
A Data Mining System Based on SQL Queries and UDFs
for Relational Databases

Carlos Ordonez
University of Houston

Houston, TX 77204, USA

Carlos Garcia-Alvarado
University of Houston

Houston, TX 77204, USA

ABSTRACT

Most research on data mining has proposed algorithms and
optimizations that work on flat files, outside a DBMS, mainly
due to the following reasons. It is easier to develop efficient
algorithms in a traditional programming language. The in-
tegration of data mining algorithms into a DBMS is difficult
given its relational model foundation and system architec-
ture. Moreover, SQL may be slow and cumbersome for nu-
merical analysis computations. Therefore, data mining users
commonly export data sets outside the DBMS for data min-
ing processing, which creates a performance bottleneck and
eliminates important data management capabilities such as
query processing and security, among others (e.g. concur-
rency control and fault tolerance). With that motivation in
mind, we developed a novel system based on SQL queries
and User-Defined Functions (UDFs) that can directly ana-
lyze relational tables to compute statistical models, storing
such models as relational tables as well. Most algorithms
have been optimized to reduce the number of passes on the
data set. Our system can analyze large and high dimensional
data sets faster than external data mining tools.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Relational
databases

General Terms

Algorithms, Languages, Performance, Theory

1. INTRODUCTION
Our research studies the problem of performing data min-

ing inside a DBMS, paying attention to large data sets. Data
mining research is extensive, but the vast majority of propos-
als has proposed efficient algorithms and optimizations that
work on flat files [7]. Therefore, they are difficult to integrate
with a DBMS. However, it is fair to say that despite alter-
native proposals and technologies, relational DBMSs remain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

the dominating technology to manage and analyze large
databases. Even further, open-source DBMSs (e.g. Post-
greSQL, MySQL, SQLite) are becoming increasingly popu-
lar. Well-known data mining techniques include K-means
clustering [4], PCA [2, 1], regression [1], Bayesian classifiers
[8], association rules, and decision trees [1] among others.
The problem of integrating machine learning and statistical
techniques with a DBMS has received scant attention. The
integration of data mining algorithms into a DBMS is diffi-
cult due to the mathematical nature of models, the lack of
access to the DBMS source code and the complex internal
DBMS architecture. Another, more practical, reason, not to
use a DBMS for data mining tasks is the comprehensive set
of techniques available in external data mining tools. Com-
mercial DBMSs provide basic data mining algorithms, but
they are difficult to customize, extend and optimize because
algorithms are either internally integrated or work on flat
files exported with fast interfaces. Also, from a mathemati-
cal point of view, they lack a unifying statistical foundation.
As a consequence, users or the DBMS itself generally ex-
port data sets as files to an external data mining program,
thereby going through a performance bottleneck (extracting
large tables is slow) and losing the data management capa-
bilities provided by the DBMS (query processing, security,
concurrency control, fault tolerance).

From a practical standpoint, SQL is and will likely remain
the language to interact with a DBMS. With that motiva-
tion in mind, we present a data mining system that can
work on top of a relational DBMS based on SQL queries
and User-Defined Functions (UDFs), proving that the com-
mon perception that SQL is inefficient or inadequate for data
mining is false.

Our system incorporates fundamental machine learning
and statistical models whose equations and algorithmic steps
are computed with a combination of optimized SQL queries
and UDFs. Our system includes, among other techniques,
Principal Component Analysis (PCA) [2, 5], clustering with
mixtures of distributions [4], linear regression [5], paramet-
ric statistical tests, and Bayesian Classifiers [8], covering a
wide spectrum of statistical and machine learning models.
Unlike most research proposals and existing tools, our sys-
tem can directly process relational tables, truly performing
”in-database” analytics.

Our approach is unique and competitive. Most impor-
tantly, matrix equations are computed with SQL queries and
UDFs, instead of a traditional programming language. Thus
we have been able to integrate techniques without having
access to the DBMS internal source code, an option avail-

2521

Figure 1: System architecture.

able only to experienced DBMS researchers or developers.
Our system provides efficient algorithms, which can analyze
large data sets faster than external data mining tools. Sev-
eral of our SQL-based algorithms can process a large data
set in only one pass, while the rest can do it in a few passes.
Moreover, all our algorithms have linear scalability on data
set size and most of them scale linearly on dimensionality.
Our system has promise of wide application as DBMSs re-
main the standard data management platform, databases
keep growing and computers become faster.

2. SYSTEM DESCRIPTION
Our system is based on a comprehensive research effort,

where different data mining techniques have been adapted
and programmed with optimized SQL queries [4] and more
recently with UDFs [5, 9]. We start by presenting the system
architecture. We then define the input data set, as well as
available statistical models. Finally, we provide a technical
summary of how we programmed data mining algorithms
with optimized SQL queries and UDFs.

2.1 System Architecture
Our system is based on a client-server architecture, shown

in Figure 1. The data set, model matrices and model pa-
rameters, are all stored as relational tables. A program
at the client computer, connected to the DBMS server via
ODBC, calls a stored procedure, which in turn generates
SQL queries. The system provides the option to evaluate nu-
merically intensive computations such as matrix equations
or complex models with precompiled UDFs. In general, the
program generates SQL statements (DDL and DML), mon-
itors algorithm progress (convergence, number of iterations,
time) and at the end returns a few tables, corresponding to
the model at hand.

2.2 Statistical Models and Algorithms
The input data set X = {x1, x2, . . . , xn} has n records

(points) and d attributes (dimensions, features) plus an ex-
tra“supervised”attribute (class G or dependent variable Y).

That is, n is the data set size. When all attributes are nu-
meric d represents dimensionality.

Our system provides widely used statistical models shar-
ing a common mathematical foundation. Unsupervised mod-
els include PCA (most common method to reduce dimen-
sionality; solved with SVD) and clustering with mixtures
(solved with the popular K-means algorithm or the more
complex EM method). On the other hand, supervised (pre-
dictive) models include: linear regression (solved by least
squares), the popular Näıve Bayes classifier [10] (estimating
joint probability as a product of marginal probabilities) and
a sophisticated Bayesian classifier based on class decompo-
sition (using K-means as a building block). In supervised
techniques, X has an additional “target” attribute: a nu-
meric dimension Y (for regression) or a discrete (categorical)
“class” attribute G (for Näıve Bayes [10] and the Bayesian
classifier [8]). Näıve Bayes accepts a combination of nu-
meric and discrete attributes. All models share a common
mathematical foundation related to the multivariate normal
density function.

2.3 Processing with SQL Queries and UDFs
We start by discussing storage and indexing [4, 5]. The

data set and model matrices are stored on tables, indexed
by specific combinations of matrix subscripts depending on
their storage layout. In general, given a d× k matrix it can
be stored as a “matrix” table with d rows and k columns,
as a wide table with dk columns or as a long table with
dk rows having one matrix value each. On the other hand,
our system uses two fundamental data set layouts. The first
layout for X is a standard tabular representation which has
n rows, each having d columns, which generally provides
best I/O performance. The second layout is based on a
pivoted table with one attribute value per row and up to dn

rows, which removes DBMS limitations on the maximum
number of columns for high dimensional data and which
enables more efficient manipulation of sparse matrices.

Evaluating matrix equations with SQL queries is difficult
[4, 6]. It is not possible to create fixed queries that can ef-
ficiently evaluate mathematical equations because the table
definition for the input data set can vary (especially the hor-
izontal layout with d columns). Therefore, SQL code gen-
eration at run-time is mandatory. Statistical methods and
data mining algorithms are programmed with SQL queries
and UDFs, as shown in Figure 2, based on the input data set
and two sets of parameters. The first set of parameters con-
trols the mathematical behavior of each technique. Exam-
ples include the number of clusters, tolerance threshold for
convergence, numeric stability issues, and so on. The second
set of parameters controls database systems optimizations,
which are tailored to each algorithm (with some common op-
timizations across multiple models). SQL queries combine
joins, aggregations, arithmetic expressions. Certain com-
putations can be optionally evaluated with UDFs. UDFs
generally accelerate aggregations, reduce the number of re-
quired tables scans, push more processing into RAM mem-
ory and eliminate joins. Therefore, UDFs represent an op-
timization of SQL queries. More specifically, UDFs extend
the DBMS with primitive mathematical functions evaluat-
ing demanding matrix equations. We should emphasize SQL
code, generated by a host language (e.g. Java, C++), can
evaluate any equation with matrices, no matter how com-

2522

Figure 2: SQL code generation.

plex or slow. Thus the main reason to exploit UDFs is faster
execution and to a second extent, programming flexibility.

2.4 Optimizations
We now discuss two main kinds of optimizations: algo-

rithmic and database systems oriented.
We start by discussing algorithmic optimizations, with

general applicability. The (multidimensional) sufficient statis-
tics of the multivariate normal distribution are an essential
ingredient to accelerate data mining computations. Our sys-
tem makes extensive use of sufficient statistics to reduce the
number of passes on the data set, even one pass. For al-
gorithms like PCA, Näıve Bayes and linear regression suffi-
cient statistics enable computation of the model in one table
scan both with SQL queries or UDFs. On the other hand,
for K-means clustering and the Bayesian classifier (which
are mathematically harder problems), sufficient statistics en-
able incremental learning, significantly reducing the number
of iterations. In an orthogonal manner, sufficient statistics
can be computed on samples, providing an approximation
to the model, whose accuracy can be controlled. A key dif-
ference with previous research is that we can compute suffi-
cient statistics to get either a full covariance or correlation
matrix, instead of a diagonal matrix. When the data set is
large enough (say n ≥ 100M) sufficient statistics can be de-
rived with geometric sampling or bootstrapping techniques
(leveraging block-based sampling mechanisms provided by
the DBMS), which can get arbitrarily accurate (> 95%) ap-
proximations in much less time than a full table scan.

Our sufficient statistics are basically the linear sum of
points L (a d-dimensional vector) and the quadratic (with
cross-products) sum of points Q (a d× d matrix) [3, 4, 5]:

L =
n∑

i=1

xi (1)

Q =
n∑

i=1

xix
T

i (2)

Such summary matrices are independently computed on k

subsets of the data set for clustering and the Bayesian clas-

sifier. Summary matrices are efficiently computed with an
aggregate UDF or slower, but with better portability, with
SQL queries. For K-means and EM clustering we developed
an incremental algorithm that can obtain an acceptable so-
lution in a few iterations (in some cases one), being much
faster than the standard algorithm; this is particularly dif-
ficult to achieve with SQL or UDFs.

From a database systems perspective, we carefully ana-
lyze the query plan for each data mining computation, iden-
tifying optimizations that work well across DBMSs. Since
equations are evaluated with SQL queries there are many
temporary tables generated on the way. In general, we con-
trol how each temporary table is stored and indexed. Query
rewriting is essential. The join operation is the main op-
eration that can degrade performance if not carefully man-
aged. Denormalized tables with sufficient statistics avoid
joins down the road. Whenever possible, aggregations are
pushed (computed before) joins. Hash-based joins are the
preferred join algorithm on large tables. To get best per-
formance joined tables are indexed by the same subscripts
so that the hashing function maps rows to the same par-
titions. Alternatively, whenever a hash-join is not possible
we exploit merge-sort joins. Sort-Merge joins are typically
used when both tables are indexed by different subscripts.
Our last optimization worth mentioning is caching, which is
automatically applied to sufficient statistics [9] and which
can also be applied with data sets that can fit in main mem-
ory. This optimization is especially beneficial for iterative
processing or to concurrently compute multiple models.

3. SYSTEM DEMONSTRATION
We plan to give an interactive demonstration, considering

researchers and students with different backgrounds. We
will demonstrate our system with a remote DBMS. The
database will contain well-known real data sets (from the
UCI ML repository, to illustrate data mining applicability)
and several large (n=10K,100K,1M) synthetic data sets (to
illustrate time efficiency). The same data sets will be also
available as flat files to be analyzed by an external data min-
ing tool (e.g. Weka, R statistical package). The demonstra-
tion will flow from an overview of our tool, learning available
data mining techniques, input data set, parameters, output
and visualization, to technical aspects. The user We will
give an overview of available data mining techniques. The
user will be able to understand technical aspects of the sys-
tem such as table layouts, SQL queries, UDFs and query
optimizations. Our system demonstration will illustrate the
following points: (1) being able to efficiently perform data
mining on large data sets entirely inside the DBMS (i.e. no
data exported); (2) our system is faster than external data
mining tools working on flat files; (3) showing exporting
large data sets from the DBMS is a bottleneck with ODBC
and even with BULK export utilities; (4) quickly comput-
ing accurate approximate models with sampling techniques,
especially with very large data sets (for specific models); (5)
understanding the impact of optimizations, turning them
on an off, as well as highlighting which challenging mathe-
matical equations are evaluated with SQL queries or UDFs;
Figure 3 shows stored procedure calls and output for two
statistical models in the DBMS.

We first discuss a general demonstration, suitable for re-
searchers working on data mining, information retrieval or
database systems. The demonstration will show a complete

2523

Figure 3: Calling stored procedures and querying

output models.

data mining run going from selecting a data set to actu-
ally browsing a model. The user will start by choosing one
data mining technique from an on-line help. The user will
get an overview of optimizations. For supervised models
the demonstration will have two subparts: one to build the
model and a second one to test the model on a different set
of records (i.e. scoring) on a table with the same columns
(i.e. to independently test accuracy). Then the user can run
the algorithm, which should quickly finish in a few seconds
for most data sets. The user will be able to see Näıve Bayes,
PCA, and linear regression can be computed in a single table
scan in a matter of seconds. On the other hand, the user can
use sampling techniques to get accurate approximate mod-
els on larger data sets (n ≥ 1M) in a few seconds. Finally,
the user will be able to browse actual the statistical model,
which consists of a few relational tables. In addition, for
supervised models the user can evaluate model accuracy on
a blind test with an independent set of points (i.e. training
and testing). Also, the user can compare the predicted (by
our system) and existing class values for the test data set.

We now discuss a technical demonstration, suitable for
database systems researchers. For performance comparison
purposes we will compare with public domain data mining
tools (e.g. Weka, R package) working on flat files, comput-
ing the same model. We will temporarily stop the DBMS to
be fair: SQL queries and UDFs will be shown to be faster
than external data mining tools. We will also show exporting
large data sets (ODBC, and even with fast BULK utilities) is
a bottleneck, making external processing unattractive. The
user will be able to understand the impact of available opti-
mizations (including UDFs, sampling and caching) turning
them on and off. For instance, the user can run multiple
algorithms on the same data set faster when the data set is
cached. We will go deeper, providing an overview of impor-
tant working tables, explaining their layout and explaining
how primary or secondary indices accelerate joins and ag-
gregations. Finally, we will show representative SQL queries
and UDFs evaluating matrix equations. When showing SQL
queries we will explain how tables are joined (indicating spe-
cific join algorithm), how aggregations or SQL arithmetic ex-
pressions compute equations, how aggregations are pushed

before joins and how the output table of one query becomes
the input for the next query. For UDFs we will explain how
aggregate UDFs accelerate computations by pushing com-
plex mathematical equations into the DBMS by comparing
the UDF code against the slower SQL queries.

Acknowledgments

This work was supported by NSF grants CCF 0937562 and
IIS 0914861.

4. REFERENCES
[1] T. Hastie, R. Tibshirani, and J.H. Friedman. The

Elements of Statistical Learning. Springer, New York,
1st edition, 2001.

[2] M. Navas and C. Ordonez. Efficient computation of
PCA with SVD in SQL. In KDD Workshop on Data
Mining using Tensors and Matrices, Article no. 5,
2009.

[3] M. Navas, C. Ordonez, and V. Baladandayuthapani.
On the computation of stochastic search variable
selection in linear regression with UDFs. In Proc.
IEEE ICDM Conference, pages 941–946, 2010.

[4] C. Ordonez. Integrating K-means clustering with a
relational DBMS using SQL. IEEE Transactions on
Knowledge and Data Engineering (TKDE),
18(2):188–201, 2006.

[5] C. Ordonez. Statistical model computation with
UDFs. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 22(12):1752–1765, 2010.

[6] C. Ordonez and P. Cereghini. SQLEM: Fast clustering
in SQL using the EM algorithm. In Proc. ACM
SIGMOD Conference, pages 559–570, 2000.

[7] C. Ordonez and J. Garćıa-Garćıa. Database systems
research on data mining. In Proc. ACM SIGMOD
Conference, pages 1253–1254, 2010.

[8] C. Ordonez and S.K. Pitchaimalai. Bayesian classifiers
programmed in SQL. IEEE Transactions on
Knowledge and Data Engineering (TKDE),
22(1):139–144, 2010.

[9] C. Ordonez and S.K. Pitchaimalai. Fast UDFs to
compute sufficient statistics on large data sets
exploiting caching and sampling. Data & Knowledge
Engineering (DKE), 69(4):383–398, 2010.

[10] S.K. Pitchaimalai, C. Ordonez, and
C. Garcia-Alvarado. Comparing SQL and MapReduce
to compute Naive Bayes in a single table scan. In
Proc. ACM CloudDB, pages 9–16, 2010.

2524

