
1

Bayesian Classifiers Programmed in SQL
Carlos Ordonez, Sasi K. Pitchaimalai

University of Houston
Houston, TX 77204, USA

Abstract—The Bayesian classifier is a fundamental classifica-
tion technique. In this work, we focus on programming Bayesian
classifiers in SQL. We introduce two classifiers: Naive Bayes and a
classifier based on class decomposition using K-means clustering.
We consider two complementary tasks: model computation and
scoring a data set. We study several layouts for tables and several
indexing alternatives. We analyze how to transform equations
into efficient SQL queries and we introduce several query opti-
mizations. We conduct experiments with real and synthetic data
sets to evaluate classification accuracy, query optimizations and
scalability. Our Bayesian classifier is more accurate than Naive
Bayes and decision trees. Distance computation is significantly
accelerated with horizontal layout for tables, denormalization and
pivoting. We also compare Naive Bayes implementations in SQL
and C++: SQL is about four times slower. Our Bayesian classifier
in SQL achieves high classification accuracy, can efficiently
analyze large data sets and has linear scalability.

I. INTRODUCTION

Classification is a fundamental problem in machine learning
and statistics [2]. Bayesian classifiers stand out for their robust-
ness, interpretability, and accuracy [2]. They are deeply related
to maximum likelihood estimation and discriminant analysis
[2], highlighting their theoretical importance. In this work
we focus on Bayesian classifiers considering two variants:
Naı̈ve Bayes [2] and a Bayesian classifier based on class
decomposition using clustering [7].

In this work we integrate Bayesian classification algorithms
into a DBMS. Such integration allow users to directly analyze
data sets inside the DBMS and to exploit its extensive capabili-
ties (storage management, querying, concurrency control, fault
tolerance, security). We use SQL queries as the programming
mechanism, since it is the standard language in a DBMS. More
importantly, using SQL eliminates the need to understand and
modify the internal source, which is a difficult task. Unfortu-
nately, SQL has two important drawbacks: it has limitations
to manipulate vectors and matrices and it has more overhead
than a systems language like C. Keeping those issues in mind,
we study how to evaluate mathematical equations with several
tables layouts and optimized SQL queries.

Our contributions are the following. We present two efficient
SQL implementations of Naı̈ve Bayes for numeric and discrete
attributes. We introduce a classification algorithm that builds
one clustering model per class, which is a generalization of K-
means [1], [4]. Our main contribution is a Bayesian classifier

Copyright 2010 IEEE. Published in Transactions on Knowledge and Data
Engineering (TKDE Journal).22(1)139-144, 2010. Personal use of this mate-
rial is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works, must be obtained from the IEEE.
http://doi.ieeecomputersociety.org/10.1109/TKDE.2009.127

programmed in SQL, extending Naı̈ve Bayes, which uses K-
means to decompose each class into clusters. We generalize
queries for clustering adding a new problem dimension. That
is, our novel queries combine three dimensions: attribute, clus-
ter and class subscripts. We identify Euclidean distance as the
most time-consuming computation. Thus we introduce several
schemes to efficiently compute distance considering different
storage layouts for the data set and classification model. We
also develop query optimizations that may applicable to other
distance-based algorithms. A horizontal layout of the cluster
centroids table and a denormalized table for sufficient statistics
are essential to accelerate queries. Past research has shown
the main alternatives to integrate data mining algorithms
without modifying DBMS source code are SQL queries and
User-Defined Functions (UDFs), being UDFs generally more
efficient [5]. We show SQL queries are more efficient than
UDFs for Bayesian classification. Finally, despite the fact that
C++ is a significantly faster alternative, we provide evidence
exporting data sets is a performance bottleneck.

The article is organized as follows. Section II introduces
definitions. Section III introduces two alternative Bayesian
classifiers in SQL. Section IV presents an experimental evalu-
ation on accuracy, optimizations and scalability. Related work
is discussed in Section V. Section VI concludes the paper.

II. DEFINITIONS

We focus on computing classification models on a data
set X = {x1, . . . , xn} with d attributes X1, . . . , Xd, one
discrete attribute G (class or target) and n records (points).
We assume G has m = 2 values. Data set X represents a
d× n matrix, where xi represents a column vector. We study
two complementary models: (1) each class is approximated by
a normal distribution or histograms; (2) fitting a mixture model
with k clusters on each class with K-means. We use subscripts
i, j, h, g as follows: i = 1 . . . n, j = 1 . . . k, h = 1 . . . d, g =
1 . . .m. The T superscript indicates matrix transposition.

Throughout the article we will use a small running example,
where d = 4, k = 3 (for K-means) and m = 2 (binary).

III. BAYESIAN CLASSIFIERS PROGRAMMED IN SQL
We introduce two classifiers: Naı̈ve Bayes (NB) and a

Bayesian Classifier based on K-means (BKM) that performs
class decomposition. We consider two phases for both classi-
fiers: (1) computing the model; (2) scoring a data set.

A. Naı̈ve Bayes
We consider two versions of NB: one for numeric attributes

and another for discrete attributes. Numeric NB will be im-
proved with class decomposition.

2

NB assumes attributes are independent and thus the joint
class conditional probability can be estimated as the product
of probabilities of each attribute [2]. We now discuss NB based
on a multivariate Gaussian. NB has no input parameters. Each
class is modeled as a single normal distribution with mean
vector Cg and a diagonal variance matrix Rg . Scoring assumes
a model is available and there exists a data set with the same
attributes in order to predict class G. Variance computation
based on sufficient statistics [5] in one pass can be numerically
unstable when the variance is much smaller compared to large
attribute values or when the data set has a mix of very large and
very small numbers. For ill-conditioned data sets the computed
variance can be significantly different from the actual variance
or even become negative. Therefore, the model is computed in
two passes: a first pass to get the mean per class and a second
one to compute the variance per class. The mean per class is
given by Cg =

∑
xi∈Yg

xi/Ng, where Yg ⊆ X are the records
in class g. Equation Rg = 1/Ng

∑n

xi∈Yg
(xi −Cg)(xi −Cg)

T

gives a diagonal variance matrix Rg , which is numerically
stable, but requires two passes over the data set.

The SQL implementation for numeric NB follows the mean
and variance equations introduced above. We compute three
aggregations grouping by g with two queries. The first query
computes the mean Cg of class g with a sum(Xh)/count(*)
aggregation and class priors πg with a count() aggregation.
The second query computes Rg with sum((Xh−µh)2). Notice
the joint probability computation is not done in this phase.
Scoring uses the Gaussian parameters as input to classify an
input point to the most probable class, with one query in
one pass over X . Each class probability is evaluated as a
Gaussian. To avoid numerical issues when a variance is zero
the probability is set to 1 and the joint probability is computed
with a sum of probability logarithms instead of a product of
probabilities. A CASE statement pivots probablities and avoid
a max() aggregation. A final query determines the predicted
class, being the one with maximum probability, obtained with
a CASE statement.

We now discuss NB for discrete attributes. For numeric NB
we used Gaussians because they work well for large data sets
and because they are easy to manipulate mathematically. That
is, NB does not assume any specific probability density func-
tion (pdf). Assume X1, . . . , Xd can be discrete or numeric. If
an attribute Xh is discrete (categorical) NB simply computes
its histogram: probabilities are derived with counts per value
divided by the corresponding number of points in each class.
Otherwise, if the attribute Xh is numeric then binning is
required. Binning requires two passes over the data set, pretty
much like numeric NB. In the first pass bin boundaries are
determined, On the second pass one-dimensional frequency
histograms are computed on each attribute. The bin boundaries
(interval ranges) may impact the accuracy of NB due to
skewed distributions or extreme values. Thus we consider two
techniques to bin attributes: (1) creating k uniform intervals
between min and max; (2) taking intervals around the mean
based on multiples of the standard deviation, getting more
evenly populated bins. We do not study other binning schemes
such as quantiles (i.e. equidepth binning).

The implementation in SQL of discrete NB is straightfor-
ward. For discrete attributes no preprocessing is required. For
numeric attributes the minimum, maximum and mean can
be determined in one pass in a single query. The variance
for all numeric attributes is computed on a second pass to
avoid numerical issues. Then each attribute is discretized
finding the interval for each value. Once we have a binned
version of X then we compute histograms on each attribute
with SQL aggregations. Probabilities are obtained dividing
by the number of records in each class. Scoring requires
determining the interval for each attribute value and retrieving
its probability. Each class probability is also computed by
adding logarithms. NB has an advantage over other classifiers:
it can handle a data set with mixed attribute types (i.e. discrete
and numerical).

B. Bayesian Classifier based on K-means

We now present BKM, a Bayesian classifier based on class
decomposition obtained with the K-means algorithm. BKM is
a generalization of NB, where NB has one cluster per class and
the Bayesian classifier has k > 1 clusters per class. For ease of
exposition and elegance we use the same k for each class, but
we experimentally show it is a sound decision. We consider
two major tasks: model computation and scoring a data set
based on a computed model. The most time-consuming phase
is building the model. Scoring is equivalent to an E step from
K-means executed on each class.

Mixture Model and Decomposition Algorithm

We fit a mixture of k clusters to each class with K-means
[4]. The output are priors π (same as NB), mk weights
(W), mk centroids (C) and mk variance matrices (R). We
generalize NB notation with k clusters per class g with
notation g : j, meaning the given vector or matrix refers to jth
cluster from class g. Sums are defined over vectors (instead
of variables). Class priors are analogous to NB: πg = Ng/n.

We now introduce sufficient statistics in the generalized
notation. Let Xg:j represent partition j of points in class g
(as determined by K-means). Then L, the linear sum of points
is: Lg:j =

∑
xi∈Xg:j

xi, and the sum of “squared” points for
cluster g : j becomes: Qg:j =

∑
xi∈Xg:j

xix
T
i . Based on L, Q

the Gaussian parameters per class g are:

Cg:j =
1

Ng:j

Lg:j , (1)

Rg:j =
1

Ng:j

Qg:j −
1

(Ng:j)2
Lg:j(Lg:j)

T . (2)

We generalize K-means to compute m models, fitting a
mixture model to each class. K-means is initialized and then
it iterates until it converges on all classes. The algorithm is:

Initialization:
1) Get global N, L, Q and µ, σ.
2) Get k random points per class to initialize C.
While not all m models converge:

3

TABLE I
BKM TABLES.

Table Content PK non-key columns
XH Normalized data i g,X1, . . . , Xd

CH Centroids g C11, C12, . . . , Cdk

XD distances i, g d1, . . . , dk

XN nearest cluster i, g j
NLQ Suff. stats. g, j Ng , L1, . . . , Ld,Q1, . . . ,Qd

WCR mixture model g, j prior,C1 , . . . , Cd, R1, . . . , Rd

XP prob. per cluster i, g p1, . . . , pk

XC predicted class i g
MQ model quality, Ng -

1) E step:
get k distances j per g; find nearest cluster j per g;
update N, L, Q per class.

2) M step:
update W, C, R from N, L, Q per class;
compute model quality per g; monitor convergence.

For scoring, in a similar manner to NB, a point is assigned
to the class with highest probability. In this case this means
getting the most probable cluster based on mk Gaussians. The
probability gets multiplied by the class prior by default (under
the common Bayesian framework), but it can be ignored for
imbalanced classification problems.

Bayesian Classifier programmed in SQL

Based on the mathematical framework introduced in the
previous section we now study how to create an efficient
implementation of BKM in SQL.

Table I provides a summary of all working tables used
by BKM. In this case the tables for NB are extended
with the j subscript and since there is a clustering al-
gorithm behind we introduce tables for distance computa-
tion. Like NB, since computations require accessing all at-
tributes/distances/probabilities for each point at one time tables
have a physical organization that stores all values for point i
on the same address and there is a primary index on i for
efficient hash join computation. In this manner, we force the
query optimizer to perform n I/Os instead of the actual number
of rows. This storage and indexing optimization is essential for
all large tables having n or or more rows.

This is a summary of optimizations. There is a single set
of tables for the classifier: all m models are updated on the
same table scan; this eliminates the need to create multiple
temporary tables. We introduce a fast distance computation
mechanism based on a flattened version of the centroids; tem-
porary tables have less rows. We use a CASE statement to get
closest cluster avoiding the use of standard SQL aggregations;
a join between two large tables is avoided. We delete points
from classes whose model has converged; the algorithm works
with smaller tables as models converge.

Model Computation

Table CH is initialized with k random points per class; this
initialization requires building a stratified sample per class.

The global variance is used to normalize X to follow
a N(0, 1) pdf. The global mean and global variance are

TABLE II
QUERY OPTIMIZATION: DISTANCE COMPUTATION.

Distance scheme I/Os
Completely horizontal n
Horizontal (default) 2n
Horizontal temp 2kn + 2n
Horizontal nested query 2kn + 2n
Hybrid vertical dn
Vertical dkn

derived as in NB. In this manner K-means computes Euclidean
distance with all attributes being on the same relative scale.
The normalized data set is stored in table XH, which also has
n rows. BKM uses XH thereafter at each iteration.

We first discuss several approaches to compute distance for
each class. Based on these approaches we derive a highly ef-
ficient scheme to compute distance. The following statements
assume the same k per class.

The simplest way, but inefficient, way to compute distances
is to create pivoted versions of X and C having one value per
row. Such table structure enables the usage of SQL standard
aggregations (e.g. sum(), count()). Evaluating a distance query
involves creating a temporary table with mdkn rows, which
will be much larger than X . Since the vertical variant is
expected to be the slowest it is not analyzed in the experi-
mental section. Instead, we use a hybrid distance computation
in which we have k distances per row. We start by considering
a pivoted version of X called XV . The corresponding SQL
query computes k distances per class using an intermediate
table having dn rows. We call this variant hybrid vertical.

We consider a horizontal scheme to compute distances.
All k distances per class are computed as SELECT terms.
This produces a temporary table with mkn rows. Then the
temporary table is pivoted and aggregated to produce a table
having mn rows but k columns. Such layout enables efficient
computation of the nearest cluster in a single table scan.
The query optimizer decides which join algorithm to use and
does not index any intermediate table. We call this approach
nested horizontal. We introduce a modification to the nested
horizontal approach in which we create a primary index on
the temporary distance table in order to enable fast join
computation. We call this scheme horizontal temporary.

We introduce a yet more efficient scheme to get distance
using a flattened version of C which we call CH , that has dk
columns corresponding to all k centroids for one class. The
SQL code pairs each attribute from X with the corresponding
attribute from the cluster. Computation is efficient because CH
has only m rows and the join computes a table with n rows
(for building the model) or mn rows for scoring. We call
this approach the horizontal approach. There exists yet another
”completely horizontal” approach in which all mk distances
are stored on the same row for each point and C has only one
row but mdk columns (or m tables, with dk columns each).
Table II shows expected I/O cost.

The following SQL statement computes k distances for each
point, corresponding to the gth model. This statement is also
used for scoring and therefore it is convenient to include g.

INSERT INTO XD

4

SELECT i,XH.g ,(X1-C1_X1)**2 + .. +(X4-C1_X4)**2,
..,(X1-C3_X1)**2 + .. +(X4-C3_X4)**2

FROM XH,CH WHERE XH.g=CH.g;

We also exploited UDFs which represent an extensibility
mechanism [8] provided by the DBMS. UDFs are programmed
in the fast C language and they can take advantage of arrays
and flow control statements (loops, if-then). Based on this
layout we developed a UDF which receives Cg as parameter
and can internally manipulate it as a matrix. The UDF is called
mn times and it returns the closest cluster per class. That
is, the UDF computes distances and determines the closest
cluster. In the experimental section we will study which is
the most efficient alternative between SQL and the UDF. A
big drawback about UDFs is that they are dependent on the
database system architecture. Therefore, they are not portable
and optimizations developed for one database system may not
work well in another one.

At this point we have computed k distances per class
and we need to determine the closest cluster. There are two
basic alternatives: pivoting distances and using SQL standard
aggregations, using case statements to determine the minimum
distance. For the first alternative XD must be pivoted into a
bigger table. Then the minimum distance is determined using
the min() agregation. The closest cluster is the subscript of
the minimum distance, which is determined joining XH . In
the second alternative we just need to compare every distance
against the rest using a CASE statement. Since the second
alternative does not use joins and is based on a single table
scan it is much faster than using a pivoted version of XD.
The SQL to determine closest cluster per class for our running
example is below. This statement can also used for scoring.

INSERT INTO XN SELECT i,g
,CASE WHEN d1<=d2 AND d1<=d3 THEN 1

WHEN d2<=d3 THEN 2
ELSE 3 END AS j

FROM XD;

Once we have determined the closest cluster for each point
on each class, we need to update sufficient statistics, which are
just sums. This computation requires joining XH and XN and
partitioning points by class and cluster number. Since table
NLQ is denormalized the jth vector and the jth matrix are
computed together. The join computation is demanding since
we are joining two tables with O(n) rows. For BKM it is
unlikely variance can have numerical issues, but feasible. In
such case sufficient statistics are substituted by a two pass
computation like NB.

INSERT INTO NLQ SELECT XH.g,j
,sum(1.0) as Ng
,sum(X1) , .. ,sum(X4) /* L */
,sum(X1**2) , .. ,sum(X4**2) /* Q*/

FROM XH,XN WHERE XH.i=XN.i GROUP BY XH.g,j;

We now discuss the M step to update W, C, R. Computing
WCR from NLQ is straightforward since both tables have the
same structure and they are small. There is a Cartesian product
between NLQ and the model quality table, but this latter
table has only one row. Finally, to speedup computations we
delete points from XH for classes whose model has converged:
a reduction in size is propagated to the nearest cluster and

sufficient statistics queries.
INSERT INTO WCR SELECT

NLQ.g,NLQ.j
,Ng/MODEL.n /* pi */
,L1/Ng, ..,L4/Ng /* C */
,Q1/Ng-(L1/Ng)**2,..,Q4/Ng-(L4/Ng)**2 /* R */

FROM NLQ,MODEL WHERE NLQ.g=MODEL.g;

Scoring

We consider two alternatives: based on probability (default)
or distance. Scoring is similar to the E step, but there are
differences. First, the new data set must be normalized with the
original variance used to build the model. Such variance should
be similar to the variance of the new data set. Second, we need
to compute mk probabilities (distances), instead of only k dis-
tances because we are trying to find the most probable (closest)
cluster among all (this is a subtle, but important difference in
SQL code generation); The join condition between XH and
CH gets eliminated. Third, once we have mk probabilities
(distances) we need to pick the maximum (minimum) one
and then the point is assigned to the corresponding cluster.
To have a more elegant implementation we predict the class
in two stages: we first determine the most probable cluster per
class and then we compare the probabilities of such clusters.
Column XH.g is not used for scoring purposes, but it is used
to measure accuracy, when known.

IV. EXPERIMENTAL EVALUATION

We analyze three majors aspects: (1) classification accuracy,
(2) query optimization, (3) time complexity and speed. We
compare accuracy of NB, BKM and decision trees (DT).

A. Setup

We used the Teradata DBMS running on a server with a 3.2
GHz CPU, 2 GB of RAM and a 750 GB disk.

Parameters were set as follows. We set ε = 0.001 for K-
means. The number of clusters per class was k = 4 (setting
experimentally justified). All query optimizations were turned
on by default (they do not affect model accuracy). Experiments
with DTs were performed using a data mining tool.

We used real data sets to test classification accuracy (from
the UCI repository) and synthetic data sets to analyze speed
(varying d, n). Real data sets include pima (d = 6, n = 768),
spam (d = 7, n = 4601), bscale (d = 4, n = 625), wbcancer
(d = 7, n = 569). Categorical attributes (≥ 3 values) were
transformed into binary attributes.

B. Model Accuracy

In this section we measure the accuracy of predictions when
using Bayesian classification models. We used 5-fold cross-
validation. For each run the data set was partitioned into a
training set and a test set. The training set was used to compute
the model, whereas the test set was used to independently
measure accuracy. The training set size was 80% and the test
set was 20%. BKM ran until K-means converged on all classes.
Decision tress (DTs) used the CN5.0 algorithm splitting nodes
until they reached a minimum percentage of purity or became

5

TABLE III
ACCURACY VARYING k.

Dataset k = 2 k = 4 k = 6 k = 8 k = 16

pima 72% 74% 72% 71% 75%
spam 75% 75% 64% 72% 52%
bscale 55% 59% 56% 60% 65%
wbcancer 93% 92% 93% 92% 89%

TABLE IV
COMPARING ACCURACY: NB, BKM AND DT.

Dataset Algorithm Global Class-0 Class-1
pima NB 76% 80% 68%

BKM 76% 87% 53%
DT 68% 76% 53%

spam NB 70% 87% 45%
BKM 73% 91% 43%
DT 80% 85% 72%

bscale NB 50% 51% 30%
BKM 59% 59% 60%
DT 89% 96% 0%

wbcancer NB 93% 91% 95%
BKM 93% 84% 97%
DT 95% 94% 96%

too small. Pruning was applied to reduce overfit. The number
of clusters for BKM by default was k = 4.

The number of clusters (k) is the most important parameter
to tune BKM accuracy. Table III shows accuracy behavior
as k increases. A higher k produces more complex models.
Intuitively, a higher k should achieve higher accuracy because
each class can be better approximated with localized clusters.
On the other hand, a higher k than necessary can lead to empty
clusters. As can be seen a lower k produces better models
for spam and wbcancer, whereas a higher k produces higher
accuracy for pima and bscale. Therefore, there is no ideal
setting for k, but in general k ≤ 20 produces good results.
Based on these results we set k = 4 by default since it provides
reasonable accuracy for all data sets.

Table IV compares the accuracy of the three models, in-
cluding the overall accuracy as well as a breakdown per class.
Accuracy per predicted class is important to understand issues
with imbalanced classes and detecting subsets of highly similar
points. In practice one class is generally more important than
the other one (asymmetric), depending if the classification task
is to minimize false positives or false negatives. This is a
summary of findings. First of all, considering global accuracy
BKM is better than NB on two data sets and becomes tied
with the other two data sets. On the other hand, compared to
decision trees it is better in one case and worse otherwise. NB
follows the same pattern, but showing a wider gap. However, it
is important to understand why BKM and NB perform worse
than DT in some cases, looking at the accuracy breakdown. In
this case, BKM generally does better than NB, except in two
cases. Therefore, class decomposition does increase prediction
accuracy. On the other hand, compared to decision trees, in all
cases where BKM is less accurate than DT on global accuracy
BKM has higher accuracy on one class. In fact, on closer look
it can be seen that DT completely misses prediction for one
class for the bscale data set. That is, global accuracy for DT is
misleading. We conclude that BKM performs better than NB
and it is competitive with DT.

TABLE V
QUERY OPTIMIZATION: DISTANCE COMPUTATION n = 100K (SECS).

d = 8 d = 16

Distance scheme k = 8 k = 16 k = 8 k = 16

Horizontal 2 7 2 7
Horizontal temp 80 211 99 225
Horizontal nested q. 201 449 311 544
Hybrid Vertical 84 155 146 155

TABLE VI
QUERY OPTIMIZATION: SQL VERSUS UDF (SCORING, n = 1M).

d = 4 d = 8

k SQL UDF SQL UDF
2 23 36 34 61
4 31 47 42 71
6 40 55 61 85
8 56 62 66 111

C. Query Optimization

Table V provides detailed experiments on distance compu-
tation, the most demanding computation for BKM. Our best
distance strategy is two orders of magnitude faster than the
worst strategy and it is one order of magnitude faster than
its closest rival. The explanation is that I/O is minimized to n
operations and computations happen in main memory for each
row through SQL arithmetic expressions. Notice a standard
aggregation on the pivoted version of X (XV) is faster than
the horizontal nested query variant.

Table VI compares SQL with UDFs to score the data set
(computing distance and finding nearest cluster per class). We
exploit scalar UDFs [5]. Since finding the nearest cluster is
straightforward in the UDF this comparison considers both
computations as one. This experiment favors the UDF since
SQL requires accessing large tables in separate queries. As
we can see SQL (with arithmetic expressions) turned out
be faster than the UDF. This was interesting because both
approaches used the same table as input and performed the
same I/O reading a large table. We expected SQL to be slower
because it required a join and XH and XD were accessed. The
explanation was that the UDF has overhead to pass each point
and model as parameters in each call.

D. Speed and Time Complexity

We compare SQL and C++ running on the same computer.
We also compare the time to export with ODBC. C++ worked
on flat files exported from the DBMS. We used binary files
in order to get maximum performance in C++. Also, we
shut down the DBMS when C++ was running. In short, we
conducted a fair comparison. Table VII compares SQL, C++
and ODBC varying n. Clearly, ODBC is a bottleneck. Overall,

TABLE VII
COMPARING SQL, C++ AND ODBC WITH NB (d = 4). TIMES IN SECS.

n × 1M SQL C++ ODBC
1 10 2 510
2 19 5 1021
4 37 9 2041
8 76 18 4074

16 119 36 *

6

0

50

100

150

200

0 400 800 1200 1600

T
im

e
 i
n
 s

e
c
o
n
d
s

n x 1k

Time varying n

Varying n

0

10

20

30

40

50

0 16 32 48 64

T
im

e
 i
n
 s

e
c
o
n
d
s

d

Time varying d

Varying d

Fig. 1. BKM Classifier: Time complexity; (d = 4, k = 4, n = 100k).

both languages scale linearly. We can see SQL performs better
as n grows because DBMS overhead becomes less important.
However, C++ is about four times faster.

Figure 1 shows BKM time complexity varying n, d with
large data sets. Time is measured for one iteration. BKM is
linear in n and d, highlighting its scalability.

V. RELATED WORK

The most widely used approach to integrate data mining
algorithms into a DBMS is to modify the internal source
code. Scalable K-means (SKM) [1] and O-cluster [3] are
two examples of clustering algorithms internally integrated
with a DBMS. A discrete Naive Bayes classifier, has been
internally integrated with the SQL Server DBMS. On the
other hand, the two main mechanisms to integrate data mining
algorithms without modifying the DBMS source code are
SQL queries and UDFs. A discrete Naı̈ve Bayes classifier
programmed in SQL is introduced in [6]. We summarize
differences with ours. The data set is assumed to have discrete
attributes: binning numeric attributes is not considered. It uses
an inefficient large pivoted intermediate table, whereas our
discrete NB model can directly work on a horizontal layout.
Our proposal extends clustering algorithms in SQL [4] to
perform classification, generalizing Naı̈ve Bayes [2]. K-means
clustering was programmed with SQL queries introducing
three variants [4]: standard, optimized and incremental. We
generalized the optimized variant. Notice classification rep-
resents a significantly harder problem than clustering. User-
Defined Functions (UDFs) are identified as an important exten-
sibility mechanism to integrate data mining algorithms [5], [8].
ATLaS [8] extends SQL syntax with object-oriented constructs
to define aggregate and table functions (with initialize, iterate
and terminate clauses), providing a user-friendly interface to
the SQL standard. We point out several differences with our
work. First, we propose to generate SQL code from a host
language, thus achieving Turing-completeness in SQL (similar
to embedded SQL). We showed the Bayesian classifier can
be solved more efficiently with SQL queries than with UDFs.
Even further, SQL code provides better portability and ATLaS
requires modifying the DBMS source code. Class decomposi-
tion with clustering is shown to improve NB accuracy [7]. The
classifier can adapt to skewed distributions and overlapping
subsets of points by building better local models. In [7] EM
was the algorithm to fit a mixture per class. Instead, we

decided to use K-means because it is faster, simpler, better
understood in database research and has less numeric issues.

VI. CONCLUSIONS

We presented two Bayesian classifiers programmed in SQL:
the Naı̈ve Bayes (NB) classifier (with discrete and numeric
versions) and a generalization of Naı̈ve Bayes (BKM), based
on decomposing classes with K-means clustering. We studied
two complementary aspects: increasing accuracy and gener-
ating efficient SQL code. We introduced query optimizations
to generate fast SQL code. The best physical storage layout
and primary index for large tables is based on the point sub-
script. Sufficient statistics are stored on denormalized tables.
Euclidean distance computation uses a flattened (horizontal)
version of the cluster centroids matrix, which enables arith-
metic expressions. The nearest cluster per class, required by
K-means, is efficiently determined avoiding joins and aggrega-
tions. Experiments with real data sets compared NB, BKM and
decision trees. The numeric and discrete versions of NB had
similar accuracy. BKM was more accurate than NB and was
similar to decision trees in global accuracy. However, BKM
was more accurate when computing a breakdown of accuracy
per class. A low number of clusters produced good results in
most cases. We compared equivalent implementations of NB in
SQL and C++ with large data sets: SQL was four times slower.
SQL queries were faster than UDFs to score, highlighting
the importance of our optimizations. NB and BKM exhibited
linear scalability in data set size and dimensionality.

There are many opportunities for future work. We want
to derive incremental versions or sample-based methods to
accelerate the Bayesian classifier. We want to improve our
Bayesian classifier to produce more accurate models with
skewed distributions, data sets with missing information and
subsets of points having significant overlap with each other,
which are known issues for clustering algorithms. We are
interested in combining dimensionality reduction techniques
like PCA or factor analysis with Bayesian classifiers. UDFs
need further study to accelerate computations and evaluate
complex mathematical equations.

REFERENCES

[1] P. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to
large databases. In Proc. ACM KDD Conference, pages 9–15, 1998.

[2] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical
Learning. Springer, New York, 1st edition, 2001.

[3] B.L. Milenova and M.M. Campos. O-cluster: Scalable clustering of large
high dimensional data sets. In Proc. IEEE ICDM conference, page 290,
Washington, DC, USA, 2002. IEEE Computer Society.

[4] C. Ordonez. Integrating K-means clustering with a relational DBMS using
SQL. IEEE Transactions on Knowledge and Data Engineering (TKDE),
18(2):188–201, 2006.

[5] C. Ordonez. Building statistical models and scoring with UDFs. In Proc.
ACM SIGMOD Conference, pages 1005–1016, 2007.

[6] S. Thomas and M.M. Campos. SQL-based Naive Bayes model building
and scoring. US Patent and Trade Office, US Patent 7051037, 2006.

[7] R. Vilalta and I. Rish. A decomposition of classes via clustering to explain
and improve Naive Bayes. In Proc. ECML Conference, pages 444–455,
2003.

[8] H. Wang, C. Zaniolo, and C.R. Luo. ATLaS: A small but complete SQL
extension for data mining and data streams. In Proc. VLDB Conference,
pages 1113–1116, 2003.

