
ONTOCUBE: Efficient Ontology Extraction using
OLAP Cubes

Carlos Garcia-Alvarado
University of Houston

Dept. of Computer Science
Houston, TX 77204, USA

Zhibo Chen
University of Houston

Dept. of Computer Science
Houston, TX 77204, USA

Carlos Ordonez
University of Houston

Dept. of Computer Science
Houston, TX 77204, USA

ABSTRACT

Ontologies are knowledge conceptualizations of a particu-
lar domain and are commonly represented with hierarchies.
While final ontologies appear deceivingly simple on paper,
building ontologies represents a time-consuming task that is
normally performed by natural language processing tech-
niques or schema matching. On the other hand, OLAP
cubes are most commonly used during decision-making pro-
cesses via the analysis of data summarizations. In this pa-
per, we present a novel approach based on using OLAP
cubes for ontology extraction. The resulting ontology is
obtained through an analytical process of the summarized
frequencies of keywords within a corpus. The solution was
implemented within a relational database system (DBMS).
In our experiments, we show how all the proposed discrim-
ination measures (frequency, correlation, lift) affect the re-
sulting classes. We also show a sample ontology result and
the accuracy of finding true classes. Finally, we show the
performance breakdown of our algorithm.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database applications—
Data mining

General Terms

Algorithms, Experimentation

Keywords

OLAP, Ontologies, DBMS

1. INTRODUCTION
Ontologies model a view of a continuously evolving world.

However, this formal specification of a shared conceptualiza-
tion, made into a machine readable format, is dependent on
a specific context and point of view [1]. Due to this special-
ization, it is required that multiple ontologies be created for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

every world’s view, giving as a result a huge task that nor-
mally undergoes human supervision, creating a knowledge
acquisition bottleneck. In this paper, we focus on the prob-
lem of extracting the main concepts of a set of documents
stored in a DBMS and then using them to build an ontol-
ogy. The problem of extracting concepts is not trivial and
has been tackled through natural language processing, clus-
tering, singular value decomposition (SVD), and statistics,
among many other proposed solutions [1]. The main prob-
lem with these approaches is that they are time-consuming
or require previous knowledge to be provided. Moreover, it
has been shown that these proposals are not the ultimate
answer for ontology extraction.

Online Analytical Processing (OLAP) can be used to ef-
ficiently obtain these frequency summarizations’ and key-
words’ correlation in order to extract and organize the most
representative concepts in a corpus. The main characteristic
of this approach is that the ontology can be built without
the need of a given pattern or a set of rules in an automated
form. However, OLAP has never been exploited to build
ontologies. The ontology construction process can be sum-
marized as the extraction of concepts (classes) and the rela-
tions between them based on an analysis of the keywords of
a corpus. The documents within the corpus are initially pre-
processed, transformed and analyzed, and finally organized
to build an ontology. The result of the analysis phase is a
set of concepts built from a group of keywords. The analysis
phase determines the concepts and properties that charac-
terize each concept. In a similar manner, basic relations,
such as “has a” or “is a” can be inferred with the analysis
of the preprocessed data set. The final phase builds the on-
tology by organizing the extracted relations and classes. In
this research, we present how all these steps can be included
within the OLAP process in order to generate efficiently, in
an automated fashion, an ontology from a given set of docu-
ments stored in a DBMS. This paper is organized as follows:
Section 2 presents the notation of the main concepts of on-
tologies and OLAP. Section 3 shows our OLAP process for
building ontologies. In Section 4, the quality and perfor-
mance results are presented. Similar works are discussed in
Section 5. Finally, in Section 6, we make our final remarks.

2. PRELIMINARIES
Let us focus on defining the notation that will be used

throughout this paper. Let C be a collection, or corpus,
of n documents {d1, d2, . . . , dn}, where each document di is
composed of a set of keywords tij . In addition, let xi be a
frequency vector of all the different keywords in C for each

2429

document di. We assume that C is stored in a vertical list
format. This list is stored in a vtf table that contains the
document id, keyword, and position in the ith document. A
summarization table tf is computed from vtf as a table with
the document id i, the keyword t, and the term frequency f
stored. The backbone data structure for OLAP data cubes
is the dimensional lattice, which has a size of 2t̂−1, where t̂

is the number of selected keywords. One level (or depth in

the lattice) of the cube is denoted by
(|t̂|
level

)
, s.t. level ≤

∣∣t̂
∣∣.

2.1 Ontologies
Regardless of the ontology language, all these knowledge

representations rely on the specification of the main con-
cepts in the given context. Every concept is defined as
a class with a set of properties and interactions between
the classes, subclasses, and their properties. A class (e.g.
owl:Class) is a classification of individuals (instances) that
share common characteristics. This class classification is
obtained through a taxonomy (hierarchy). In the case of
individuals, the relationship between them is given by the
specification of properties, which can be represented by an
object (e.g. owl:ObjectProperty) and by a datatype (e.g.
owl:DatatypeProperty). In this work, we do not focus on
the language, but on the extraction of classes and relations.

2.2 OLAP Cubes
While normal applications of OLAP include business re-

ports and financial analysis [2], we believe that the OLAP
dimensional lattice can be used to efficiently obtain classes
and their relations. In this case, the data is represented by
the collection of keywords and documents while the level
of aggregation allows us to obtain various combinations of
these keywords to generate concepts.

While traditional OLAP accepts inputs that are horizon-
tal, in our system, vtf has a vertical format, with each row
containing a single keyword. This presents a challenge to
aggregations because we are unable to use the normal tech-
niques, such as slicing, with the vertical format. Despite
this, we are only analyzing a small subset (the most fre-
quent keywords), t̂, of all keywords in the collection.

We developed an algorithm that can obtain the necessary
aggregations and perform the required auxiliary computa-
tions with the associated keyword frequency (correlations
and lift) directly from the vertical format. In this case, a
data cube is computed from the list of keywords in order to
form sets of words. OLAP is the perfect tool because it is
able to use data cubes that allow for quick access.

2.3 Correlation
We also utilize correlation, which will represent how re-

lated the frequency of a keyword is with another in terms of
the whole collection. In addition to the previous definitions,
let L be an additional set containing the total sum of all the
different terms in the collection (L =

∑n

i=1 xi). Moreover,
let Q be a lower triangular matrix containing the squared
measures between the terms Q =

∑n

i=1 xix
T
i (see [7]). In the

last step, the correlation of a pair of keywords a and b is ob-
tained by computing equation ρab = nQab−LaLb√

nQaa−L2
a

√
nQbb−L2

b

.

An additional measure to evaluate a pair of keywords is ob-
tained through lift, λ. λ represents how often these two
keywords appear in the collection. This value is computed

Input: level , t̂

Set of Classes S

Init Listtf
foreach<i,t̂,p> r in vtf sorted by i

if i changed

C ← GetNextCombo(Listtf , level)

DoWhile (C!=null)
SC .freq++
SC .pos+=r.p

C ← GetNextCombo(Listtf , level)

endwhile

else

Listtf ← {r.t, r.p}

endif

endforeach

return S

Figure 1: Ontocube.

as λ =
na,b

Max(na,nb)
, where na and nb are the number of doc-

uments containing keywords a and b, respectively.

3. ONTOCUBE
In this section, we detail the ontology extraction pro-

cess and every optimization performed to obtain classes and
build the ontology.

3.1 Concept extraction
A one-time preprocessing step is required for setting the

environment for obtaining the frequency of the keywords.
The data set was preprocessed by removing the stopwords
and assigning a position for every keyword in every docu-
ment. Our proposed process for extracting concepts is the
result of analyzing the most frequent keywords and gener-
ating combinations with these keywords. The frequencies of
these combinations are also computed, as well as the corre-
lation and lift of these pairs of keywords. The classes are
obtained from the combinations by answering these ques-
tions: (1) Do the keywords appear in the same documents
frequently? (2) Are the set of keywords close to each other?
(3) How often do they appear together within the corpus?
(4) How often is one keyword found in a document but not
the other? The first question addresses the problem of find-
ing keywords that appear in the same documents. In addi-
tion to this, we are required to know if they appear in the
same proportion within the collection. As such, the correla-
tion of each combination is computed. In the second ques-
tion, we are interested in finding how close the keywords
appear to each other. This distance between keywords is
obtained as the difference between the positions of the key-
words. The last two questions try to identify those sets of
keywords that commonly appear together throughout the
collection, or those that do not. The rationale behind this is
that the core concepts appear consistently together through-
out the collection. On the other hand, there are concepts
that may appear strong when present together, but are of-
ten found in separate areas. Both of these questions can be
answered by observing the lift of the concept.

Efficient summarization is performed in one-pass by creat-
ing the keyword combinations “on-the-fly”during the OLAP
cube aggregation. The final result for this step is a set of
classes from which the ontology will be extracted. The al-
gorithm for obtaining such classes is as follows: (1) obtain
all available classes by pairing all keywords within each doc-
ument, (2) for each class, determine the frequency of occur-
rence and average position gap within the corpus, (3) filter
out all classes whose keywords have a position gap greater
than a user-defined threshold, pDiff , and (4) filter out all

2430

classes whose frequency, correlation, or lift does not meet
user-defined thresholds.

The pseudocode for the first two steps is shown in Fig-
ure 1. The remaining two steps can be accomplished by
traversing S and removing those classes that do not meet
the user-defined thresholds. We are only interested in the
classes formed by keywords within a specific document. As
a result, we found it is easiest to first gather all the keywords
within a document into Listvtf before processing them once
the document id, i, changed. Notice that this algorithm
would not generate the combinations of keywords that are
not present in the data set.

We adapted an efficient one-pass method to compute the
correlation values of unique terms in the collection similar
to the one presented in [2, 6]. The correlation and lift values
are computed with the resulting aggregations from the sum-
marization step. As a result, the vtf table is not scanned
again to compute both values. Instead, we only used a sum-
marization table. The lift values for each set of terms are
computed from a separate aggregation step where we stored
the number of documents that each term appears in.

3.2 Ontology building
The ontology is built from the pool of classes generated

from the previous step. We then proceed to build links be-
tween the individual classes. Initially, we pair each class
with all other classes within the pool. Let each set of two
classes be a relationship. For each of these relationships, we
extracted the correlation and lift of each set of two keywords.
For example, suppose we have the relationship {A,B}, {C,D}.
We would need to obtain the correlation and lift for the fol-
lowing set of keywords: (A,C), (A,D), (B,C), (B,D). These
values would allow us to observe how closely related these
two classes are to one another. A high correlation and a
high lift from any one of these four subsets would confirm
that this is a valid relationship. Otherwise, if these four sub-
sets do not show a high connection, we would discard this
relationship.

Upon completion of this process, we have a set of valid
relationships, each formed from two classes. The final step
is identification of relations of the form “has a”, which define
a hierarchy. In other words, we are only concerned with
parent-child relationships to build a vertical ontology. The
parent is determined with a heuristic based on the frequency
of appearance of these classes. We considered a class (A)
to be the parent of another class (B) in a relationship if
the following criteria is satisfied: (1) Number of documents
containing A - Number of documents containing B < 10% of
total documents, (2) Number of classes containing keywords
in class A > Number of classes containing keywords in class
B. If class A passes both criteria, then we consider it to be
a parent of class B.

4. EXPERIMENTS
Our experiments were run on an Intel Xeon E3110 server

at 3.00 GHz with a 750 GB in hard drive and 4 GB of RAM.
The server was running an instance of SQL SERVER 2005.
The OLAP algorithm was implemented entirely with SQL.
We tested our approach with a real data set comprised of a
corpus of sports articles centered around the Boston Celtics
basketball team. There are a total of 50 documents based
on game recaps with a total of nearly 15K individual terms.

Table 1: Num. of Classes varying corr, lift, and freq.
Corr Freq Lift No. t Corr Freq Lift No. t

0.6 10 0.0 3765 0.8 10 0.0 2383
0.6 10 0.5 146 0.8 10 0.5 48
0.6 20 0.0 1122 0.8 20 0.0 529
0.6 20 0.5 83 0.8 20 0.5 22
0.6 40 0.0 229 0.8 40 0.0 91
0.6 40 0.5 42 0.8 40 0.5 5

Table 2: Sample Ontology Result.
Parent Child Parent Child

Boston Celtics Rajon Rondo Box Score Ray Allen
Boston Celtics Ray Allen Box Score Kevin Garnett
Boston Celtics Doc Rivers Key Moment Ray Allen
Boston Celtics Kevin Garnett Key Moment Rajon Rondo
Box Score Rajon Rondo Key Score Kevin Garnett

4.1 Summarization
Table 1 displays the total number of classes that are found

when the shown thresholds are applied. These are the classes
that form the pool from which the ontologies are later ex-
tracted. It is important to note that the total number of
possible classes is 786382. Thus, even with minimal thresh-
olds, we are still able to filter more than 99% of the possible
classes. We can also observe that most influential threshold
on the number of classes is lift. An important property that
we observed during the experiments is that the larger the
collection of documents, the fewer the number of incorrect
classes we obtain. The rationale behind this is that true con-
cepts tend to be more consistent throughout the collection.

4.2 Ontologies
The next step is to extract meaningful ontologies from this

set of classes. Table 2 shows several examples of meaning-
ful ontologies that were extracted. We were able to extract
several key players from the Celtics team and also apply the
correct parent-child relationship. Rondo, Allen, and Gar-
nett are all players, while Rivers is the coach of the Celtics.
The link of Box Score to the actual players makes perfect
sense, since each player would have their own set of scores.
The last three relationships are the most interesting because
they provide us with descriptive terms. From them, we can
surmise that the writers of these documents consider both
Allen and Rondo to be vital in Key Moments while Garnett
is a Key Scorer. We conducted additional verification on
these discoveries and found them to be true.

It is also important to look at how many erroneous links
are formed. To showcase this, we studied the accuracy of
our resulting ontologies. In this case, accuracy represents
whether a certain link makes sense or not. For example,
Boston Celtics → Rajon Rondo is correct because Rondo is
a player on the Celtics. Had the relationship been reversed,
then this would be considered incorrect. The final tally of
the accuracy is shown in Table 3. We can see that parents
that are players consistently had lower accuracies than par-
ents that represented items or stats. This can be explained
by the fact that the documents we obtained were all game
recap articles. As such, those articles contain a wide variety
of players and teams, but are quite consistent in reporting
the scores and stats of each game. The classes Key Box and
Key Line obtained 0% accuracy because these classes them-
selves do not represent viable sets. We believe that with a
larger and more varied pool of documents, the accuracies
would improve.

2431

Table 3: Accuracy of Results
Parent No. Ch. Acc. (%) Parent No. Ch. Acc. (%)

Boston Celtics 19 89 Key Moment 11 91
Box Line 11 82 Key Score 12 83
Box Score 12 75 Paul Pierce 6 50
Doc Rivers 3 0 Points Rebounds 9 88
Game Celtics 17 100 Rajon Rondo 6 50
Glen Davis 1 100 Ray Allen 4 50
Kevin Garnett 3 33 Score Line 12 83
Key Box 11 0 Score Points 7 43
Key Line 11 0

Overall 155 67

Figure 2: Ontology generation varying no. of terms.

4.3 Performance
Performance is a key factor in determining the usefulness

of an algorithm. Thus, we provide two performance indica-
tors. First, in Table 2, we show the general trend for both
the preprocessing steps and the summarization/ontology ex-
traction steps as we vary the number of initial terms. We can
observe that the trend is linear with respect to the number
of terms. This is to be expected since we are mostly using
self-joins and table scans, so the number of terms should not
exponentially affect the execution time.

We show a breakdown of the times for executing our algo-
rithm with an initial term size of 15K in Table 4. We can see
that the most heavily-weighted steps are the preprocessing
step and the validating pairs step. We expected these two
steps to be the most costly because of the self-join that is
present in both steps. The preprocessing step includes the
NLQ calculation for pairs of terms while the other step in-
volves the actual pairing of the terms to produce the classes.

5. RELATED WORK
The need to automate the time-consuming generation of

ontologies has led to multiple solutions that rely on previous
knowledge or time-consuming tasks. OntoLT [1] is a plug-in
for the Protégé ontology tool. It allows the user to define a
set of rules for extracting an ontology from annotated text
collections. Data mining approaches, such as [3], propose us-
ing a C4.5 decision tree to extract the main concepts. The
non-leaf nodes are classes and the leaf nodes are individ-
uals. In contrast to our approach, we perform this class
extraction in one pass through the data. Ontobuilder is a
ontology extractor based on a schema matching approach
[5]. The ontology extractor is based on heuristic methods.
Doddle-OWL [4] reuses given knowledge to extracts classes
and relations (mostly WordNet). Then it relies on a refine-
ment (feedback) to build a final ontology.

In [6], we realized that our query recommendation algo-
rithm could also discover the main ontology concepts behind

Table 4: Breakdown of computation time (in secs).
Step Time Percentage

PreProcessing 11.0 40
Corr and Lift 2.3 8
Pairing Terms 11.9 44
Ontology 2.3 8

a particular topic. Our main contribution is that we are able
to obtain classes and relations based only on efficient com-
putations of several discrimination values (correlation and
lift.) Unlike the proposed solutions, we require minimal hu-
man intervention and only a few parameters to be tuned.

6. CONCLUSIONS
We presented an algorithm for ontology extraction with

OLAP cubes. The core of the proposal is the obtaining of
an efficient keyword frequency summarization with a one-
pass algorithm for computing the correlation and lift from
pairs of keywords from a corpus. Once this analysis has been
performed, a set of heuristics are used to create a hierarchy
and find the relation between the classes. Our experiments
show that our candidate classes are pruned early with mini-
mal thresholds for lift and correlation to obtain meaningful
classes. We observed that most influential threshold on the
number of classes is lift, with frequency and correlation hav-
ing similar selectivity effects. We also found that the most
of the classes are quite relevant, and the overall hierarchy
accuracy had an overall performance of 67% with a few mis-
classified concepts decreasing the overall average. However,
for most of the concepts, the hierarchy achieved outstanding
results of 75% or higher. The algorithm also showed linear
scalability with term pairing and preprocessing as the most
costly steps, respectively. Future research includes hybrid
approaches (NLP, ML, OLAP), trying other heuristics, and
finding other types of relationships between classes.

Acknowledgments

This work was supported by NSF grants CCF 0937562 and
IIS 0914861.

7. REFERENCES
[1] P. Buitelaar, D. Olejnik, and M. Sintek. OntoLT: A

protégé plug-in for ontology extraction from text. In
Proc. of ISWC, 2003.

[2] Z. Chen and C. Ordonez. Efficient OLAP with UDFs.
In Proc. ACM DOLAP Workshop, pages 41–48, 2008.

[3] A. Elsayed, S. El-Beltagy, M. Rafea, and O. Hegazy.
Applying Data Mining for Ontology Building. In Proc.

of ISSR, 2007.

[4] N. Fukuta, T. Yamaguchi, T. Morita, and N. Izumi.
DODDLE-OWL: Interactive Domain Ontology
Development with Open Source Software in Java.
IEICE TOIS, 91(4):945–958, 2008.

[5] A. Gal, G. Modica, and H. Jamil. Ontobuilder: Fully
automatic extraction and consolidation of ontologies
from web sources. In Proc. of ICDE, page 853, 2004.

[6] C. Garcia-Alvarado, Z. Chen, and C. Ordonez.
OLAP-based query recommendation. In Proc. of ACM

CIKM, pages 1353–1356, 2010.

[7] C. Ordonez. Statistical Model Computation with
UDFs. IEEE TKDE, 2010.

2432

