
Integrating and Querying Web Databases and Documents

Carlos Garcia-Alvarado
University of Houston

Houston, TX 77204, USA

Carlos Ordonez
University of Houston

Houston, TX 77204, USA

ABSTRACT

There exist many interrelated information sources on the
Internet that can be categorized into structured (database)
and semistructured (documents). A key challenge is to in-
tegrate, query and analyze such heterogeneous collections
of information. In this paper, we defend the idea of build-
ing web metadata repositories using relational databases as
the main source and central data management technology
of structured data, enriched by the semistructured data sur-
rounding it. Our proposal rests on the assumption that het-
erogeneous relational databases can be integrated (i.e. en-
tity resolution is assumed to work well) and thus can serve as
references for external data. That is, we tackle the problem
of integrating information in the deep web, departing from
databases. We discuss a prototype system that can inte-
grate and query metadata and related documents, based on
relational database technology. Metadata includes database
ER model elements like database name, table, and column
(entity, attribute). Web document data include files, docu-
ments and web pages. Links between metadata and external
documents are built with SQL queries. Once databases and
documents are linked, they are managed and queried with
SQL. We discuss an interesting scientific application of our
solution with a water pollution database.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Storage and
Retrieval—Information Search and Retrieval

General Terms

Algorithms, Experimentation

Keywords

Database, Documents, Integration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

1. INTRODUCTION
Information retrieval (IR) and databases (DB) are two

different major technologies for managing and searching for
information that are slowly approaching each other. As
stated in [3], almost any application that manages infor-
mation requires the joint capabilities of IR and database
systems to provide the users with a complete application
[9]. The defining feature of a database is structure, and
such structure has meaning (i.e. semantics), typically cap-
tured in an ER model. In contrast, in IR systems, there
is some structure, but extracting the semantic information
from the semistructured is a difficult task. Semistructured
data sources (i.e. documents, web pages, files) are valuable
for describing and enriching structured data. Managing and
querying semistructured data sources is more challenging
than self-described structured data (i.e. tables in a DBMS).
Therefore, linking IR and DBMS is even more challenging.

We defend the idea of using a relational database as a
central repository to store metadata and to integrate both
technologies. The main advantage is that the integration
can be done efficiently inside the DBMS by using SQL and
extensibility features. The resulting repository can then be
managed efficiently inside the DBMS due to the fact that
the links can be represented in a relational form. With
such motivation in mind, we built a novel hybrid DB-IR
model integrating two previous separate approaches [8, 4].
Our new system finds and explores links between databases
and documents, and then ranks them in a search engine
fashion with a DBMS with primitive IR capabilities. Our
system incorporates new optimizations, including efficient
and approximate matching, link ranking and adapting the
Rank-Join approach for top-k querying [6]. Our system
enables discovering unknown links that go beyond simple
keyword matching. Our goal is to find a core set of links
between database metadata, database content, and docu-
ments, which can be efficiently managed and queried in a
DBMS, instead of searching the document collection while
lacking information links to the database. In addition, it is
possible to extract information that it is not possible to find
if both sources are queried independently.

We tested our application with a scientific database con-
taining water pollution data and a collection of documents
from the Texas Commission on Environmental Quality. The
user can get insightful answers to non-trivial questions such
as, “Which database tables are highly related to arsenic mea-
surement?”, “Which information in the database is related
to a specific section of a document?” or “Which researchers
query a particular table?”

2369

Figure 1: Links between database and documents.

2. LINKING AND QUERYING WEB

DATABASES AND DOCUMENTS
Our approach can be divided into building the metadata

repository (finding links), and ranking and querying this
repository with relational queries.

2.1 Finding Links
Structured metadata is represented by table and column

names. Database records (or rows) represent the basic atoms
of information content, following a fixed table schema. Semistruc-
tured data are given by all the words contained in any exter-
nal document, outside of the database. All documents are
considered to have some structure that helps focus on a set
of keywords in a particular portion of the document. This is
particularly evident in web pages due to the fact that titles
and paragraphs are specified by HTML tags. Additionally,
documents’ metadata, such as author, filename and title, can
be extracted to establish additional links with this informa-
tion. All of this information is then stored in the database
and ranked based on discovered links from the matching
process with a classical IR model. In summary, metadata
and content from structured data and semistructured data
are matched. Notice that assuming a perfect match scenario
is unrealistic. As such, we decided to look for approximate
matches. Three complementary types of links are generated:
high, specific, and content-level links. These links differ in
the level at which they match information metadata and
data elements (see Figure 1). High level metadata links are
based on describing a link between a table and a document.
These links are found by finding matches between annota-
tions describing the tables, as well as tablenames and infor-
mation surrounding a document, such as filename, author,
or even a description name, if available. Specific links relate
sections or subsections in the document and columns in a
table schema. Examples of these types of links are the key-
words inside the header, <h2></h2> tags in HTML, and
the column names. Finally, content links represent the most
complex type of atomic granularity; they are the result of
matching the content of structured data records and docu-
ment keywords (e.g. keywords inside the <p></p> tags).

In more detail, this matching is performed by exploiting
a set of known concepts given by the user (e.g. arsenic, wa-
ter pollution) and synonyms (e.g. {arsenic, AS},{pollutant,
contaminant}), and then applying an efficient keyword match-
ing algorithm in order to generate these links between parts
of the database and certain parts of a document. As stated
previously, we focus on approximate matching (e.g. key-
words that match at least 90% of the given keyword) using
the Approximate Boyer-Moore algorithm in order to obtain
similar keywords (e.g. pollutant and pollutants). The main
advantage of finding such links is that it is possible to ex-

L E

kid k kid Database Location

1 sample 1 {T = sample}

2 arsenic 2 {T = arsenic}

. . . 2 {T = sample, c = pollutant, PK = 4}

5 pollutant 5 {T = sample, c = pollutant}

6 arsenic level 6 {T = sample, c = arsenic level}

.

Table 1: Example of E and L.

plore integrated information at different granularity levels
within a database, following the information on web docu-
ments, using high level links. Also notice that the generation
of these links (or source integration) can be performed on a
particular granularity. High level metadata links are gener-
ated much faster than specific links and in a similar fashion.
Specific links are obtained much faster than content links.
Also notice that the resulting number of links grows as we
drill down into the integration of both sources.

When desired, the user can explore in more detail all doc-
uments related to a particular matched table or drill down
into such a table. Thus, the user can query and explore both
documents and the databases that relate to them.

loc. in db keyword

in db.

concept doc. keyword in

doc.

loc. in doc.

High level

db1:arsenic arsenic arsenic 1 arsenic filename

db1:As As arsenic 3 As metadata

Specific level

db1:chemical arsenic arsenic 1 arsenic title

db1:chemical arsenic arsenic 3 As paragraph

Content level

db1:sample:

record1

As arsenic 1 arsenic title

db1:sample:

record1

As arsenic 3 As paragraph

Table 2: Examples of high level, specific level, and
content level links.

The main algorithms for performing such an exploration
are detailed in [5], in which the main idea is to keep a list
with all the unique keywords to integrate in both sources
(given as a set of valid concepts and synonyms). These con-
cepts are then matched to elements in the database (storing
their location) and then performing a similar search within
the corpus. An important characteristic is that when a key-
word is not found in either the database or the corpus, this
concept is dropped from the search list to avoid looking into
the rest of the sources. Upon completion of this process, the
set of approximate matches of both sources is matched to
obtain the links. In order to avoid repeating computations,
it is preferable to search for all the links (high level, specific
links or content links) at the same computation.

2.2 Processing with Relational Queries
The basic IR system in SQL is introduced in [4]. The ap-

plication was developed using SQL statements and in-DBMS
extensibility mechanisms, such as User-Defined Functions
(UDFs) for stemming, SQL statements for cleaning, storing
and obtaining the links, and UDFs for parsing and rank-
ing [4]. Notice that unlike [4], our ranking is focused on the
newly discovered links and not on keywords. Therefore, links
are weighted considering whether they match metadata or
actual data content, as well as how close they match it (due
to the approximate matching result). If links connect meta-
data elements, then the links can be weighted computing
a measure summarizing actual content (similar to applying
the Vector Space Model). If links are connecting content,

2370

then they are weighted based on the number of links as-
sociated with a particular concept (using a summarization).
For example, if a link matches a document and a table, these
two elements are composed of a set of keywords that can be
used to compute a cosine similarity. On the other hand,
when links are connecting a record in the database (in the
content level) and a keyword in a document, they will have
to be ranked based on the number of links associated with
that particular record. Once an appropriate ranking func-
tion has been defined, the retrieval of top-k links can be done
efficiently (e.g. using the Rank-Join algorithm).

Links between the database and documents are built as
follows: an input table with basic keywords (representing
concepts), is given to perform matching. An auxiliary table
is used to represent concept synonyms. These keywords are
then matched between every element in the database and
then for every keyword in the corpus. This matching is per-
formed using user-defined functions in order to keep in-main
memory all the data structures used to obtain the edit dis-
tance for every concept and every given string coming from
the database or a document in the corpus. This matching
step is the bottleneck of the link matching. However, to
ease the processing, we perform the matching in batches. In
other words, a set of elements in the DBMS or documents
is scanned simultaneously to avoid I/Os. The size of the
batches, as well as a valid approximate match, are parame-
ters that need to be tuned by the user. A sample list of the
concepts L and the elements found in the database E are
presented in Table 1. Summary tables are created to avoid
repeated searches on a particular data source and they in-
clude the location of the concept in the database and in the
corpus. By using these summary tables, it is possible to
build metadata and content links by performing a join on
the matching keywords. The join on the matching keyword
is performed by using a hash join on the concept id that was
assigned during the matching phase. The resulting hash join
is quite efficient due to the keyword indexes.

Notice that the type of link is based on the location of
the elements in the database and the keywords in the cor-
pus. By joining these two summary tables containing the
concept match and the location of the match between the
two sources, we can find that there are indeed two meta-
data links pointing to a table name and a column name.
Also, during this phase, the concepts that do not have a
corresponding link between the database and the documents
must be removed from the list. Additionally, the number of
links associated with particular concept must be computed
(used to rank content links). A final step for link creation
is assigning a weight to every content keyword that can be
associated with a corresponding match in the corpus. By
doing so, it is feasible to rank all metadata links.

Exploring (ad-hoc querying) links is less computationally
expensive due to the links that have already been found, and
thus work on materialized views. The querying is performed
on these smaller indexed tables by using selection predicates
p to find matching keywords given in a query, and the rank-
ing is obtained by computing the corresponding weights for
every concept (see Figure 2). Notice that p is a subquery
that selects the keywords from the list L that approximately
match a given concept. We should point out that rank-
ing can be performed with any information retrieval ranking
method. Due to their solid theoretical foundation, we used
the vector space model and the Rank-Join algorithm for re-

SELECT P.kid, R.i, E.level, P.d

FROM

L_predicate P

INNER JOIN database_keyword E

ON (P.kid = E.kid)

INNER JOIN document_keyword R

ON (R.kid = E.kid)

ORDER BY E.level, R.i, P.d DESC

Figure 2: Querying the link repository.

turning the top-k concepts. The Rank-Join algorithm was
pipelined as an operation using a user-defined function and
managed as an approximation for efficiency purposes.

3. APPLICATION ON SCIENTIFIC DATA
Our system is a Web DBMS Client Application with a

client-server architecture. The processing works entirely in-
side the DBMS exploiting efficient SQL queries. These SQL
queries are also enhanced by efficient extensibility features
for complex processing (e.g. matching or parsing). There-
fore, the front-end is a thin layer of SQL generation, which
connects to the DBMS via ODBC and displays the final re-
sults. The front-end was developed with ASP .NET. The
user interface allows searching documents utilizing the links
involving Users, Tables, Documents, Columns and Fields,
as well as the document abstracts. The output shows the
results that are part of the database schema (e.g. columns),
the results that are part of the semistructured world (e.g.
authors) and the SQL associated to obtain those results.
The front-end also allows the user to define the settings of
the application, such as the document loading options, on-
demand links search, and the top-k implementation (exact
built-in top-k or UDF Rank-Join).

We are currently using our system on a scientific database
containing water pollution data from wells in Texas (TWWD).
The goal is to determine if water is polluted by humans or if
it is naturally polluted. This database consists of 32 tables
with up to 214 columns, where each table has an average
size of 111,488 rows. Tables contain measurement informa-
tion regarding chemicals found in water samples, such as
concentration and units of measurement, as well as the ge-
ographical location of the well and associated descriptions
and measurements of the results of several water samples.
Due to the complexity of establishing semantics of numeric
data, we are currently ignoring numbers during the linking
process, but that is an area for future research. Associated
with this database, we analyzed a pre-processed (stop words
removed, stemmed) collection of documents describing sci-
entific findings regarding the causes for water pollution.

In these two data sources, we applied two phases: (1) find-
ing links and (2) navigating interrelated documents. Phase
1 is the most difficult and time consuming, especially while
factoring in semantics. Phase 2 includes top-k selection,
exploration of the links, and monitoring performance. An
example of discovered links associated with the concept “ar-
senic” is shown in Table 2. In addition, in Table 3 we also
show the resulting links found using the query presented
in Figure 2. Our system allows more complex queries by
weighting using the content of the metadata or faster alter-
natives such as the Rank-Join.

2371

kid i f δ Database Location
2 1 1 0 {T = arsenic}
2 2 1 0 {T = arsenic, c = pollutant, PK = 4}

Table 3: Ranking Links (query = “arsenic”).

4. RELATED WORK
Heterogeneous source integration has been approached in

similar research. EROCS is one of the few attempts at ob-
taining a linkage between structured and unstructured data
[2]. EROCS focuses on linking transactions and then per-
forming data mining operations over the newly discovered
links. The linkage is performed using templates for identify-
ing entities. However, unlike our approach, EROCS does not
extend the DBMS functionalities using user-defined func-
tions, nor does it deal with approximate matching. In [10,
7] the authors have a similar objective of linking structured
and unstructured sources. This is probably the closest work
to our research. However, in their approach, the DBMS is
analyzed as a graph and then clustered. The final result is
a traditional rank on top of the nodes of a graph. Simi-
lar to EROCS, their system does not take advantage of the
extensibility features of the DBMS and avoids approximate
matching. In addition, the ranking is performed on the ex-
tracted concepts and the weights are not assigned based on
the frequency of appearance or location of these concepts.

Finally, in [8, 6], the authors suggest a method of relat-
ing schema-keywords with keywords in the documents, and
generating macro and micro relationships. The matching
between both sources is done using an Object Data Model,
as presented in [1], and the unstructured sources were man-
aged using XML. We integrated the schema matching and
keyword search ideas to present a more complete solution on
the existing types of links between elements and documents
and present a novel idea on how to rank documents given
these relationships within the DBMS. In addition, we do
not require a given Object Data Model for discovering these
links between the structured and unstructured sources, and
our linkage is performed only with concept and synonym
lists. Finally, this paper extends the ideas presented in [5]
by limiting the high level links to relate only metadata, the
specific links to relate certain sections of the keywords in the
documents, and provides a ranking based on the content of
the high or specific links. The objective of these modifica-
tions was to obtain efficient metadata linkage and allow a
drill down exploration through more granular links.

5. CONCLUSIONS
In this paper, we presented a process for discovering“links”

between the elements of a central database and a collection
of documents. To the best of our knowledge, this research is
one of the few efforts to obtain, manage, and rank links be-
tween these sources. The links are defined in different levels
of granularity based on the elements they link. High links
relate a document and a table, and specific links relate a col-
umn of a table and a section or subsection of a document.
The content links match the actual rows of the database to
specific keywords within the content of the semistructured
source. In addition, an algorithm for discovering such re-
lations was presented. We proposed an approximate search
which provides a fair policy for obtaining matching concepts.
We also found that that the bottleneck of the algorithm is

in searching for the elements in the database when a set of
keywords is given. In addition, the search of approximate
keywords appears to be a target for future optimizations.
The algorithms perform efficiently because the search is per-
formed in small and indexed data structures containing the
set of valid relationships and summarized tables. We also
propose a data layout, indexing and querying strategies that
optimized retrieval times.

Future work in this area includes thorough experiments for
verifying the reliability of the extracted links. In addition to
some comparisons with similar integration approaches and
exploring a parallel implementation of the proposed algo-
rithms, which can speed up the execution of both tasks
(preprocessing and retrieval). The optimization for approx-
imate string matching with multiple keywords appears as
an interesting area of research. Finally, the combination of
more complex weighting techniques of the elements in the
database, as well as formalizing the complexity and com-
putability of finding links, remain as open problems for fu-
ture research.

Acknowledgments

This work was supported by NSF grants CCF 0937562 and
IIS 0914861.

6. REFERENCES
[1] S. Bergamaschi, S. Castano, and M. Vincini. Semantic

integration of semistructured and structured data
sources. ACM Sigmod Record, 28(1):54–59, 1999.

[2] M. Bhide, V. Chakravarthy, A. Gupta, H. Gupta,
M. Mohania, K. Puniyani, P. Roy, S. Roy, and
V. Sengar. Enhanced Business Intelligence using
EROCS. In Proc. of ICDE, pages 1616–1619. IEEE
Computer Society Washington, DC, USA, 2008.

[3] S. Chaudhuri, R. Ramakrishnan, and G. Weikum.
Integrating DB and IR technologies: What is the
sound of one hand clapping. In Proc. of CIDR, 2005.

[4] C. Garcia-Alvarado and C. Ordonez. Information
retrieval from digital libraries in SQL. In WIDM 2008.
ACM New York, NY, USA, 2008.

[5] C. Garcia-Alvarado and C. Ordonez. Keyword Search
Across Databases and Documents. In Proc. ACM
SIGMOD Workshop on Keyword Search on Structured
Data (KEYS), 2010.

[6] C. Garcia-Alvarado, C. Ordonez, and Z. Chen.
DBDOC: Querying and Browsing Databases and
Interrelated Documents. In Proc. ACM SIGMOD
Workshop on Keyword Search on Structured Data
(KEYS), 2009.

[7] G. Li, B.C. Ooi, J. Feng, J. Wang, and L. Zhou.
EASE: an effective 3-in-1 keyword search method for
unstructured, semi-structured and structured data. In
Proc. of ACM SIGMOD, pages 903–914. ACM, 2008.

[8] C. Ordonez, Z. Chen, and J. Garćıa-Garćıa. Metadata
management for federated databases. In ACM CIMS
Workshop, pages 31–38, 2007.

[9] L. Qin, J.X. Yu, and L. Chang. Keyword search in
databases: the power of RDBMS. In Proc. of
SIGMOD, pages 681–694, 2009.

[10] Q.H. Vu, B.C. Ooi, D. Papadias, and A.K.H. Tung. A
graph method for keyword-based selection of the top-K
databases. In SIGMOD, pages 915–926. ACM, 2008.

2372

