphs. Duplicate elimination and aggregation were not used
by default for acyclic graphs; the rest of optimizations were
query-dependent. Each experiment re-created the input table
T to use the default storage scheme and avoid caching; all
tables were read “fresh” from disk for each query, avoiding
any caching by the DBMS. In summary tables the “opt” header
indicates if the optimization is turned on (Y) or off (N). Table
entries marked with * mean query evaluation could not end
within one hour and then it had to be interrupted.

An SQL code generator was implemented in the Java
language. The recursive view was unfolded by creating a script
of SQL statements to evaluate it. The program had parameters
to specify the input tables and columns, pick an algorithm
and turn optimizations on/off. Query evaluation was performed

9

TABLE II
TYPE OF GRAPH G.

G m edges cyclic time complexity
tree n − 1 N best
list n − 1 N good
cyclic 2n Y bad
complete n2 − n Y worst

using temporary tables for each step populating each table with
SELECT statements. Time measurements were obtained with
SQL using timestamps for maximum accuracy.

C. Input Tables with Graphs

We study query optimization with synthetic graphs. Graphs
G were generated by varying number of vertices (n) and
varying number of edges (m) to get different types of graphs.
Each edge becomes a row in table T . Therefore, m = |T |.
Four types of graphs were used. To evaluate the best case we
used balanced binary trees; where G has n − 1 edges (i, j)
(j = 1 . . . n, i = j/2) and no cycles; the number of rows
grows linearly as n increases, m = n − 1 = O(n). Lists
represented a good case (slightly worse than trees) since G
has no cycles, but G is an unbalanced tree. To evaluate a bad
case we used cyclic graphs with 2 random edges per vertex;
the number of rows grows linearly as n increases, m = O(n),
but the number of paths grows much faster as k increases. To
evaluate the worst case we created complete graphs having two
directed edges for every pair of vertices (one from i to j and
another from j to i). In complete graphs the number of rows
grows quadratically as n increases, m = n(n − 1) = O(n2).
For cyclic and complete graphs we avoided generating self-
cycles (a loop from i to i), since that provided no insight.
Data sets characteristics are summarized in Table II. The
time complexity column describes the expected time growth
when evaluating the query: the existence of cycles and a
higher number of edges make R grow faster. In our tables
we include an approximate value of m to make comparisons
an interpretation easier (i.e. 100K instead of 99,999). Notice
it is m, and not n, the actual size of T . In most experiments
we duplicate m (2X) and multiply m by 10 (10X), starting
at m = 100K, to understand scalability and complexity. In
general, the largest graphs have around 1M edges, which
represent a computationally intensive problem.

For binary trees and cyclic graphs Aij entries equal to zero
are not included in T producing an automatic performance
improvement to compute the power matrix Ak. This is based
on the fact that aggregations on the full matrix A with zero
entries are equivalent to aggregations on a “lean” matrix
version excluding zeroes. The absence of row [i, j, v] from A
means Aij = 0. Otherwise, all computations for Ak on trees
and cyclic graphs would require the same time as complete
graphs. Likewise, for the transitive closure an absence of a
row from T means the corresponding edge is not present, as
explained in Section II.

TABLE III
SEMINAIVE VERSUS DIRECT FOR TRANSITIVE CLOSURE (TIMES IN

SECONDS).

G n m k Seminaı̈ve Direct
tree 10K 10K 5 2 175

100K 100K 5 23 2948
500K 500K 5 75 *

1M 1M 5 170 *
2M 2M 5 341 *

10K 10K - 3 204
100K 100K - 96 *
500K 500K - 492 *

1M 1M - 1287 *
2M 2M - * *

list 100K 100K 5 23 *
1M 1M 5 208 *
2M 2M 5 297 *

10K 10K 10 6 283
100K 100K 10 94 *

1M 1M 10 377 *
2M 2M 10 719 *
1K 1K - 331 261

10K 10K - * *
cyclic 1K 2K 5 3 20

10K 20K 5 37 1104
100K 200K 5 2818 *

1K 2K 10 28 324
10K 20K 10 1834 *

100K 200K 10 * *
complete 100 10K 5 8 8

200 40K 5 102 46
300 90K 5 1033 357

1000 1M 2 * *

D. Seminaı̈ve versus Direct

Table III compares both algorithms with all types of graphs
at different recursion depths. The table includes the number of
rows in T (m) and recursion depth (k) when used. For trees,
lists and cyclic graphs we increment n 10-fold to identify
important trends (recall n = |V |). For complete graphs it
was not possible to increment n in the same manner because
the number of edges grows O(n2). Therefore, for complete
graphs we increment V linearly. For large cyclic graphs it
was not possible to finish execution within one hour when
k > 10. For complete graphs the situation was even worse
since we could not go beyond k = 5, despite G being relatively
small. Evidently, the issue was the exponential growth of edges
(paths) as k grows.

The first general trend is that Seminaı̈ve is faster than
Direct, except for complete graphs and lists using unbounded
k. Both algorithms are impacted by recursion depth; time
growth becomes significant for cyclic and complete graphs,
highlighting the challenge they represent. Since binary trees
are balanced k = O(log2(n)) and then it s not necessary to
bound k. Lists represent a deep recursion problem, where
Seminaı̈ve ends up being slightly slower than Seminaı̈ve.
There is a jump in time when k goes from 5 to 10 for cyclic
graphs in Seminaı̈ve and evaluation cannot end within one
hour for Direct. Seminaı̈ve is slower than Direct for complete
graphs, but it is not an order of magnitude slower. However,
the time trend indicates Seminaı̈ve will always be slower with
a gap widening as n grows.

10

TABLE IV
SEMINAIVE: STORAGE/INDEXING SCHEMES FOR TRANSITIVE CLOSURE

(TIMES IN SECONDS).

k = 2 k = 4

G n m Storage/index Storage/index
Vertex Edge Vertex Edge

tree 100K 100K 6 10 17 40
200K 200K 9 31 32 97

1M 1M 79 242 128 502
list 100K 100K 5 12 19 36

200K 200K 9 27 27 79
1M 1M 82 245 126 380

cyclic 10K 20K 2 2 19 16
20K 40K 5 6 20 34

100K 200K 16 34 96 199
complete 100 10K 25 10 86 16

142 20K 83 27 202 75
316 100K 1166 919 3539 2261

1000 1M * * * *

TABLE V
DIRECT: STORAGE/INDEXING SCHEMES FOR TRANSITIVE CLOSURE

(TIMES IN SECONDS).

G n k Storage/indexing
Vertex Edge

tree 4k - 74 85
8k - 154 208

list 4k 10 82 92
8k 10 182 214

cyclic 4k 5 107 141
8k 5 284 476

E. Impact of each Optimization

Storage and Indexing

Table IV summarizes results for transitive closure. In gen-
eral, storage by vertex and an index based on the join condition
provides best performance for trees, lists and cyclic graphs;
the gap widens as n increases. Storage and indexing by edge
is better for small cyclic graphs and for complete graphs; the
difference in performance is significant, but the gap narrows as
n increases. Therefore, storage and indexing by vertex should
be the default alternative (Scheme 1).

Table V compares storage/indexing for Direct. Recursion
depth k is unbounded for trees, k = 10 for lists and k = 5
for cyclic graphs. Interestingly enough, the trend is the same
as Seminaı̈ve: row storage by vertex and an index on the join
condition provides best performance.

Early Selection

We study the performance gained by performing selection
(filtering) rows as early as possible. The queries are based on
the transitive closure view with a selection predicate “WHERE
i = n/2”, where n = |V |. Such condition provides high
selectivity for all types of graphs.

Table VI analyzes early selection. In all cases early row
selection is faster. The explanation is that pushing selection
works on a smaller table and it reduces the sizes of all
intermediate tables (like traditional query optimization). For
trees and lists the gain in performance is small at low k,
but becomes significant at deep recursion depth k. For cyclic

TABLE VI
SEMINAIVE: EARLY SELECTION FOR TRANSITIVE CLOSURE (TIMES IN

SECONDS).

G n m k = 2 k = 4

N Y N Y
tree 100K 100K 6 1 17 1

200K 200K 9 2 32 2
1M 1M 79 18 128 22

list 100K 100K 5 1 19 1
200K 200K 9 2 27 2

1M 1M 82 19 126 19
cyclic 10K 20K 2 1 19 1

20K 40K 5 1 20 1
100K 200K 16 3 96 3

complete 100 10K 10 1 16 1
142 20K 27 1 75 1
316 100K 1166 2 2261 2

TABLE VII
SEMINAIVE: NON-RECURSIVE JOIN EVALUATION FOR TRANSITIVE

CLOSURE (TIMES IN SECONDS).

G n m k = 2 k = 4

late early late early
tree 100K 100K 16 12 52 28

200K 200K 30 23 102 52
1M 1M 154 114 509 273

list 100K 100K 16 9 42 28
200K 200K 35 21 87 59

1M 1M 147 90 352 245
cyclic 10K 20K 7 5 45 35

20K 40K 15 7 75 39
100K 200K 53 36 749 171

complete 100 10K 8 16 15 44
142 20K 28 56 75 153
316 100K 1101 * * *

graphs this optimization makes Seminaı̈ve almost two orders
of magnitude faster and three orders of magnitude faster for
complete graphs. Therefore, we conclude that this optimization
is valuable in all cases. The impact of this optimization will
depend on the selectivity of the condition being pushed, like
in traditional SPJ queries, but combined with recursion depth.
A highly selective filter condition that can be pushed into the
base step will significantly improve evaluation time.

Early Non-recursive Joins

The following experiments compare the strategies proposed
in Section IV to evaluate non-recursive joins with the transitive
closure recursive view. We concentrate on comparing non-
recursive join evaluation with late (Strategy 1) and early
(Strategy 2) evaluation.

Table VII compares efficiency varying n and k. Table N
had small records with i (integer) and a vertex description
(char(10)). Such table simulates retrieving one property for
each vertex (e.g. a city name, part description). For trees,
lists and cyclic graphs early join evaluation is more efficient
than late evaluation. On the other hand, late join evaluation
becomes a winner for complete graphs. This may sound
counterintuitive because these results state that it is better
to evaluate a join operation first, rather than at the end like
traditional SPJ queries. However, we must point that if table N
has large records and several columns are needed this would
hurt performance for early join because each recursive step

11

TABLE VIII
SEMINAIVE: PUSHING DUPLICATE AND CYCLE ELIMINATION FOR

TRANSITIVE CLOSURE (TIMES IN SECONDS).

G n m elimCycles k = 2 k = 4

pushDup pushDup
N Y N Y

cyclic 10k 20K N 4 3 29 21
10k 20K Y 3 2 23 22
20k 40K N 8 5 46 43
20k 40K Y 7 4 44 40

100k 200K N 40 37 318 274
100k 200K Y 42 35 316 241

complete 100 10K N 41 6 * 16
100 10K Y 37 5 * 15
142 20K N 84 32 * 82
142 20K Y 102 25 * 80
316 100K N 1623 945 * 2297
316 100K Y 1584 924 * 2263

TABLE IX
DIRECT: PUSHING DUPLICATE ELIMINATION FOR TRANSITIVE CLOSURE

(TIMES IN SECONDS).

G n k = 2 k = 4 k = 6

N Y N Y N Y
tree 10K 164 426 172 466 186 537
cyclic 1000 21 50 24 55 139 186
complete 100 5 8 21 8 165 8

would generate larger intermediate tables. The explanation is
that the non-recursive join is evaluated once at the beginning
of the recursion with small tables; the price is that each row
in intermediate tables becomes bigger. On the other hand, if
this join is evaluated at the end of the recursion it works with
“leaner”, but much larger, tables.

Pushing Duplicate Elimination

The next set of experiments studies the impact of pushing
duplicate row elimination. That is, doing at each iteration
instead of at the end of recursion.

Table VIII summarizes results for the Seminaı̈ve algorithm
computing the transitive closure. We consider cycle elimina-
tion as an extra feature of duplicate elimination. Eliminating
cycles turns out to always work well: evaluation is faster or at
most equal, but never slower. Therefore, it is a good idea to
eliminate cycles when they are detected. In complete graphs
this optimization is not only good, but essential. Without
duplicate elimination evaluation becomes slow and with large
graphs it becomes extremely slow.

Table IX analyzes duplicate elimination for Direct. For
cyclic graphs we used smaller graphs (n = 1000), because
eliminating duplicates with larger graphs took several hours.
Pushing duplicate elimination is expensive in large acyclic
graphs: in trees the time to evaluate queries pushing duplicate
elimination is almost triple. The trends are similar to Sem-
inaı̈ve: eliminating duplicates is required for complete graphs.

Pushing aggregations

The following experiments show the impact made by push-
ing aggregations. Table X analyzes the power matrix. For
acyclic graphs (trees and lists) this optimization works well:
in all cases it is faster to push the aggregation at each

TABLE X
SEMINAIVE: PUSHING AGGREGATION FOR POWER MATRIX (TIMES IN

SECONDS).

G n m k = 2 k = 4

N Y N Y
tree 100K 100K 49 22 80 60

200K 200K 71 59 162 142
1M 1M 562 483 1425 1154

list 100K 100K 39 23 94 53
200K 200K 67 50 231 160

1M 1M 437 428 1042 923
cyclic 10K 20K 9 2 79 67

20K 40K 19 10 117 145
100K 200K 139 178 708 1369

complete 100 10K 36 27 * 104
142 20K 79 138 * 434
316 100K 1812 3508 * *

recursive step instead of computing the aggregation at the end.
For large cyclic graphs, pushing aggregations increases time,
highlighting the cost to group rows. Finally, at k = 2 it is
bad for complete graphs, but it is clearly required at k = 4
where duplicate rows are abundant. The explanation behind
the ineffectiveness of this optimization for complete graphs at
deep recursion depth is that the number of duplicates grows
exponentially. Therefore, the cost to eliminate or summarize
duplicates at each recursive step is higher.

All Optimizations Working Together

We now consider the interaction of optimizations with each
other. We consider two sets of complex queries: queries with
a high selectivity predicate and queries without selection.
The first set of queries return a small table R, whereas the
second one produces a large table R. For each type of graph
we used the optimal setting for optimizations whose defaults
were as follows. Storage and indexing was based on vertex
for trees, lists and cyclic graphs, whereas we used edge
for complete graphs. Duplicate and cycle elimination were
pushed at each iteration for all graphs. Non-recursive joins
(i.e. with N) were evaluated early. Selection (when there was
a WHERE selection predicate) was evaluated early for all
graphs. Recursion depth was k = 4, which is challenging
as seen in previous experiments. In order to understand the
importance of each each optimization we tested optimizations
with the largest graphs analyzed in previous experiments.

We first analyze a “complex” query for transitive closure
which eliminates duplicates, has a non-recursive join to get
vertex names and uses a high selectivity condition in the
WHERE clause (i = n/2). In this case table N was small:
N was precomputed selecting all vertices reachable from one
vertex; such small table acted as a filter when join with T .
Table XI compares the impact of turning each optimization
off, maintaining the rest turned on. Since results for smaller
graphs were very similar they are omitted. All optimizations
working together achieve the minimum evaluation time. Eval-
uating selection at the end has the most significant impact
for all graphs, followed by the non-recursive join evaluated
at the end of recursion. Duplicate elimination at the end of
recursion had a significant impact only for complete graphs,
confirming our findings from experiments discussed before.

12

TABLE XI
SEMINAIVE: OPTIMIZATIONS WORKING TOGETHER (TIMES IN SECONDS).

Each optimization off
all storage non-rec selection duplic

G n on index join elimin
tree 1M 0.7 0.7 3.7 605.7 0.8
list 1M 0.7 0.7 3.8 570.9 0.8
cyclic 100K 0.7 0.7 1.5 631.8 0.8
complete 316 0.7 0.7 4.6 * *

TABLE XII
SEMINAIVE: OPTIMIZATIONS WORKING TOGETHER WITHOUT SELECTION

(TIMES IN SECONDS).

Each optimization off
all storage non-recur duplic

G n on index join elimin
tree 1M 547 * 741 916
list 1M 551 * 711 800
cyclic 100K 476 * 671 720
complete 316 4242 >3 hrs 4053 >3 hrs

Finally, storage/indexing had minimal impact, which can be
explained by the impact of early selection producing a small
table from the start of recursion.

We now analyze the second case, where the “complex”
query does not have a selection predicate and table N has
all vertices. That is, the query has duplicate elimination and
a non-recursive (external) join. All rows from R are returned.
Table XII analyzes the impact of turning each optimization
off, omitting times over 1 hour for trees, lists and cyclic
graphs. All optimizations turned on achieve the lowest time,
but compared to the previous experiment, time differences are
not as significant (except for storage). Storage/indexing is the
most important optimization. Using storage/indexing by edge
for trees, lists, cyclic increases time over one hour. Similarly,
time goes over one hour when a complete graph is stored and
indexed by vertex. Pushing duplicate elimination is essential
for complete graphs and has a moderate impact on the other
graphs (i.e. not an order of magnitude slower). Non-recursive
joins show the smallest gap; early evaluation of non-recursive
joins is still a slightly better alternative.

F. Time Complexity

The next experiments study scalability varying n and k
with large tables, having two goals: (1) understanding time
complexity; (2) quantifying the impact of the type of graph.
We used the optimal storage and indexing scheme based on
vertex. Queries did not have duplicate elimination.

Figure 2 shows time growth as n and k vary. We use these
default values for k: unbounded k for trees, for lists k = 10
and for cyclic graphs k = 5. Scalability is linear for all types of
graphs. Time growth is better than linear for lists; quasi-linear
for trees; and linear for cyclic graphs. There is a big gap in
performance between cyclic graphs and acyclic graphs, despite
the fact that k = 5. These results highlight the difficulty
of computing transitive closure on cyclic graphs, given the
rapidly growing number of paths as k grows. Evidently, time
growth is much faster for complete graphs; those times are not
plotted. We now discuss time complexity for k. In this case

0

100

200

300

400

500

0 64 128 192 256

T
im

e
 i
n

 s
e

c
s

n X 1000

Seminaive

tree
list

cyclic

0

100

200

300

400

500

600

0 4 8 12 16

T
im

e
 i
n

 s
e

c
s

k

Seminaive

tree
list

cyclic

Fig. 2. Seminaive: Query evaluation time varying n and k.

0

200

400

600

800

1000

0 4 8 12 16

T
im

e
 i
n

 s
e

c
s

n X 1000

Direct

tree
list

cyclic

0

200

400

600

800

1000

0 4 8 12 16

T
im

e
 i
n

 s
e

c
s

k

Direct

tree
list

cyclic

Fig. 3. Direct: Query evaluation time varying n and k.

the default is n =64k for Seminaı̈ve. Time grows slowly and
linearly for trees and lists with Seminaı̈ve, but exponentially
for cyclic graphs. Then it becomes constant at k = 15 which
is close to log(n) for n=64k.

Figure 3 shows trends for Direct. Scalability is worse than
linear for trees and lists. Time grows even faster for cyclic
graphs. Compared to Seminaı̈ve, there is also a big gap
between acyclic and cyclic graphs. Time is almost the same
for trees and lists, indicating the dominating factor is n rather
than the type of graph.

G. General Recommendations
Storage and indexing should be based on vertex, unless

the graph is highly connected (e.g. similar to a complete
graph). Selection should be evaluated as early as possible on
any type of graph, preserving correctness. Non-recursive joins
should be performed early if the external table columns do not
significantly increase result row size or if the external table
is small. Otherwise, a late join at the end of the recursion
can be faster. Pushing duplicate elimination will generally
speedup processing and it is required to process highly con-
nected graphs (e.g. complete). Similarly, pushing aggregation
is generally effective because it compresses intermediate tables
during recursion. Finally, queries should always have a small
recursion depth threshold k, which can be gradually increased
as the user explores the properties of the underlying graph.

VI. RELATED WORK

We start by discussing relational query optimization surveys
[4], [7]. Reference [4] explains the main ideas to push selection

13

predicates in SPJ queries and performing a “group-by” opera-
tion before a join operation (early or eager). This optimization
is applicable when the number of resulting groups is smaller
than the size of one of the tables to be joined and it is related to
pushing aggregation. On the other hand, [7] discusses query
optimization exploiting physical database operators and SPJ
query transformation techniques. The optimization of recursive
queries in SQL is not considered in [4], [7].

Research on recursive queries and transitive closure com-
putation is extensive. Most work has been in the context
of deductive databases [1], [3], [10], [22], [18], [19], [21],
[26], or adapting deductive database techniques to relational
databases [5], [14], [16], [15], [23]. There exists a somewhat
orthogonal line of research that has adapted graph-based
algorithms to solve the transitive closure problem in a database
system (not necessarily relational) [2], [10]. Finally, there is
significant theoretical work on recursive query computation
in the Datalog language [12], [20], [24]. There exist several
algorithms to evaluate recursive queries including Seminaı̈ve
[3], Logarithmic [23], Direct [2], and BTC [10]. It has
been shown that Seminaı̈ve solves the most general class of
recursive queries based on so-called fixpoint equations [2],
[3]. Both Seminaı̈ve [3] and Logarithmic [23] are based on
iterative joining until no more rows are added to the result.
Logarithmic [23], also called Smart, is an optimization of
Seminaı̈ve in which paths whose length is a power of 2
are added to the transitive closure on a first pass, and then
remaining edges are added on a second pass; our optimizations
can be applied to Logarithmic. Direct algorithms [2] are a class
of methods that terminate regardless of the underlying graph
structure; they are not recursive and they process each vertex
a constant number of times (e.g. once). Direct algorithms are
in theory more robust with graphs of different characteristics.
However, we have shown the Direct algorithm performance is
indeed impacted by graph structure or recursion depth, when
implemented in SQL. Another drawback of direct algorithms
is that they are less general than Seminaı̈ve [2]. That is,
their computation power is inferior. In [2] the authors present
direct algorithms that evaluate a transitive closure recursive
query in less time than Seminaı̈ve. They improve I/O time by
rearranging tuples into blocks. Our implementation of Direct
followed this work. There are several differences though. We
programmed Direct with SQL queries instead of exploiting any
special data structures (lists) or bit operations, which would
require internally modifying the database system. They do not
consider the power matrix problem, which is more difficult.
Last, we studied query optimization with larger graphs.

We now discuss optimization techniques for recursive
queries. Pushing selection predicates is the most well re-
searched optimization in traditional SPJ query optimization
[4], [7] and deductive databases [3], [19]. Optimization of
row selection, mostly based on equality, has been extensively
studied with the magic sets transformation [14], [16], [15],
[21]. The magic set transformation was proposed with equality
comparison (passing variable bindings) and was later general-
ized to inequality comparisons [16], [15]. The magic sets trans-
formation is similar to the early selection optimization and
pushing aggregation optimizations, introduced in our work.

Both are query rewriting techniques and both attempt to reduce
the size of intermediate results. However, there are impor-
tant differences. The standard magic set query transformation
creates additional tables (relations), introduces extra joins
and queries are transformed (rewritten) with additional clause
terms. Filtering happens in a different way: in magic sets
filtering is performed when joins are evaluated and then only
relevant tuples are kept at each evaluation step. On the other
hand, early selection attempts to keep only relevant tuples by
filtering rows as early as possible like traditional SPJ queries.
Magic sets were later adapted to work on relational database
systems [16], even on non-recursive queries, but the au-
thors caution other specialized techniques for linear recursive
queries (like Direct algorithms) can provide better performance
than magic sets. Magic sets require join reordering using cost-
based optimization [16]. Deductive and relational databases
have different semantics [16], [19]: SQL requires tuples to
always have values (non-ground facts not allowed) and it
allows duplicates, nested queries, aggregations, existential and
universal quantifiers. Therefore, special care must be taken
when applying deductive database optimizations such as magic
sets [14], [16], [15]. Pushing agregation through recursion is
quite different from the magic set transformation; in magic sets
the filtering predicate passes through recursion, but the group-
by operation is evaluated in the same order, but on fewer rows.
On the other hand, we have shown a group-by operation can be
evaluated before a join, as explained in [4]. Both optimizations
are similar in the sense that they try to reduce the size of
intermediate results. and we show non-recursive (external)
joins can be evaluated at the beginning or a the end of the
recursion. Early selection is similar to transforming queries
with magic predicates in the sense that both produce smaller
intermediate results. Sideways information passing (sip) refers
to passing variable bindings from rule head to rule body
[21]; it is related to early selection and pushing aggregation.
Reference [21] explains that the magic set transformation may
be less efficient than Seminaı̈ve when unnecessary joins are
computed. Indexing for evaluation of recursive queries based
on the Seminaı̈ve and Logarithmic algorithms, is studied in
[23]; the enhanced indexing scheme for Seminaı̈ve is similar
to that proposed in [23], but we have shown that in some cases
the alternative indexing scheme based on edges is almost as
good. Also, we have shown the same storage and indexing
scheme works well for the Direct algorithm. Compared to
previous work, we focused on expressing recursive queries
in relational algebra and evaluating them with SQL queries,
without using any memory or disk-based data structures.

This article is an expanded version of [17], studying two
query evaluation algorithms instead of one, analyzing query
optimization in more depth and evaluating optimizations and
scalability on much larger graphs.

VII. CONCLUSIONS

This work studied the optimization of linear recursive
queries in SQL. In order to study query optimization under
an abstract framework we used directed graphs. A graph is
represented by a relational table with one row per edge. We

14

focused on two complementary and deeply related problems:
computing the transitive closure of a graph and getting the
power matrix of its adjacency matrix. We explained how to
program two classical algorithms in SQL: Seminaı̈ve and Di-
rect. These SQL implementations did not use any specific data
structures, proprietary language extensions or internal database
system features. Both implementations can detect cycles which
significantly impact time and may produce infinite recursion.
Five query optimizations were proposed and studied: enhanced
storage and indexing, early selection. early evaluation of non-
recursive joins, pushing duplicate elimination and pushing
aggregations. Experiments on a relational database system
compared both algorithms with large input tables, studying the
impact of each optimization and time complexity. We studied
optimizations on four types of graphs: binary trees, lists,
cyclic and complete graphs, covering a wide spectrum of time
complexity. Seminaı̈ve was significantly faster than Direct,
except for complete graphs. The impact of optimizations was
as follows. In general, optimized storage and early selection
have a strong impact on any type of graph. For acyclic graphs
storage and indexing by vertex based on the join condition
was the best scheme. For cyclic graphs storage and indexing
by edge worked well at low recursion depth and was best
for complete graphs. Early selection produced a significant
acceleration for Seminaı̈ve for equality predicates, but it
cannot be applied to Direct. Early evaluation of non-recursive
joins worked well in general, producing a modest performance
improvement. Pushing duplicate elimination was generally
better than eliminating duplicates at the end of recursion. In
complete graphs pushing duplicate elimination proved to be
required to make the problem tractable. Cycle elimination
worked well in every case, but producing a marginal time
improvement. Pushing aggregation through recursion worked
well in every case. When all optimizations work together on a
complex query with selection, non-recursive joins and dupli-
cate elimination storage/indexing and early selection have the
most significant impact. From a time complexity perspective,
Seminaı̈ve scales linearly with respect to table size, whereas
Direct is superlinear. Seminaı̈ve showed linear scalability for
acyclic graphs for increasing recursion depth. Both algorithms
show exponential time growth with increasing recursion depth
for cyclic and complete graphs, highlighting a combinatorial
explosion of paths.

Important issues for future research include the following.
We plan to study recursive query optimization based on I/O
cost models. Early row selection needs to be studied for range
queries or when the filter condition cannot be evaluated in the
base step. Pushing duplicate elimination needs to be studied
in more depth since it an expensive computation and it can be
avoided in acyclic graphs. Non-recursive join evaluation needs
to be studied in more generality, with multiway joins, varying
external table size, larger records and more columns. Efficient
mechanisms are needed to detect queries that may produce an
infinite recursion.

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases : The
Logical Level. Pearson Education POD, facsimile edition, 1994.

[2] R. Agrawal, S. Dar, and H.V Jagadish. Direct and transitive closure
algorithms: Design and performance evaluation. ACM TODS, 15(3):427–
458, 1990.

[3] F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recur-
sive query processing strategies. In Proc. ACM SIGMOD Conference,
pages 16–52, 1986.

[4] S. Chaudhuri. An overview of query optimization in relational systems.
In Proc. ACM PODS Conference, pages 84–93, 1998.

[5] S. Dar and R. Agrawal. Extending SQL with generalized transitive
closure. IEEE Trans. Knowl. Eng., 5(5):799–812, 1993.

[6] G. Dong and J. Su. Incremental maintenance of recursive views using
relational calculus/SQL. ACM SIGMOD Record, 29(1):44–51, 2000.

[7] G. Graefe. Query evaluation techniques for large databases. ACM
Comput. Surv., 25(2):73–170, 1993.

[8] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by, cross-tab and sub-
total. In ICDE Conference, pages 152–159, 1996.

[9] J. Han and L.J. Henschen. Handling redundancy in the processing of
recursive database queries. In ACM SIGMOD Conference, pages 73–81,
1987.

[10] Y.E. Ioannidis, R. Ramakrishnan, and L. Winger. Transitive closure
algorithms based on graph traversal. ACM TODS, 18(3):512–576, 1993.

[11] K. Koymen and Q. Cai. SQL*: a recursive SQL. Inf. Syst., 18(2):121–
128, 1993.

[12] L. Libkin and L. Wong. Incremental recomputation of recursive queries
with nested sets and aggregate functions. In DBPL, pages 222–238,
1997.

[13] V. Linnemann. Non first normal form relations and recursive queries:
An SQL-based approach. In IEEE ICDE Conference, pages 591–598,
1987.

[14] I.S. Mumick, S.J. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic
is relevant. In ACM SIGMOD, pages 247–258, 1990.

[15] I.S. Mumick, S.J. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic
conditions. ACM TODS, 21(1):107–155, 1996.

[16] I.S. Mumick and H. Pirahesh. Implementation of magic-sets in a
relational database system. In ACM SIGMOD, pages 103–114, 1994.

[17] C. Ordonez. Optimizing recursive queries in SQL. In ACM SIGMOD
Conference, pages 834–839, 2005.

[18] R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. Imple-
mentation of the coral deductive database system. In ACM SIGMOD,
pages 167–176, 1993.

[19] R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. The
CORAL deductive system. VLDB J., 3(2):161–2120, 1994.

[20] S. Seshadri and J.F. Naughton. On the expected size of recursive datalog
queries. In ACM PODS Conference, pages 268–279, 1991.

[21] S. Sippu and E.S. Soininen. An analysis of magic sets and related
optimization strategies for logic queries. J. ACM, 43(6):1046–1088,
1996.

[22] J.D. Ullman. Implementation of logical query languages for databases.
ACM Trans. Database Syst., 10(3):289–321, 1985.

[23] P. Valduriez and H. Boral. Evaluation of recursive queries using join
indices. In Expert Database Systems, pages 271–293, 1986.

[24] M.Y. Vardi. Decidability and undecidability results for boundedness of
linear recursive queries. In ACM PODS Conference, pages 341–351,
1988.

[25] H.S. Warren. A modification of Warhsall’s algorithm for the transitive
closure of binary relations. CACM, 18(4):218–220, 1975.

[26] C. Youn, H. Kim, L.J. Henschen, and J. Han. Classification and
compilation of linear recursive queries in deductive databases. IEEE
TKDE, 4(1):52–67, 1992.

