
1

Statistical Model Computation with UDFs
Carlos Ordonez

University of Houston
Houston, TX 77204, USA

Abstract—Statistical models are generally computed outside
a DBMS due to their mathematical complexity. We introduce
techniques to efficiently compute fundamental statistical models
inside a DBMS exploiting User-Defined-Functions (UDFs). We
study the computation of linear regression, PCA, clustering
and Naive Bayes. Two summary matrices on the data set are
mathematically shown to be essential for all models: the linear
sum of points and the quadratic sum of cross-products of points.
We consider two layouts for the input data set: horizontal and
vertical. We first introduce efficient SQL queries to compute
summary matrices and to score the data set. Based on the SQL
framework, we introduce UDFs that work in a single table scan:
aggregate UDFs to compute summary matrices for all models and
a set of primitive scalar UDFs to score data sets. Experiments
compare UDFs and SQL queries (running inside the DBMS) with
C++ (analyzing exported files). In general, UDFs are faster than
SQL queries and not much slower than C++. Considering export
times, C++ is slower than UDFs and SQL queries. Statistical
models based on precomputed summary matrices are computed
in a few seconds. UDFs scale linearly and only require one table
scan, highlighting their efficiency.

Index terms: DBMS; SQL; statistical model; UDF

I. INTRODUCTION

Data mining research on analyzing large data sets is ex-
tensive, but most work has proposed efficient algorithms and
techniques that work outside the DBMS on flat files. Well-
known data mining techniques include association rules [13],
[18] clustering [20] and decision trees [6], among others.
The problem of integrating data mining techniques with a
DBMS [11], [17] has received scant attention due to their
mathematical nature and DBMS software complexity. Thus in
a modern database environment, users generally export data
sets to a statistical or data mining tool [12] and perform
most or all of the analysis outside the DBMS. SQL has been
used as a mechanism to integrate data mining algorithms [17]
since it is the standard language in relational DBMSs, but
unfortunately it has limitations to perform complex matrix
operations, as required by statistical models. Some statistical
tools (e.g. SAS) can directly score data sets by generating SQL
queries, but they are mathematically limited [4]. In this work,
we show UDFs represent a promising alternative to extend the
DBMS with multidimensional statistical models.

The statistical models studied in this work include linear
regression [6], principal component analysis (PCA) [6], factor

Copyright 2010 IEEE. Published in Transactions on Knowledge and Data
Engineering (TKDE Journal).22(12):1752-1765,2010. Personal use of this
material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works, must be obtained from the IEEE.
http://doi.ieeecomputersociety.org/10.1109/TKDE.2010.44

analysis [6], clustering [11] and Naive Bayes [6]. These
models are widely used and cover the whole spectrum of
unsupervised and supervised techniques. UDFs are a standard
Application Programming Interface (API) available in modern
DBMSs. In general, UDFs are developed in the C language
(or similar language), compiled to object code and efficiently
executed inside the DBMS like any other SQL function. Thus
UDFs represent an outstanding alternative to extend a DBMS
with statistical models, exploiting the C language flexibility
and speed. Therefore, there is no need to change SQL syntax
with new data mining primitives or clauses, making UDF
implementation and usage easier. The UDFs proposed in this
article can be programmed on any DBMS supporting scalar
and aggregate UDFs.

The article is organized as follows. Section II provides
definitions and an overview of UDFs. Section III introduces
techniques to compute statistical models and score data sets
with UDFs in one pass over the data set, considering two
layouts for the input data set. Section IV presents experiments
comparing UDFs, SQL and C++, showing exporting a data set
is a bottleneck, evaluating UDF optimizations and analyzing
time complexity. Section V discusses and compares related
work. Conclusions are presented in Section VI.

II. PRELIMINARIES

A. Definitions
The article focuses on the computation of multidimensional

(multivariate) statistical models on a d-dimensional data set.
Let X = {x1, . . . , xn} be a data set having n points, where
each point has d dimensions; X is equivalent to a d × n
matrix, where xi represents a column vector. Entry Xli is
the lth dimension from xi. For predictive models, X has an
additional “target” attribute. This attribute can be a numeric
dimension Y (used for linear regression) or a categorical
attribute G (used for classification) with m distinct values. To
avoid confusion we use i = 1 . . . n as a subscript for points and
h, a, b as dimension subscripts. The j subscript refers to the
jth component (factor) of a PCA model or the jth component
(cluster) of a mixture model, whose range is j = 1 . . . k.
The g subscript takes values 1 . . .m, all the potential values
of the categorical attribute G. The T superscript indicates
matrix transposition, which is generally used to make matrices
compatible for multiplication. We discuss terminology in other
scientific disciplines. In multivariate statistics the attributes
from a data set are called “variables”, whereas in machine
learning the term “feature” is preferred. In databases the term
“dimension” is common. Therefore, dimension is the term
used throughout this article. To simplify notation, Σ without
subscript means the sum is computed over all rows i = 1 . . . n.

2

In a DBMS the data set X is stored on a table with an
extra column i identifying the point (e.g. customer id), which
is not used for statistical purposes. We consider two layouts
for X : horizontal and vertical, with tables XH and XV . Table
XH is defined as XH(i, X1, X2, . . . , Xd) with primary key i.
When there is a predicted numeric dimension Y , X is defined
as XH(i, X1, X2, . . . , Xd, Y) and when there is a categorical
attribute G, X is defined as XH(i, X1, X2, . . . , Xd, G). In
the vertical layout, XV schema is XV (i, h, val); if there is
a predicted class G then XV has four columns. Statistical
models are stored in tables as well, following similar layouts
(either d columns or one value per row).

B. User-Defined Functions

Our proposal can work on any DBMS supporting aggregate
and scalar UDFs. UDFs are programmed in a high-level
programming language (like C or C++) and can be called in
a “SELECT” statement, like any other SQL function. There
are two main classes of UDFs: (1) Scalar, that take one or
more parameter values and return a single value, producing
one value for each input row. (2) Aggregate, which work like
standard SQL aggregate functions. They return one row for
each distinct grouping of column value combinations and a
column with some aggregation (e.g. “sum()”). We focus on
aggregate UDFs to accelerate model computation.

UDFs provide several important advantages. There is no
need to modify internal DBMS code, which allows end-users
to extend the DBMS with data mining functionality. UDFs are
programmed in a traditional programming language and once
compiled they can be used in any “SELECT” statement, like
other SQL functions. The UDF source code can exploit the
flexibility and speed of the C programming language. UDFs
work in main memory; this is a fundamental feature to reduce
disk I/O and decrease processing time. UDFs are automatically
executed in parallel taking advantage of the multithreaded
capabilities of the DBMS. This is an advantage, but also a
constraint because code must be developed accordingly. On the
other hand, UDFs have important constraints and limitations.
UDFs cannot perform any I/O operation, which is a constraint
to protect internal storage. In general, UDFs can only return
one value of a simple data type. That is, they cannot return a
vector or a matrix. Currently, UDF parameters in most DBMSs
can be only of simple types (e.g. numbers or strings); array
support is limited or not available. Scalar functions cannot
keep values in main memory while the DBMS scans multiple
rows, which means the function can only keep temporary
variables in stack memory. In contrast, aggregate functions can
keep variables in heap memory as a table is scanned. UDFs
cannot access memory outside their allocated heap memory or
stack memory. The amount of memory that can be allocated is
somewhat low. Finally, UDFs are not portable, but their code
can be easily rewritten across DBMSs.

III. EFFICIENT MODEL COMPUTATION WITH UDFS

Our main contributions are presented in this section. We
start by studying matrix computations on large data sets to
compute statistical models. We identify demanding matrix

computations that are common for all techniques. We show
two matrices are common for all statistical models, effectively
summarizing a large data set. We carefully study alternatives
to compute such summary matrices with SQL queries. Then
using SQL queries as framework, we present efficient aggre-
gate UDFs that compute summary matrices in one table scan.
We also introduce scalar UDFs to score a data set, which is
a less technically challenging, but still important, aspect. The
section ends with a time complexity and I/O cost analysis.

A. Statistical Models

Five fundamental statistical techniques are considered: cor-
relation analysis, linear regression, principal component anal-
ysis (PCA), Naive Bayes and clustering. These techniques
are widely used in statistics and data mining. Therefore, it
is important to integrate them with a relational DBMS.

Linear Correlation

The correlation matrix [19] is not a model, but it is used
as the basic input for many models. A fundamental technique
used to understand linear relationships between pairs of di-
mensions (variables) is correlation analysis. All the following
sums are calculated over i and therefore i is omitted to simplify
equations. The Pearson correlation coefficient [19] between
dimensions a and b is given by

ρab =
n

∑

xaixbi −
∑

xai

∑

xbi
√

n
∑

(xai)2 − (
∑

xai)2
√

n
∑

(xbi)2 − (
∑

xbi)2

Linear regression

We extend the definitions given in Section II-A. The general
linear regression model [6] assumes a linear relationship
between p independent numeric variables from X and a
dependent numeric variable Y : Y = βT X + β0, where Y
is a 1 × n matrix, β0 is the Y intercept and β is the vector
of regression coefficients [β1, β2, . . . , βp]. To allow easier
mathematical manipulation it is customary to extend β with
the intercept β0 and X with X0 = 1. Then X becomes a
(p+1)×n matrix. Then the linear regression equation becomes

Y = βT X, (1)

where β is unknown. The solution by the minimum least
squares method [6] is: β = (XXT)−1XY T .

The most important partial computation is XXT that ap-
pears as a term for β. This matrix is analogous to the one
used in correlation analysis, but in this case XXT is a
(p+1)× (p+1) matrix. However, this product does not solve
all computations. After computing XXT we need to invert
it and multiply it by X : (XXT)−1X . Instead, since matrix
multiplication is associative we can multiply X by Y T first:
XY T which produces a (p + 1) × 1 matrix. Then we can
multiply the final matrix as a product of a (p + 1) × (p + 1)
matrix and a (p + 1) × 1 matrix: β = (XXT)−1(XY T).
We use parentheses to change the order of evaluation. Matrix
inversion and matrix multiplication are problems that can be
solved with a math library.

3

When β has been computed the predicted value of Y can
be estimated as Ŷ = βT X. This computation will produce
a 1× n matrix. The variance-covariance matrix of the model
parameters, which is used to evaluate error, is obtained with:

var(β) =
(XXT)−1

∑n

i=1
(yi − ŷi)

2

n− p− 1
(2)

We can again reuse XXT to compute the first term. The
second term

∑n

i=1
(yi − ŷi)

2 can be easily computed in SQL
since it is just a sum of squared differences.

Equations only require matrix computations. Inverting a
matrix is not straightforward to compute in SQL. Let Z be a
d×n matrix that has the p+1 dimensions from X (including
the 1s to be multiplied by β0) and Y (i.e. d = p + 2). Then
Z contains the two matrices with n rows spliced together.
Z = (X, Y). Therefore, the product ZZT , has the nice
property of being able to derive XXT and XY T . There are
other regression model statistics that are easily derived from
XXT , Y , β and Ŷ .

PCA and Factor Analysis

Dimensionality reduction techniques build a new data set
that has similar statistical properties, but fewer dimensions
than the original data set. Principal Component Analysis
(PCA) [6] is the most popular technique to perform dimension-
ality reduction. PCA is complemented by Factor Analysis (FA)
[6], which fits a probabilistic distribution to the covariance
matrix of X . In PCA the goal is to solve:

XXT = US2UT , (3)

where U contains d eigenvectors and the diagonal matrix
S contains d eigenvalues. The output of PCA and FA is
a d × k dimensionality reduction matrix Λ, where k < d
with those eigenvectors whose eigenvalue is above a threshold
(typically 1). Matrix Λ is orthogonal: ΛΛT = Id, meaning
each component vector is statistically independent. PCA and
FA compute components (factors) from the correlation matrix
and the covariance matrix, effectively centering X at its mean
µ. The correlation matrix leaves dimensions in the same
scale, whereas the covariance matrix maintains dimensions
in their original scale. PCA typically is typically solved with
Singular Value Decomposition (SVD). Maximum likelihood
(ML) factor analysis [6] uses an Expectation-Maximization
(EM) algorithm [6] to get factors. In short, both techniques
can work directly with a d× d matrix derived from X .

Naive Bayes Classifier

We now introduce the well-known Naive Bayes classifier,
widely used in machine learning and statistics [6]. Consider
the data set X extended with the predicted attribute G. The
goal is to predict G based on X1, . . . , Xd. In our following
discussion subscript g can take any of all m potential values
from the predicted attribute G. A class probability is computed
as the product of class priors multiplied by a probability
distribution function (pdf). Class priors are commonly esti-
mated with class proportions and they represent the classifier
sensitivity to each class.

The class probability function is estimated by the product of
marginal probabilities, based on the dimension (variable) in-
dependence assumption [6], which makes mathematical treat-
ment easier. As mentioned above, we consider a parametric
model based on the Gaussian distribution, where each marginal
probability is computed as

p(x) =
1√

2πσ2
exp[− (x− µ)2

2σ2
] (4)

The joint probability of vector x is

p(x) = Πhp(xh). (5)

The predicted class c is that one with highest probability
[6] multiplying by class priors, giving the same weight to all
incorrect classifications:

p(c|x) = maxgπgp(g|x). (6)

Such model is commonly called a Bayesian classifier and
it classifies each point to the most probable class, using the
conditional distribution p(g|x) [6].

The parameters for Naive Bayes are π, C, R, where π is
m×1 and there are m sets of Cg , Rg parameters; Cg is d×1
and the Rg matrix is manipulated as d× 1 vector (assuming a
diagonal variance matrix). Class priors π represent the overall
probability of each class. Class priors can be tuned to get
better prediction where classes are imbalanced. Cg represents
the mean vector of class g and Rg represents the diagonal
variance matrix for class g. We shall see NB parameters can
be derived in one pass.

Clustering and mixtures of distributions

We now consider algorithms that have iterative behavior. K-
means [11], [6] is perhaps the most popular clustering algo-
rithms, closely followed by EM [6]. K-means and EM partition
X into k disjoint subsets X1,X2, . . . ,Xk using the nearest
centroid at each iteration. Compared to previous techniques,
clustering cannot build a model in only one scan. The standard
version of K-means requires scanning X once per iteration,
but there exist incremental versions that can get a good (but
suboptimal), solution in a few iterations or even one iteration
[11]. At each iteration K-means assigns each point to its
closest cluster, whereas EM assigns each point to the most
probable cluster based on a multidimensional Gaussian pdf.

Let Nj be the number of points in Xj . Let C be a d × k
matrix, where Cj represents a column vector. Let R be a d×k
array, where Rj is the jth column representing the jth variance
matrix. In general, K-means and EM assume dimensions are
independent, which makes Rj a diagonal matrix (with zeroes
off the diagonal).

K-means uses Euclidean distance between xi and Cj (Eq.
7), whereas EM computes for each point xi a probability
for cluster j, given its parameters Cj , Rj (Eq. 8). EM uses
Mahalanobis distance, which is a Euclidean distance scaled
by the covariance matrix.

dij = (xi − Cj)
T (xi − Cj). (7)

4

P (xi) =
1

√

(2π)d|Rj |
exp[

1

2
(xi − Cj)

T R−1

j (xi − Cj)], (8)

δij = (xi − Cj)
T R−1

j (xi − Cj) (9)

For K-means and EM at each iteration the centroid of cluster
j and the variance matrix are updated as follows:

Cj =
1

Nj

∑

xi∈Xj

xi, (10)

Rj =
1

Nj

∑

xi∈Xj

(xi − Cj)(xi − Cj)
T . (11)

Each cluster weight is Wj = Nj/n. In EM clustering
Wj is used to estimate mixture priors and it can be used to
make the model more sensitive to clusters with more points:
WjP (xi|Cj , Rj). In this case the sums above just require
adding points and adding squared points (getting the squared
of each dimension). Rj is also known as the variance matrix
of cluster j, since covariances are ignored. Compared to the
three previous techniques, we do not need to consider elements
off the diagonal for Rj .

B. Summary Matrices

We introduce the following two matrices that are fundamen-
tal and common for all the techniques described above. Let
L be the linear sum of points, in the sense that each point is
taken at power 1. L is a d× 1 matrix, shown below with sum
and column-vector notation.

L =

n
∑

i=1

xi. (12)

Let Q be the quadratic sum of points, in the sense that
each point is squared with a cross-product. Q is d× d.

Q = XXT =
n

∑

i=1

xix
T
i . (13)

Matrix Q has sums of squares in the diagonal and sums of
cross-products off the diagonal.

The main property about L and Q is that they are much
smaller than X when d << n. However, L and Q summarize
essential properties about X that can be exploited by statistical
techniques. Therefore, the basic usage of L and Q is that we
can substitute every sum

∑

xi for L and every matrix product
XXT for Q. In other words, we will exploit L and Q to rewrite
equations so that they do not refer to X , which is the largest
matrix. The only issue is that the Q matrix may be numerically
unstable for unusual data sets having a mix of very large and
very small numbers on the same dimension or having almost
zero variance for very large numbers [1]. In general, this is
not a problem if points appear in a random order and matrices
are stored in double precision variables.

Linear correlation

Equation 14 is expressed in terms of L and Q. That is, we
do not need X . The d× d correlation matrix ρ is given by:

ρab =
nQab − LaLb

√

nQaa − L2
a

√

nQbb − L2

b

(14)

Linear regression

In linear regression, taking the augmented matrix Z, we
can compute Q = ZZT and let zi = [xi, yi] represent the
augmented vector with the dependent variable Y . In this case
matrix Q′ is a (p + 1) × (p + 1) submatrix of Q, with rows
and columns going from 1 to d containing XY T on the last
row and the last column. We compute L =

∑

zi that contains
L′ (first p + 1 values) and

∑

yi (last value).
Based on these matrices the linear regression model can

be easily constructed from Q′: β = Q′−1(XY T). With β it is
straightforward to get Ŷ . Then with Ŷ we can finally compute
var(β) that just requires

∑

(yi − ŷi)
2. In short, L′ and Q′

leave var(β) as the only computation that requires scanning
X a second time. This is consequence of not being able to
derive the estimated column Ŷ without β. In short, for linear
regression L and Q do most of the job, but an additional scan
on X is needed to get Ŷ .

PCA and Factor Analysis

We now proceed to study how to solve PCA with L and
Q. As we saw above the correlation matrix can be derived
from L and XXT . The variance-covariance matrix has a
simpler computation than the correlation matrix. In statistics
it is customary to call the variance-covariance matrix Σ, but
we will use V to avoid confusion with the sum operation. A
variance-covariance matrix entry is defined as:

Vab =
1

n

n
∑

i=1

(Xa − X̄a)(Xb − X̄b),

where X̄a is the average of Xa (idem for b), which by
mathematical manipulation reduces to the following equation
based on L and Q:

Vab =
1

n
Qab −

1

n2
LaLb. (15)

In matrix terms, V is d × d and V = Q/n− LLT /n2. In
summary, n, L and Q are enough (sufficient) to compute the
correlation matrix ρ and the covariance matrix V that are the
basic input to PCA and ML Factor Analysis; then X is not
needed anymore by SVD or the EM algorithm.

Naive Bayes

For Naive Bayes class priors are estimated by class fre-
quency proportions:

πg =
Ng

n
. (16)

Based on sufficient statistics the Gaussian density function
parameters are computed as follows. The mean for each
Gaussian is:

5

Cg =
1

Ng

Lg, (17)

On the other hand, assuming diagonal matrices the variance
per class is (each entry contains the variance per dimension):

Rg =
1

Ng

Qg −
1

N2
g

LgL
T
g , (18)

Clustering

We consider K-means and EM. K-means is based on
Euclidean distance computation, whereas EM is based on a
Mahalanobis distance computation which is used to determine
cluster probabilities. The Euclidean distance between xi and
Cj can be obtained with a scalar UDF assuming Cj is one
row. Similarly, the Mahalanobis distance between xi and Cj

scaled by Rj can also be obtained with a scalar UDF. Both
UDFs are explained later.

Assuming we know the closest centroid to point xi, we
perform a similar manipulation to the variance-covariance
matrix, but we consider only diagonal matrices. The jth
(j = 1 . . . k) cluster centroid and radius (variance) are:

Cj =
1

Nj

Lj , (19)

Rj =
1

Nj

Qj −
1

N2

j

LjL
T
j . (20)

Finally, the cluster weight is Wj = Nj/n. We ignore
elements off the diagonal in Rj , thereby having two sums
that are computed with d operations per point, instead of d2.
Therefore, they can be easily computed inside the DBMS with
scalar UDFs or SQL queries.

Since K-means and EM are iterative algorithms using
n, L, Q does not eliminate the need to scan X several times at
each iteration. However, n, L, Q enable incremental algorithms
[11] which can scan X a few times or even once. This aspect
is outside scope of this paper.

Summary of matrix applicability: We have shown n, L and
Q are general enough to solve most demanding matrix com-
putations in five different models. Therefore, we concentrate
on analyzing how to compute them efficiently in the DBMS.
For a large data set, where d << n, matrices L and Q are
comparatively much smaller than X . Therefore, the cost to
process them, inside or outside the DBMS, is minimal from a
performance point of view.

C. Alternatives to Integrate Statistical Models

There are four alternatives to evaluate matrix equations
assuming X is stored inside a DBMS: (1) performing no
matrix operations inside the DBMS, exporting the data set
to an external statistical or data mining tool; (2) integrating
all matrix operations inside the DBMS, modifying its source
code, in general written in the C language. (3) performing
all matrix computations only with SQL queries, manipulating
matrices as relational tables; (4) computing matrix equations
inside the DBMS combining SQL queries and UDFs.

Alternative (1) gives great flexibility to the user to analyze
the data set outside the DBMS with any language or statistical
package. The drawbacks are the time to export the data set,
lack of flexibility to create multiple subsets of it (e.g. selecting
records), lack of functionality to manage data sets and mod-
els, the potentially lower processing power of a workstation
compared to a fast database server and compromising data
security. Alternative (2) represents the “ideal” scenario, where
all matrix computations are done inside the database system.
But this is not a feasible or good alternative due to lack
of access to the internal DBMS source code, the need to
understand the internal DBMS architecture, the possibility of
introducing memory leaks with array computations and the
availability of many statistical and machine learning libraries
and tools that can easily work outside the DBMS (e.g. in files
outside the DBMS). Alternative (3) requires generating SQL
code and exploits DBMS functionality. However, since SQL
does not provide advanced manipulation of multidimensional
arrays, matrix operations can be difficult to express as efficient
SQL queries, especially if joins are required [11]. Finally,
alternative (4) allows programming matrix computations with
UDFs exploiting arrays and it also uses SQL queries for
maximum efficiency and flexibility. For instance, inverting a
matrix, evaluating a long expression involving many matrices,
implementing a Newton-Raphson method [6] and computing
singular value decomposition (SVD) [6], are difficult to pro-
gram in SQL. Instead, matrices L and Q are used to evaluate
complex, but more efficient and equivalent, matrix expressions
as explained in Section III-B. Such matrix expressions can
be analyzed by a software system different from the DBMS,
which can reside in the database server itself or in a worksta-
tion. Therefore, we focus on alternative (4), computing n, L
and Q for a large data set X with SQL queries and UDFs. The
remaining matrix equations, explained above, can be easily
and efficiently computed with a mathematical library inside
or outside the DBMS.

D. Basic Framework: SQL queries

We start by discussing horizontal and vertical storage lay-
outs for the data set X . Based on such layouts we introduce
alternative SQL queries to compute n, L, Q. Finally, consider-
ing inefficiencies in such SQL queries we propose aggregate
UDFs optimized for each layout.

Horizontal and vertical layouts for X

We start by presenting a first approach to calculate L and
Q with SQL queries. We consider two layouts for X : (1) a
horizontal layout with d columns (plus i, G or Y) represented
by table XH defined as XH(i, X1 . . .Xd); (2) a vertical layout
with three columns (plus G if necessary) represented by table
XV , defined as XV (i, h, val). Table XV discards dimension
values equal to zero, which can accelerate processing for
sparse matrices. Also, XV is the best and natural solution
to analyze data sets with very high dimensionality (e.g.
d = 100, 000 in microarray data). Therefore, table XH has
O(d) columns and n rows, whereas table XV has 3 columns

6

TABLE I
NOTATION AND NAMING CONVENTIONS USED IN SQL AND UDFS.

Name Description Size
d number of dimensions integer ≥ 1

n number of points integer d < n

i point identifier integer i = 1 . . . n
h dimension subscript integer h = 1 . . . d

X data set d × n matrix
XH Table for X horizontal layout n rows
X1, . . . , Xd dimension columns of XH d real numbers
XV Table for X vertical layout dn rows
val dimension value in XV real number
L linear sum of points d-vector
Q sum of squared points d × d matrix
a dimension subscript for Q integer a = 1 . . . d

b dimension subscript for Q integer b = 1 . . . d

and up to dn rows. Table I summarizes notation and naming
conventions used in SQL queries and UDFs.

In general, we assume the data set is available in either
layout. Therefore, the SQL queries and UDFs we will intro-
duce would be chosen beforehand by the user and not by the
DBMS. If it is necessary to convert from one layout into the
other one then our solution would require two table scans: one
for the conversion and one to compute sufficient statistics. Our
vertical layout is similar to the storage layouts commonly used
in numerical analysis methods for sparse matrices [9].

SQL queries

The initial task is getting n the first time XH is scanned,
using a double precision floating point number to store large
counts in 64 bits (32 bit integers may still be OK).

SELECT sum(cast(1 as double)) AS n FROM XH ;

The second step is computing L. There are two basic
approaches: computing L from XV calling sum once grouping
by the dimension subscript h, or computing L from XV calling
the sum aggregation d times. The query to get L from XV is
simply “SELECT h,sum(val) FROM XV GROUP BY h”. The
more efficient alternative query based on XH is:

/* L */
SELECT sum(X1),sum(X2). . . ,sum(Xd) FROM XH ;

The third step requires computing Q, which requires space
O(d2). Matrix Q can also be computed in a single query.
Q can be computed from X with a SELECT statement that
has d2 terms. Unfortunately, d2 may easily exceed the DBMS
maximum number of columns allowed in a table. Below we
introduce an alternative to deal with high d.

Given the fact that Q is symmetrical we can apply a tradi-
tional numerical analysis optimization based on the fact that
Qab = Qba: We can compute the lower triangular submatrix
of Q with d(d + 1)/2 operations per point instead of d2. The
full matrix can be easily obtained at the end copying the lower
triangular portion into the upper triangular one. We can further
optimize Q computation when dimensions are assumed to be
independent. For Naive Bayes, K-means and EM clustering we
only need the diagonal submatrix of Q, which requires just d
computations. We can compute n, L, Q more efficiently in a
single SQL statement based on the fact that n, L and Q are

independent. This is a fundamental property about sufficient
statistics [6] that is exploited in a database context. This
property will also be essential for aggregate UDFs. n, L and Q
can be computed in one table scan with one “long” SQL query
having 1+d+d2 terms. There are two important disadvantages
for this SQL statement: it can easily exceed the limits of the
DBMS and Q entries cannot be accessed by subscript, but by
column names. Here we show the query to compute n, L, Q
assuming a non-diagonal Q. This query collapses to 2d + 1
terms if Q is diagonal.

SELECT
sum(cast(1 as double)) /* n */

,sum(X1),sum(X2),. . .,sum(Xd) /* L1 . . . Ld */
,sum(X1 ∗X1),null,. . .,null /* Q11 . . . Q1d */
,sum(X2 ∗X1),sum(X2 ∗X2),. . .,null /*Q21 . . .Q2d*/
. . .
,sum(Xd ∗X1),sum(Xd ∗X2),. . .,sum(Xd ∗Xd)

FROM XH ;

Since it is our purpose to compute statistical models for
high d we introduce a more flexible, yet efficient, SQL query
approach. We now introduce SQL queries for the vertical
layout. The query to derive n assumes some dimension values
are zero and thus they are not included. The queries to derive
L and Q can take advantage of a sparse table XV . If Q is
diagonal we can add d terms to the query for L to compute
squared values, without a join operation. If Q is non-diagonal
then Q is computed from XV using a self-join on i. This
version works on a table with more rows and therefore it is
less efficient, but it does not have any limitation for d. We
now show the SQL for the non-diagonal Q.

SELECT cast(count(distinct i) AS double) /* n */
FROM XV ;

SELECT h, sum(val) /* Lh */
FROM XV GROUP BY h;

SELECT T1.h AS a, T2.h AS b
,sum(T1.val*T2.val) AS Q /* Qab */

FROM XV T1 JOIN XV T2 ON T1.i=T2.i
WHERE a ≥ b GROUP BY a, b;

When the DBMS does not present limitations for a long
SQL statement with 1 + d + d2 terms the first solution will
be preferred since it is faster. Otherwise, L and Q will be
computed in separate queries, which is slower since XV is a
large table.

E. Aggregate UDF for Horizontal Layout

We now explain how to efficiently compute summary ma-
trices n, L, Q with an aggregate UDF assuming a horizontal
layout for X . Refer to Table I to understand notation.

Generalizing, L and Q are the multidimensional version
of sum(Xa) and sum(X2

a) for one dimension Xa, taking
into account inter-relationships between two variables Xa and
Xb. From a query optimization point of view, we reuse the
approach used for SQL by computing n, L and Q in one
table scan on XH .

7

Aggregate UDF definition in SQL: The SQL definition
specifies the call interface with parameters being passed at
run-time and the value being returned. The aggregate UDF
takes as parameter the type of Q matrix being computed:
diagonal (clustering, Naive Bayes) or triangular (correla-
tion/PCA/FA/regression), to perform the minimum number of
operations required. UDFs in cannot directly accept arrays
as parameters or return arrays. To solve the array parameter
limitation, we introduce two basic UDF versions: one version
passes xi as a string and the second version passes xi as a list
(currently d ≤ 64 due to the UDF having a 16 bit address
space; up to 64 KB of main memory). The string version
requires packing xi as a string at run-time. Both versions
take d and pack n, L, Q as a string and return it. Some
DBMSs provide limited array support through User-Defined
Types (UDTs); our ideas can be easily extended with UDTs.
REPLACE FUNCTION udf_nLQ_triang(
d INTEGER,

,X_1 FLOAT,..,X_d FLOAT
)
RETURNS CHAR(36000)
CLASS AGGREGATE (52000)

The amount of maximum heap memory allocated is spec-
ified in the UDF definition The amount of memory required
by the “big” output value is also specified here.

Aggregate UDF variable storage: Following the single table
scan approach for the SQL query, the aggregate UDF also
computes n, L and Q in one pass. A C “struct” record is
defined to store n, L and Q, which is allocated in main
memory in each processing thread. When Q is diagonal a one
dimensional array is sufficient, whereas when Q is triangular
a two-dimensional array is required. Therefore, we propose to
create two versions for the UDF depending on Q; this saves
memory and time. X is horizontally partitioned so that each
thread can work in parallel. Notice n is double precision and
the UDF has a fixed maximum d because the UDF memory
allocation is static (the UDF needs to be compiled before being
called).
typedef struct {

int d;
double n;
double L[MAX_d];
double Q[MAX_d][MAX_d]; /* Q triangular */

} UDF_nLQ_storage;

Aggregate UDF run-time execution: We omit discussion on
code for handling errors (e.g. empty tables), invalid arguments
(e.g. data type), nulls and memory allocation. The aggregate
UDF has four main steps that are executed at different run-
time stages: (1) Initialization, where memory is allocated and
UDF arrays for L and Q are initialized in each thread. (2)
Row aggregation, where each xi is scanned and passed to the
UDF, xi entries are unpacked and assigned to array entries, n
is incremented and L and Q entries are incrementally updated
by Equation 12 and Equation 13. Since all rows are scanned,
this step is executed n times and therefore, it is the most time-
consuming. (3) Partial result aggregation, which is required to
compute totals, by adding subtotals obtained by each thread
working in parallel. Threads return their partial computations
of n, L, Q that are aggregated into a single set of matrices

by a master thread. (4) Returning results, where matrices are
packed and returned to the user.

In step 1 since the dimensionality d of X cannot be known
at compile time, the UDF record (or class) is statically defined
to have a maximum dimensionality; this wastes some memory
space. The reason behind this constraint is that storage gets
allocated in the heap before the first row is read. An alternative
to allocate only the minimum space required is to define k
UDFs that accept k-dimensional vectors each, where k can go
from 2 up to the maximum d allowed by the DBMS. Each
UDF with a k-dimensional vector has matrices L of size k
and Q of size k2, respectively.

Step 2 is the most intensive because it gets executed n
times. Therefore, most optimizations are incorporated here.
The first task is to grab values of X1, . . . , Xd. There are
two alternatives to pass a vector as a UDF parameter: (1)
packing all vector values as a long string. (2) passing all
vector values as parameters individually; each of them having
a null indicator flag as required by SQL. If the DBMS supports
arrays alternative (2) is similar. For alternative (1) the UDF
needs to call a function to unpack xi, which takes time O(d)
and incurs on overhead. Overhead is produced by two reasons:
at run-time, floating point numbers must be cast as strings
and when the long string is received, it must be parsed to get
numbers back, so that they are properly stored in an array. The
unpacking routine determines d. For alternative (2) the UDF
directly assigns vector entries in the parameter list to the UDF
internal array entries. Given the UDF parameter compile-time
definition, d must also be passed as a parameter. The UDF
updates n, L, Q as follows: n in incremented, L ← L + xi

and Q ← Q + xix
T
i based on the type of matrix: diagonal,

triangular or full (default=triangular).
We show C code for step 2. In the following code subscripts

a, b = 1 . . . d are consistent with the definitions from Section
II-A; since arrays in the C language start at a zero subscript
the UDF wastes one entry in L and 2d entries in Q. The UDF
updates n, L and Q reading each row once.
/* Step 2: aggregate rows */
thread_storage->n+=1.0;
for(a=1;a<=d;a++) {
thread_storage->L[a]+=X[a];
if(matrix_type==MATRIX_TYPE_DIAGONAL)

thread_storage->Q[a][a]+=X[a]*X[a];
else
if(matrix_type==MATRIX_TYPE_TRIANGULAR)

for(b=1;b<=a;b++)
thread_storage->Q[a][b]+=X[a]*X[b];

}

The partial result aggregation code in step 3, is somewhat
similar to the aggregation step code, with the fundamental
differences that we aggregate matrices instead of arithmetic
expressions and all partial results are summarized into global
totals for all threads. The subscript bounds d must come from
each thread.
/* Step 3: aggregate partial results */
thread_storage->n+= distributed->n;
for(a=1;a<=d;a++)

thread_storage->L[a]+= distributed->L[a];
for(a=1;a<=d;a++)

for(b=1;b<=d;b++)
thread_storage->Q[a][b]+= distributed->Q[a][b];

8

Step 4 is the inverse of getting vector values in step 2, where
n, L and Q are packed into a long string. This is a constraint
imposed by SQL. Such string has the same memory limitation
as the UDF, but on the stack. Therefore, both the storage record
and the result string are allocated similar memory space, in the
heap and stack respectively. The code is simple and therefore
omitted. The name of the variable (n, L, Q) appears first and
then values (floating point numbers) are separated with some
symbol (e.g. “,”). In addition rows are separated by another
symbol for Q (e.g. “;”). This step has minimal impact on
performance since it is executed once.

Calling the Aggregate UDF: We first discuss models where
Q is diagonal and then models where Q is triangular. For K-
means, EM, Naive Bayes and the Bayesian classifier based on
class decomposition Q is diagonal. For Naive Bayes the UDF
is called grouping by g in the query. For K-means and EM the
UDF is called grouping by j, where j is the closest or most
probable cluster obtained at each iteration. For correlation,
covariance, linear regression and PCA Q and R are triangular:
In general, the UDF is called without grouping rows, unless
there is a need to create multiple models on subsets of X .

F. Aggregate UDF for Vertical Layout

We now explain how to efficiently compute summary ma-
trices assuming a vertical layout for X . Refer to Table I to
understand notation.

Aggregate UDF definition in SQL: The UDF definition
for the vertical layout is simpler than the horizontal one.
The UDF receives the current i and Xhi, where h ≤ d. To
accelerate processing and to simplify code we assume d is
known. Memory allocation is static and thus the UDF assumes
a maximum d.

REPLACE FUNCTION nLQ_transaction_triang(
d INTEGER

,i INTEGER
,h INTEGER
,val FLOAT
)
RETURNS CHAR(36000)
CLASS AGGREGATE (52000)

Aggregate UDF variable storage: Storage is similar to
the horizontal layout aggregate UDF, but there are important
differences. A maximum d is still required to declare arrays
for L and Q. The main differences are the current and the
previous point identifiers (i.e. i), used to detect a new point
(transaction) and an array X[] for xi that must be continuously
updated. We keep an additional row count, min, max, average
transaction size. In a similar manner to the horizontal layout
UDF, there is a separate UDF definition for a diagonal Q
(accelerating processing and saving memory).

typedef struct udf_nLQ_storage {
int d;
double n;
int i_previous,i_current;
double X[MAX_d];
double L[MAX_d];
double Q[MAX_d][MAX_d];

} UDF_nLQ_storage;

Aggregate UDF run-time execution: This UDF has impor-
tant differences compared to the UDF for the horizontal layout.
We highlight main differences in each step. (1) Initialization
needs to initialize a vector storing xi. As mentioned above,
two variables are needed to detect transaction boundaries
(i previous and i current). The arrays for L and Q are
initialized in the same manner to zeroes. (2) Row aggregation
has significant differences due to the vertical layout; they
are explained below. (3) Partial result aggregation from each
thread also has an important difference. It requires additional
code to perform a final computation on the last point xi read
by each thread. (4) Returning sufficient statistics n, L, Q has
no difference.

Row aggregation has significant differences. The array X[]
for xi must be reinitialized to zeroes after reading a new
point. The subscript h is used to initialize entry X[h] directly.
L and the diagonal of Q are updated on-line, after every
row is scanned. There is an important requirement on storage
for X . This UDF requires storage of all dimensions for one
point being on the same logical address. In our case this is
accomplished defining a table whose storage is based on i
with dimensions clustered by i. Notice that all rows for all
dimensions for point i must be stored contiguously in any
order (even randomly within each i), but the UDF does not
require any ordering based on h. The key difference is dealing
with non-diagonal entries of Q. Updating non-diagonal entries
of Q is deferred until all dimensions from point i have been
read. It is not possible to update non-diagonal entries of Q
after reading every row. Point boundaries must be detected by
continuously comparing i between the current and previous
rows. Notice it is unnecessary to unpack any arguments to
assign array entries. Under this scheme L and Q entries are
correctly incrementally updated by Equation 12 and Equation
13. This step may be executed up to dn times (for a dense
matrix) or tn times for an average t of non-zero dimensions
(for a sparse matrix or transaction-style data set).

/* Step 2: aggregate rows */
thread->i_current= i;
if(h>thread->d || *i_h==-1) break; // exception
if(thread->i_current!=thread->i_previous) {

for(a=1;a<=thread->d;a++)
for(b=1;b<a;b++)

thread->Q[a][b]+= thread->X[a]*thread->X[b];
for(a=1;a<=thread->d;a++) thread->X[a]=0;

}
thread->X[h]= *p_val;
thread->L[h]+= thread->X[h];
thread->Q[h][h]+= thread->X[h]*thread->X[h];// diag.
if(i!=thread->i_previous) thread->n+=1;
thread->i_previous= i;

In the partial result aggregation phase the UDF computes
global matrices, by adding subtotals obtained by each thread
working in parallel. This step requires a subtle, but important
change. Since row aggregation in each thread does not know
when the last row has been scanned it is necessary to perform
a final computation of xix

T
i to update Q. Then each partial

computation of n, L, Q are aggregated into a single set of
matrices by a master thread. This step is executed multiple
times depending on the number of threads.

/* Step 3: combine partial results */

9

thread->n += distributed->n;
for(b=1;b<=distributed->d;b++)

thread->L[b]+= distributed->L[b];
for(a=1;a<=distributed->d;a++) /* main difference */

for(b=1;b<a;b++)
distributed->Q[a][b]+=

distributed->X[a]*distributed->X[b];
for(a=1;a<=distributed->d;a++)

for(b=1;b<=distributed->d;b++)
thread->Q[a][b]+= distributed->Q[a][b];

G. Scoring Data Sets

When there is a statistical model already computed it can be
applied to score new data sets having the same dimensions. For
instance, such data sets can be used to evaluate the accuracy
of a NB classification model using the standard train and test
approach [6] or they can contain new points, where model
application is required (i.e. predicting the numeric variable Y ,
reducing dimensionality d of a data set down to k or finding
the closest cluster Cj). In common statistical terminology,
applying a model on a data set is called scoring. Since
correlation is not a model, scoring is not needed in such case;
we analyze the other statistical techniques below.

Primitive UDFs

We have identified the following primitive scalar UDFs
which help computing equations in all statistical models
discussed before: (1) dot product; used to multiply two vectors
with the same dimensionality. Given two vectors x and y,
x · y = xT y. (2) scalar product; to multiply a vector by a
scalar number. Given a scalar λ and x, the scalar product
is λx. (3) distance; including Euclidean and Mahalanobis
distance, as given in Equations 7 and 9. (4) argmin; to
determine the subscript of the minimum value in a vector.
Given vector x, argmin is the subscript j s.t. xj ≤ xh for
h = 1 . . . d. (5) sum; to get the sum of all entries of vector
x:

∑d

h=1
xh. (6) min; to get the minimum of all entries of

vector x: min(x) ≤ xh (max() can be similarly defined). (7)
multivariate Gaussian. The common properties of these UDFs
are that they take vectors as input and return a single number
as output. Evidently, there exist other UDFs potentially useful
for statistical analysis, but we shall see these UDFs can be used
as building blocks to perform most complex computations.

Some key differences between SQL queries with arithmetic
expressions and UDFs include the following. In general, SQL
queries require a program to automatically generate SQL code
given the model and an arbitrary input data set, but it is
not possible to have generic SQL stored procedures for such
purpose, because data sets have different columns and different
dimensionalities. SQL arithmetic expressions are interpreted at
run-time, whereas UDF arithmetic expressions are compiled.

Linear regression: For linear regression we have β as
input. Thus we need to compute ŷi = βT xi for each point
xi. The regression model is stored on the DBMS in table
BETA(β1, . . . , βd). This table layout allows retrieving all
coefficients in a single I/O. Scoring a data set simply requires
the dot product UDF between β and xi, returning ŷi. A cross-
product join between BETA and X is computed and then xi

and BETA are passed as parameters to the UDF. Therefore, X

can be scored based on a linear regression model in a single
pass calling the UDF once in a SELECT statement.

PCA and factor analysis: PCA and factor analysis pro-
duce as output the d × k dimensionality reduction matrix
Λ, where k < d. Let µ be the mean vector of X , used
to “center” new points at the original mean. Matrix Λ and
vector xi are used to obtain the k-dimensional vector x′

i for
i = 1 . . . n: x′

i = ΛT (xi − µ). Matrix Λ is stored on table
LAMBDA(j, X1, . . . , Xd) and the mean is stored on table
MU(X1, . . . , Xd). Table LAMBDA includes d columns and
k rows and table MU has only one row. These table layouts
allow retrieving all d dimensions in a single I/O. The scoring
equation can be computed by calling the dot product UDF
with xi − µ and Λj (jth component or factor) as parameters
and returning the jth coordinate of x′

i; j = 1 . . . k. In this
case X is cross-joined with LAMBDA and then xi and Λj

are passed as parameters to the dot product UDF. Therefore,
X can be scored with a PCA (or factor analysis) model in a
single pass, calling the UDF k times in a SELECT statement.

Naive Bayes Classifier: Naive Bayes needs a UDF to
compute the probability of each class. Since dimensions are
assumed independent this UDF can be based on Mahalanobis
distance to compute Equation 8. That is, it can reuse the same
UDF to compute probability for EM.

Clustering: Scoring for clustering requires two steps:
(1) computing k distances to each centroid and (2) find-
ing the nearest one. Cluster centroids are stored on ta-
ble C(j, X1, . . . , Xd), their variances are stored on table
R(j, X1, . . . , Xd), and their weights are stored on table
W(W1, . . . , Wk). Tables C, R have d columns with dimen-
sions and k rows. The k Euclidean distances (Equation 7)
between xi and each centroid Cj , can be obtained with the
distance UDF that takes two d dimensional vectors xi and Cj .
The k Mahalanobis distances (Equation 9) between xi and
each centroid Cj , are obtained with the Mahalanobis distance
UDF that takes as parameters three d dimensional vectors xi,
Cj and Rj (a matrix, but manipulated as a vector). The only
difference between Euclidean and Mahalanobis is that each
squared differenced is divided by Rhj .

By calling the distance UDF k times corresponding to each
mixture component j, we get k distances: d1, . . . , dk. In this
case X and C are cross-joined k times (selecting one row
each time) to compute distance dj and then the k distances
are passed as parameters to the scoring UDF. We just need
to determine the closest centroid subscript J , based on the
minimum distance, which is the required score for a clustering
model: J s.t. dJ ≤ dj for j = 1 . . . k. The argmin UDF
computes the closest centroid. Therefore, X can be scored
based on a clustering model in a single table scan. Notice
PCA and clustering use the same approach to avoid joins.

H. Time complexity and I/O cost

Computing n, L, Q: Both aggregate UDFs for the horizontal
and the vertical layout to compute n, L, Q have time complex-
ity O(d2n) for triangular Q and O(dn) for diagonal Q. Once
matrices are computed statistical techniques take the following
times to compute models (with C code or math/statistical

10

TABLE II
I/O COST FOR SQL QUERIES AND UDFS TO GET n,L,Q.

Q diagonal Q triangular
I/Os I/Os

SQL XH n n

SQL XV dn d2n

UDF XH n n
UDF XV dn dn

library): linear correlation takes O(d2), PCA takes O(d3),
which is the time to get SVD of the correlation matrix ρ,
linear regression takes O(d3) to invert Q and clustering takes
O(dk) to compute k clusters. In short, time complexity to
compute models is independent from n. The UDF approach
will be efficient as long as d << n. The CPU cost is the same
for SQL and UDFs: for diagonal Q there are 2dn floating
point operations (flops), whereas for triangular Q there are
(d + d2/2)n flops. Table II summarizes I/Os from X for all
the alternatives, assuming one I/O operation per row. Clearly
SQL is the worst alternative for the vertical layout.

Scoring: When a statistical model is available scoring X
with UDFs takes O(dn) for linear regression, O(mn) for NB,
O(dn) for PCA and O(dkn) for clustering. There are n I/Os
for XH and dn I/Os for XV .

IV. EXPERIMENTAL EVALUATION

Since our proposal is about efficient model computation and
scoring with UDFs we focus on analyzing efficiency. That is,
it is unnecessary to measure accuracy or model quality since
we do not change the mathematical properties of models.

We present our experimental evaluation on the Teradata
DBMS, which supports scalar and aggregate UDFs. The
hardware configuration for the DBMS server was one CPU
running at 3.2 GHz, 4 GB of RAM memory and 650 GB on
disk. The operating system was Microsoft Windows XP. The
UDFs were programmed in the C language variant provided
the DBMS turning on optimizations for best performance (e.g.
enabling unprotected/unfenced execution). We also compare
UDF performance with C++. In order to conduct a fair com-
parison, the C++ implementation of our models ran on another
computer with identical hardware. Notice the DBMS can cache
(load) large tables into main memory (especially with 4 GB);
this can be done automatically when a table is scanned and
the table size is smaller than available memory. In general,
we measured times reading the input data set from disk, by
cleaning the cache before each query. To connect to the DBMS
server from a client computer we used a workstation with a
2.4 GHz CPU, 2 GB of main memory and 160 GB on disk.
Computers were linked by a 100 Mbps network. SQL queries
computing n, L, Q or calling UDFs were submitted with the
ODBC interface, whereas large data sets were exported with
a bulk export program (explained below).

Average time is calculated from five runs of each experiment
and in general it is reported in seconds. In general we stopped
UDF execution after one hour, indicating it with the * symbol.

Data Sets

We generated synthetic data sets with a mixture of nor-
mal distributions that were stored as tables in the DBMS.
We used k = 16 distributions with means in [0,100] and
standard deviation around 10 per dimension, with about 15%
of points representing uniformly distributed noise. Varying
these parameters does not change n or d, but we avoided
data sets that produced exceptions or undefined calculations.
We varied n and d to evaluate UDF optimizations and to
measure scalability. Since the three implementations (UDFs,
SQL queries and C++) produce the same n and the same
summary matrices L, Q and thus the same models, it is
unnecessary to measure accuracy and quality of solutions. For
the same reason we did not use real data sets.

Parameter settings and default optimizations

The C++ implementation analyzed data sets stored on flat
files exported out from the DBMS with a fast bulk export
utility. For comparison purposes, we measure time to export
large tables with “bulk” utilities on two commercial DBMSs
(one of them being Teradata), running on separate servers
having the same hardware. The C++ program was optimized
to scan X once, keeping L and Q in main memory at all times.
Both UDFs (for horizontal and vertical layouts) compute n,
L and Q in a single table scan. Both SQL queries and UDFs
compute the lower triangular matrix Q by default. For the
aggregate UDF xi is passed to the UDF as a list (instead of
string) by default. For scalar UDFs vectors are passed as lists
by default.

We explain some DBMS settings to enhance performance.
UDFs were executed in unprotected (unfenced) mode; this
means UDFs take full advantage of the DBMS multi-threading
capabilities and can overlap I/O with CPU processing. The
recovery log was disabled, to accelerate insertions. All queries
were run on temporary (spool) space, instead of creating
intermediate tables.

We now explain in more technical detail how to efficiently
export tables out of the DBMS with bulk utility programs.
By default we export the data set X having a horizontal
layout. Large tables were exported with fast bulk export
utilities, which represent the fastest mechanism to extract data.
Tables rows are exported in blocks with efficient multithreaded
processing. We want to point out that bulk export utilities are
significantly faster than the standard ODBC interface: about
five times faster in one DBMS and 50 times faster on the other
one. Therefore, ODBC times are omitted from the paper.

A. Comparing Alternatives

We have two sets of comparisons: (1) the aggregate UDFs
are compared with SQL and C++, showing exporting the data
set is a bottleneck to analyze X outside the DBMS; (2) the
scalar UDFs are compared with optimized SQL queries to
score X , based on each model.

Table III compares the UDF, SQL and C++ to compute
n, L, Q when Q is diagonal, assuming dimensions are inde-
pendent (NB, clustering). Table III also includes the time to
export X (with a horizontal layout) with bulk utilities. As

11

TABLE III
COMPARISON: EXPORTING X AND COMPUTING n,L, Q FOR DIAGONAL Q (d = 8, TIME IN SECS).

n BULK BULK Horizontal layout Vertical layout
×1M DBMS A DBMS B UDF SQL C++ UDF SQL C++

1 119 19 16 9 8 34 38 19
2 225 38 31 33 17 68 78 38
4 451 75 60 62 33 135 152 76
8 908 153 122 125 67 273 298 152

TABLE IV
COMPARISON: COMPUTING n,L,Q FOR TRIANGULAR Q (d = 8, TIME IN

SECS).

n Horizontal layout Vertical layout
×1M UDF SQL C++ UDF SQL C++

1 16 18 10 47 692 21
2 32 32 19 94 1242 41
4 62 61 38 188 2533 82
8 122 123 76 377 * 164

TABLE V
COMPARING TIME TO COMPUTE MODELS WITH n,L, Q (n = 1M , SECS).

d correl. linear PCA K-means
regres. Naive Bayes

4 1 1 1 1
8 1 1 1 1

16 1 1 1 1
32 1 1 2 1
64 1 2 4 1

expected, C++ is the fastest for both layouts, followed by the
UDF, which is twice as slow. Such gap is not significant given
the fact that the UDF time is affected by DBMS overhead
and the increase in CPU speed every year. The SQL queries
have similar performance to the UDF. On the other hand,
exporting the data set with the bulk utility is a bottleneck to
analyze large data sets with C++ outside both DBMSs, but the
bottleneck is more significant in DBMS A. Therefore, adding
export time to C++ time makes UDFs and SQL queries better
alternatives. Bulk utilities use proprietary features of each
DBMS and therefore their performance varies as can be seen,
but exporting data sets should be a bottleneck on any DBMS.
Comparing layouts, the UDF for the vertical layout is about
twice as slow as the horizontal one. Despite such decrease in
performance we believe this is encouraging because the UDF
removes limitations for high d.

Table IV is similar to Table III, but Q is triangular. The
data set was not cached, reading it from disk for every run.
As explained in Section III such sufficient statistics are needed
for the correlation matrix, linear regression and PCA. In this
case the time to run the UDF for the vertical layout is longer
than the total time to analyze and export the data set with C++
with a horizontal layout on DBMS B, but smaller on DBMS
A. In fact, in DBMS B the UDF takes longer than exporting
the data set. SQL is very slow. UDFs, SQL and C++ show
linear time growth, but SQL exhibits overhead at low d.

Table V shows the time to compute each model once n, L, Q
are available. Sufficient statistics were computed from data
sets having n = 1M. Most of the work in computing linear
models is in getting n, L and Q, as illustrated in Table III and
Table IV. Table V illustrates the fact that the time to build

TABLE VI
COMPARISON: TIME TO SCORE X AT d = 8 (SECS).

Horizontal Layout
n × 1M technique UDF SQL C++

1 linear 15 15 8
2 regress. 27 28 17
4 61 62 33
8 120 123 67
1 Naive Bayes 13 165 10
2 24 359 19
4 60 734 38
8 113 1476 76
1 K-means 24 130 11
2 k = 8 48 259 20
4 96 519 39
8 193 1040 80

a model is independent from n, when n, L, Q are available.
That is, the only scalability factor is d. The time to build the
linear regression model excludes the time to compute Ŷ , which
requires a second table scan on X . The times to compute ρ for
linear correlation, and the times to get β for linear regression
were the same. Therefore, both time measurements appear as
one column. PCA took slightly longer (one additional second)
than the other techniques. In summary, all the techniques take
practically the same time for large data sets in each respective
implementation. Only PCA and the Naive Bayes classifier
models have a slightly higher time growth as d increases. But
in all cases the time to build the models is negligible compared
to the time to compute n, L, Q.

Table VI compares SQL queries and scalar UDFs to score
a data set based on a model. From Tables III and IV it is
clear exporting X is a bottleneck to score outside the DBMS.
Therefore, it is evident it is bad idea to score X outside the
DBMS despite how efficient an external scoring implementa-
tion can be (using C++ or similar language). SQL queries use
an arithmetic expression evaluating the corresponding model
equation. We can see the UDF is as efficient as SQL to produce
a linear regression score. The trend for PCA is similar to
scoring for linear regression, with the main difference that
k columns are produced. Times for PCA are omitted. Finally,
clustering and the Bayesian classification model turn out to
be more challenging for SQL. In both cases the UDF is faster
than SQL because the UDF packs more arithmetic operations
in a few UDF calls, whereas SQL requires additional joins and
aggregations. In summary, UDFs are competitive with SQL for
simpler mathematical expressions and are faster than SQL for
more complex equations.

12

0

40

80

120

0 16 32 48 64

T
im

e
 i
n

 s
e

c
s

d

parameter passing scheme (not cached)

string
list

0

30

60

90

120

150

0 16 32 48 64

T
im

e
 i
n

 s
e

c
s

d

parameter passing scheme (cached)

string
list

Fig. 1. Optimization: parameter passing style (horizontal UDF, n = 1M).

0

20

40

60

80

100

0 16 32 48 64

T
im

e
 i
n

 s
e

c
s

d

matrix type (not cached)

diagonal
triangular

0

10

20

30

40

50

0 16 32 48 64

T
im

e
 i
n

 s
e

c
s

d

matrix type (cached)

diagonal
triangular

Fig. 2. Optimization: Matrix type (horizontal aggregate UDF, n = 1M).

B. UDF Optimizations

The plots in Figure 1 compare how xi is passed as parameter
to the UDF (string-based or list-based; Section III). Both
UDF parameter passing mechanisms scale linearly, but the
difference between them is significant, with the gap growing
as d grows. The overhead to convert numbers to strings and
then back to numbers inside the UDF is important.

Figure 2 illustrates the impact of optimizing matrix compu-
tations in the aggregation step. Recall from Section III that the
aggregate UDF can compute a diagonal or triangular matrix.
For the diagonal matrix only O(d) memory gets allocated
since entries off the diagonal are not needed. The diagonal
matrix computation is fairly linear, whereas the triangular
matrix shows a quadratic behavior. This optimization produces
a marginal improvement when reading from disk, highlighting
the UDF is waiting on I/O. But the difference in performance
becomes significant when X is cached: the trend indicates the
diagonal Q matrix UDF will always be much faster.

Summary of importance of each optimization: The first
consideration about computing n, L and Q inside the DBMS
is choosing between SQL and UDFs. If a DBMS does not
support UDFs, then SQL may be a reasonable choice for
low d for a horizontal layout. Otherwise, if d is high (say
above 50) then the vertical layout UDF is reasonable. SQL is
a bad choice for high d on a vertical layout. In general, scalar
UDFs are comparable in speed to SQL arithmetic expressions.
Aggregate UDFs with internal matrix computations are faster
than SQL using standard aggregations. Experiments indicate
that SQL becomes more severely affected by I/O than UDFs

0

50

100

150

200

250

300

0 16 32 48 64

T
im

e
 i
n

 s
e

c
s

d

Horizontal layout

SQL
UDF

0

1000

2000

3000

4000

5000

6000

7000

8000

0 8 16 24 32

T
im

e
 i
n

 s
e

c
s

d

Vertical layout

SQL
UDF

Fig. 3. Scalability: Aggregate UDFs to get n,L,Q (triangular Q, n = 1M).

0

50

100

150

200

250

300

0 4 8 12 16

T
im

e
 i
n

 s
e

c
s

n X 1M

Horizontal layout

SQL
UDF

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8

T
im

e
 i
n

 s
e

c
s

n X 1M

Vertical layout

SQL
UDF

Fig. 4. Scalability: Aggregate UDFs to get n,L,Q (triangular Q, d = 8).

since SQL internally creates a table with one row and many
columns. The style of parameter passing is the second most
important factor for time performance. The overhead of con-
verting numbers to strings becomes important. This is counter-
intuitive from a database point of view because the UDF works
in main memory and parameters are passed on the run-time
stack. On the other hand, if the DBMS allows a high number
of parameters then the list-based version is the best choice.
The third factor is evidently the time complexity of matrix
computations (diagonal versus triangular).

C. Time Complexity and Scalability

We conclude the experimental section with scalability plots,
reading X from disk (i.e. not cached). Figure 3 analyzes
scalability as d grows to compute n, L, Q with a triangular
matrix Q on a large data set X . As expected, time grows
quadratically due to Q. The UDF is consistently faster than
SQL queries showing better performance as d grows. UDFs
are twice as fast as SQL queries for the horizontal layout.
On the other hand, the UDF for the vertical layout becomes
an order of magnitude faster than SQL queries for high d.
Figure 4 analyzes scalability as n grows keeping d fixed. Both
UDFs and SQL scale linearly for both layouts. The UDF is
significantly faster than SQL for the vertical layout, but has
similar performance for the horizontal layout.

V. RELATED WORK

Although there has been considerable work in data mining
to develop efficient mechanisms for computation, most work

13

has concentrated on proposing algorithms assuming the data
set is stored on a flat file outside the DBMS. Statistics and
machine learning have paid little attention to large data sets,
which is precisely the primary focus of data mining. Studying
statistical techniques in a database context has received little
attention. Most research work has concentrated on association
rules [13], [18], followed by clustering [20] and decision trees
[16]. The importance of the linear sum of points and the
quadratic sum of points (without cross-products) to decrease
I/O in clustering is recognized in [14], [20], but they assume
the data set is directly accessible with some I/O interface.
We have gone well beyond that point, showing the linear sum
and the quadratic sum of points with dimension cross-products
solves five fundamental statistical models. This contribution is
independent from implementation and therefore applicable in
any data mining program. Computation of sufficient statistics
for classification with decision trees in a relational DBMS is
proposed in [5], but they are different from ours. Naive Bayes
(NB) is a remarkable accurate classifier despite its simplicity
[6]. Its UDF implementation is straightforward, but it can be
used as a basic framework to build a more accurate Bayesian
classifier like [15], which exploits K-means to decompose
classes into clusters.

There exist many proposals that extend SQL with data
mining functionality. Most proposals add syntax to SQL and
optimize queries using the proposed extensions. User-Defined
Functions (UDFs) are identified as an important extensibility
mechanism to integrate data mining algorithms with a DBMS
in the ATLaS system [8], which extends SQL syntax with
object-oriented constructs to define aggregate and table func-
tions (with initialize, iterate and terminate clauses), providing
a user-friendly interface to the SQL3 standard. Based on such
language extensions they show it is easier to implement data
mining algorithms. There are important differences with our
work. First, they consider different data mining techniques
(association rules, decision trees, spatial clustering), whereas
we consider several techniques under a common mathematical
foundation based on sufficient statistics. Second, they do not
study the problem of summarizing a data set with a UDF,
which is fundamental in our approach. Third, we consider
horizontal and vertical layouts, which are complementary. It
has been noted that UDFs require special cost modeling for
query optimization [7], but in our case it is not necessary
because they only require one table scan. SQL extensions to
define, query and deploy data mining models are proposed in
[10]; this proposal focuses on managing models rather than
computing them and therefore such extensions are comple-
mentary to our UDFs. Developing data mining algorithms
using SQL has received moderate attention. Some important
proposals include [17] to mine association rules, and [11] to
cluster data sets. More recently, database systems are extended
with model-based views in order to manage databases with
incomplete or inconsistent content, to build regression and
interpolation models [3]. This work is different is several
aspects. We consider several more models besides regression
under a unifying mathematical framework. This proposal ex-
tends the SQL language with additional syntax to define model
views, whereas we avoid it by exploiting existing extensibility

mechanisms. As an algorithmic similarity, this proposal and
ours can incrementally update a model. Extending the database
system with data mining predicates for Naive Bayes, clustering
and decision trees is presented in [2]. This work extends SQL
with clauses to query models. In contrast, in our proposal
models can be stored as tables and therefore SQL can be used
to query them. The optimizations considered in this work are
related to scoring the data set based on an existing model
rather than computing it. Exploiting Google’s well-known
MapReduce system to learn an ensemble of decision trees on
large data sets using a cluster of computers is studied in [16].
There are several differences with our work. Decision trees
are quite different from regression of Bayesian classification
models. we assume large data sets are stored in a DBMS,
whereas [16] assumes data sets are stored on flat files. From
a systems perspective, we enhance data mining capabilities
of relational database systems exploiting their extensibility
mechanisms, instead of building an external data mining tool.
For several models presented in our proposal with UDFs only
one scan is required, making it also ideal for large data sets.
Decision trees, in contrast, require several passes, although the
number of passes can be reduced [16].

This article is an extended version of the conference arti-
cle [12], where UDFs are proposed to compute multivariate
statistical models and to score data sets. This is a summary
of additional content. We now consider the EM algorithm for
a mixture of Gaussians in more detail and the well-known
Naive Bayes classifier. From a database systems perspective,
we now consider two alternative layouts for the data set,
removing dimensionality limitations. We introduced a UDF
for the vertical layout that removes dimensionality limitations.
All experiments were repeated on modern hardware with much
larger data sets. Measuring export time is now done with fast
bulk utilities instead of ODBC.

VI. CONCLUSIONS

This article explained how multidimensional statistical mod-
els can be integrated into a relational DBMS with User-
Defined Functions (UDFs). UDFs are capable of computing
models on large data sets in one pass. We focused on five well-
known statistical techniques including correlation analysis,
linear regression, PCA, the Naive Bayes classifier and K-
means (and EM) clustering. Only clustering requires multiple
passes over the data set. To build models, statistical techniques
can take advantage of two sufficient statistics matrices that
effectively summarize a large, high dimensional data set. The
first matrix (a vector) contains the linear sum of points and
the second one contains the quadratic sum of points with
dimension cross-products. Cross-products can be ignored for
clustering and Bayesian classifiers, yielding a faster UDF that
computes a diagonal matrix. We carefully studied two layouts
for the data set: a horizontal one having dimensions as columns
and a vertical one having one dimension value per row. The
vertical layout presents no limitations for dimensionality and
can be more efficient to analyze sparse matrices. We proposed
two sets of UDFs: an aggregate UDF that computes summary
matrices for all models and a set of scalar UDFs implementing

14

primitive vector operations, used to score data sets based on
a model. Two programming alternatives to compute sufficient
statistics were discussed: SQL queries and aggregate UDFs.
For each alternative we introduced solutions for the horizontal
and vertical layouts. The aggregate UDFs require only one
table scan, but SQL queries require two table scans and
one self-join for a non-diagonal summary matrix. We then
presented a set of scalar UDFs to score data sets in a single
pass based on linear regression, PCA, clustering and Naive
Bayes. Experiments compare UDFs and SQL queries (running
inside the DBMS) and C++ (running on flat files). C++ is
the fastest alternative, but long export times (even with a fast
bulk utility) represent a bottleneck to analyze large data sets
outside the DBMS with C++. Even further, UDFs are twice as
slow as C++ when reading from disk. This is remarkable given
DBMS overhead. Both horizontal and vertical aggregate UDFs
are faster than SQL queries to compute sufficient statistics.
Matrix equations for each model based on sufficient statistics
can be efficiently evaluated in a few seconds, regardless of
data set size. Scalar UDFs have similar efficiency to straight
SQL queries to score data sets based on simpler models, like
linear regression or PCA. But they are significantly faster
than SQL queries to score data sets based on more complex
models like clustering or Bayesian classifiers since they pack
more vector and matrix computations. Scalar and aggregate
UDFs exhibit linear scalability on data set size, highlighting
their remarkable efficiency. We studied the impact of our
optimizations. Passing each input vector as a list of values is
significantly faster than passing it as a packed string of values.
However, the vertical layout UDF accepts only one dimension
value at a time, simplifying the call. Computing a diagonal
matrix instead of a triangular matrix is significantly faster
at high dimensionality. Such optimization benefits models
assuming dimension independence (clustering, Naive Bayes).
UDFs scale linearly on dimensionality when reading from
disk (due to waiting on I/O) and quadratically (due to CPU
operations) when reading from main memory. UDFs scale
linearly with respect to data set size, reading from main
memory or from disk.

There are many directions for future research. The vertical
layout represents the most promising alternative for high
dimensionality and streaming data. Other statistical techniques
can benefit from the same approach: finding matrices that
summarize large data sets to compute a model, efficiently com-
puting such matrices with aggregate UDFs and scoring data
sets with scalar UDFs. We need to study query optimization
when UDFs access views computed with complex SPJ queries.
Disk I/O remains a bottleneck to develop even faster UDFs,
but there are further optimizations like block read-ahead and
synchronized table scans on query steps accessing the same
table that may further reduce time.

Acknowledgments

This research work was supported by US National Science
Foundation grants CCF 0937562 and IIS 0914861.

REFERENCES

[1] T. Chan, G. Golub, and R.J. LeVeque. Algorithms for computing the
sample variance: Analysis and recommendations. Am. Stat., 7(1):242–
247, 1983.

[2] S. Chaudhuri, V.R. Narasayya, and S. Sarawagi. Efficient evaluation of
queries with mining predicates. In Proc. ICDE Conference, pages 529–,
2002.

[3] A. Deshpande and S. Madden. MauveDB: supporting model-based user
views in database systems. In Proc. ACM SIGMOD Conference, pages
73–84, 2006.

[4] R. Ghani and C. Soares. Data mining for business applications: KDD-
2006 workshop. SIGKDD Explor. Newsl., 8(2):79–81, 2006.

[5] G. Graefe, U. Fayyad, and S. Chaudhuri. On the efficient gathering of
sufficient statistics for classification from large SQL databases. In Proc.
ACM KDD Conference, pages 204–208, 1998.

[6] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical
Learning. Springer, New York, 1st edition, 2001.

[7] Z. He, B.S. Lee, and R. Snapp. Self-tuning cost modeling of user-
defined functions in an object-relational DBMS. ACM Transactions on
Database Systems (TODS), 30(3):812–853, 2005.

[8] C. Luo, H. Thakkar, H. Wang, and C. Zaniolo. A native extension of
SQL for mining data streams. In Proc. ACM SIGMOD Conference,
pages 873–875, 2005.

[9] O. Meshar, D. Irony, and S. Toledo. An out-of-core sparse symmetric-
indefinite factorization method. ACM Trans. Math. Softw., 32(3):445–
471, 2006.

[10] A. Netz, S. Chaudhuri, U. Fayyad, and J. Berhardt. Integrating data
mining with SQL databases: OLE DB for data mining. In Proc. IEEE
ICDE Conference, pages 379–387, 2001.

[11] C. Ordonez. Integrating K-means clustering with a relational DBMS
using SQL. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 18(2):188–201, 2006.

[12] C. Ordonez. Building statistical models and scoring with UDFs. In
Proc. ACM SIGMOD Conference, pages 1005–1016, 2007.

[13] C. Ordonez. Models for association rules based on clustering and
correlation. Intelligent Data Analysis, 13(2):337–358, 2009.

[14] C. Ordonez and E. Omiecinski. Efficient disk-based K-means clustering
for relational databases. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 16(8):909–921, 2004.

[15] C. Ordonez and S. Pitchaimalai. Bayesian classifiers programmed in
SQL. IEEE Transactions on Knowledge and Data Engineering (TKDE),
22(1):139–144, 2010.

[16] B. Panda, J. Herbach, S. Basu, and R.J. Bayardo. PLANET: Massively
parallel learning of tree ensembles with MapReduce. In Proc. VLDB
Conference, pages 1426–1437, 2009.

[17] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule
mining with relational database systems: alternatives and implications.
In Proc. ACM SIGMOD Conference, pages 343–354, 1998.

[18] K. Wang, Y. He, and J. Han. Pushing support constraints into association
rules mining. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 15(3):642–658, 2003.

[19] H. Xiong, S. Shekhar, P.N. Tan, and V. Kumar. TAPER: A two-step
approach for all-strong-pairs correlation query in large databases. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 18(4):493–
508, 2006.

[20] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data
clustering method for very large databases. In Proc. ACM SIGMOD
Conference, pages 103–114, 1996.

