
One-pass Data Mining Algorithms in a DBMS with UDFs

Carlos Ordonez ∗

University of Houston
Houston, USA

Sasi K. Pitchaimalai
University of Houston

Houston, USA

ABSTRACT
Data mining research is extensive, but most work has pro-
posed efficient algorithms, data structures and optimizations
that work outside a DBMS, mostly on flat files. In contrast,
we present a data mining system that can work on top of
a relational DBMS based on a combination of SQL queries
and User-Defined Functions (UDFs), debuking the common
perception that SQL is inefficient or inadequate for data
mining. We show our system can analyze large data sets
significantly faster than external data mining tools. More-
over, our UDF-based algorithms can process a data set in
one pass and have linear scalability.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational
databases

General Terms
Algorithms, Languages, Performance, Theory

1. INTRODUCTION
The problem of integrating statistical techniques with a

DBMS has received scant attention, mostly in industrial
DBMSs. Such problem is difficult due to the mathematical
nature of models, the (common) lack of access to the DBMS
source code and the internal DBMS architecture. Another,
more practical, reason is the comprehensive set of techniques
available on external statistical (e.g. R package, SAS) and
data mining tools (e.g. WEKA). As a consequence, data
mining users or the DBMS itself export data sets as flat files
to external data mining programs, thereby going through
a performance bottleneck (extracting large tables is slow)
and losing fundamental data management capabilities pro-
vided by the DBMS (query processing, security, concurrency
control, fault tolerance). We should mention some commer-
cial DBMSs provide basic data mining algorithms, but they
are difficult to customize, extend or optimize because they
are either internally integrated (with direct access to the
DBMS file system) or they work on internal files exported
with fast bulk interfaces (i.e. they are a black box to the
user). More importantly, algorithms in commercial DBMSs

∗Supported by NSF grants CCF 0937562 and IIS 0914861.

c© ACM, 2011 . This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in SIGMOD Conference 2011.
http://doi.acm.org/10.1145/123456.123456

Figure 1: System architecture.

do no share a common mathematical foundation (like ours)
and most of them require multiple passes over the data set.
From a practical standpoint, SQL is and will remain the
language to query and analyze large databases. With that
motivation in mind, we present a data mining system that
can work on top of a relational DBMS based on SQL queries
and User-Defined Functions (UDFs) [1, 2, 3, 4]. Unlike most
research prototypes and existing tools, our system can di-
rectly process relational tables instead of flat files. Moroever,
our system can analyze large data sets faster than external
data mining tools. All our algorithms are optimized to pro-
cess the data set in one pass and have optimal linear time
complexity. Our system has promise of wide applicability
as DBMSs remain the main database management technol-
ogy, relational data warehouses keep growing, CPUs become
faster and secondary storage gets larger and faster.

2. SYSTEM DESCRIPTION

2.1 System Architecture
Our system architecture is shown in Figure 1. The input

data set, output model matrices and statistical model pa-
rameters, are all stored as relational tables. All algorithms
can be called directly in the DBMS with stored procedures
generating SQL code or by calling UDFs in a SELECT state-



ment. Alternatively, they can be called from a GUI connect-
ing to the DBMS. Our system avoids exporting large tables.
Stored procedures and UDFs are programmed in the host
language supported by the DBMS (C,C++,C#). The GUI
is programmed in the Java language, ensuring portability.
Notice Java speed is irrelevant since the bulk of processing
is done by the DBMS. All statistical model tables and in-
termediate tables (produced by queries and UDFs) can be
analyzed with SQL queries.

2.2 Statistical Models and Algorithms
The data set X = {x1, x2, . . . , xn} has n records and d

attributes (numeric/categorical). In most models all at-
tributes are numeric (i.e. d is dimensionality), where cat-
egorical attributes are mapped to binary dimensions.

Our system provides fundamental statistical models, shar-
ing a common mathematical foundation, which enables com-
mon optimizations. Unsupervised models include PCA (to
reduce dimensionality; solved with SVD) and K-means clus-
tering (to group similar points). On the other hand, super-
vised (predictive) models include: linear regression (solved
by least squares), and the Näıve Bayes (NB) classifier (esti-
mating joint probability as a product of marginal probabili-
ties). In supervised techniques, X has an additional “target”
attribute: a dependent variable Y (numeric in regression) or
a discrete (generally binary) “class” attribute G (for Näıve
Bayes). In summary, we compute a full spectrum of models.

2.3 Processing with SQL Queries and UDFs
We start by discussing storage and indexing. The data set

and model matrices are stored on tables, indexed by specific
combinations of matrix subscripts depending on their lay-
out. The system allows two fundamental storage layouts
for matrices: horizontal and vertical. The horizontal lay-
out for X is the standard representation which has n rows
and d columns. The vertical layout is based on a pivoted
table with one attribute value per row (i.e. attribute id,
value pairs) and up to dn rows. The vertical layout removes
DBMS limitations on the maximum number of columns for
high dimensional data and enables efficient manipulation of
sparse matrices (i.e. having many zeroes).

Algorithms are programmed with SQL queries or UDFs
working on a horizontal or vertical layout, using two sets
of parameters. The first parameter set controls statistical
model properties. Examples include the number of clusters
(k), accuracy tolerance threshold ε (i.e. to assess conver-
gence or to stop early), numeric stability, and so on. The
second set of parameters is used to manage query and UDF
optimizations, which are tailored to each technique (with
several common optimizations across multiple models). Our
system offers two algorithm flavors: (1) programmed with
SQL queries; (2) programmed with aggregate UDFs. SQL
queries combine joins, aggregations and arithmetic expres-
sions creating intermediate tables to evaluate matrix equa-
tions. SQL queries can be slow to evaluate complex ma-
trix equations (due to joins) and generally require multi-
ple passes over X. On the other hand, algorithms pro-
grammed with aggregate UDFs can compute the model in
one pass. That is, UDF-based algorithms incorporate incre-
mental model learning instead of iterative behavior. UDFs
perform fast matrix processing with arrays in main mem-
ory. Algorithms programmed with SQL queries generally
require multiple passes over X and join operations, whereas

UDFs enable one-pass processing without joins. Notice SQL
queries generated by Java (or C++) can evaluate any equa-
tion with matrices, no matter how complex. Thus the main
reasons to exploit UDFs are faster processing and program-
ming flexibility (i.e. using arrays, data structures in memory
and flow control statements). Also, UDFs reduce communi-
cation overhead.

We now discuss algorithmic and database optimizations.
Sufficient statistics (data set summaries) are an essential in-
gredient to develop one-pass data mining algorithms. All
our models (PCA, K-means clustering, Naive Bayes, lin-
ear regression, logistic regression) exploit a family of sim-
ilar sufficient statistics. In an orthogonal manner, suffi-
cient statistics can be computed on samples, providing fast
model approximation, whose accuracy can be controlled by
the user. Our sufficient statistics are basically the linear
sum of points L (a d-dimensional vector) and the quadratic
(with cross-products) sum of points Q (a d × d matrix):
L =

∑
n

i=1
xi, Q =

∑
n

i=1
xix

T

i . A fundamental difference
with previous research is that our system provides many
alternatives to efficiently compute summary matrices. De-
pending on the model, L and Q can be computed on the
entire data set or on multiple subsets and Q can be con-
strained to be a diagonal matrix (zeroes off the diagonal)
or a full matrix. For instance, in K-means L, Q are com-
puted on k data subsets and Q is assumed is diagonal. For
PCA and linear regression there is only one set of L, Q and
Q is non-diagonal. Summary matrices are efficiently com-
puted with an aggregate UDF or slower, but with better
portability, with SQL queries. For all models we developed
fast incremental algorithms with aggregate UDFs that can
obtain a good approximate model in one pass, being or-
ders of magnitude faster than the standard algorithm; this
is particularly difficult to achieve with SQL queries or UDFs.
When n is large sufficient statistics can be derived with geo-
metric sampling or bootstrapping techniques (leveraging ef-
ficient sampling mechanisms provided by the DBMS), which
can get arbitrarily accurate (99%) approximations in much
time than a full table scan. For matrix equations evalu-
ated with SQL queries, we carefully analyze the query plan
for each data mining computation, identifying optimizations
that work well across DBMSs. Since equations are evaluated
with SQL queries there are many temporary tables gener-
ated on the way. In general, we control how each temporary
table is stored and indexed. Query rewriting is essential.
The join operation is the main operation that can degrade
performance if not carefully managed. Whenever possible,
queries involving join operations between large tables are
rewritten as equivalent queries with fewer or no join oper-
ations. Denormalized tables with sufficient statistics avoid
joins down the road. Whenever possible, aggregations are
pushed (computed before) joins to get smaller tables (i.e.
compressing data). Join algorithms are carefully considered.
Hash-based joins are the preferred join algorithm on large
tables, which nowadays are available in most DBMSs. To get
best performance joined tables are indexed by the same sub-
scripts so that the hashing function maps rows to the same
partitions. Alternatively, whenever a hash-join is not possi-
ble we exploit merge-sort joins. As a faster alternative, our
system exploits aggregate UDFs, which enable maintaining
arrays in main memory and incremental model learning. Al-
gorithms programmed with UDFs are generally much faster
than SQL queries, exhibit linear scalability and the code is



easier to understand. A small disadvantage about UDFs is
that they need to be rewritten for each DBMS, but the un-
derlying parallel scan and aggregation algorithm is the same.
Our last optimization worth mentioning is caching, which is
automatically applied to sufficient statistics and which can
also be applied with data sets that can fit in main memory.

3. SYSTEM DEMONSTRATION
We plan to give an interactive demonstration on a com-

mercial DBMS, running on a portable computer. If Inter-
net is available we can use a remote DBMS server. The
user can directly call our algorithms from the DBMS SQL
prompt window (i.e. like writing queries) or from a GUI we
developed. The database will contain large (n = 100K,1M)
synthetic data sets (to evaluate performance) and real data
sets from the UCI repository (to test accuracy). The same
data sets will be also available as flat files to be analyzed
by external data mining tools (e.g. Weka, R package) and a
fast C++ program (with the same algorithms). The demon-
stration will flow from a system overview, learning avail-
able algorithms and models to technical aspects like stor-
age layouts, SQL queries, UDFs and optimizations. Our
demonstration will illustrate the following points: (1) Be-
ing able to perform data mining on large data sets truly
inside the DBMS (no data record goes out). (2) Exploiting
UDFs, queries and stored procedures to evaluate data min-
ing computations instead of extending SQL with new syntax
or modifying the DBMS internal subsystems. (3) Efficient
computation of accurate models in one pass. Moreover, we
will show we can can quickly compute accurate model ap-
proximations on large data sets with sampling techniques.
(4) Showing our system is much faster than external data
mining tools working on flat files. We will even show our
UDF-based one-pass algorithms are competitive with C++.
(5) Query-like interface by computing a data mining model
with one simple stored procedure call (i.e. similar to writ-
ing a query). Also, giving the ability to browse the model
with queries. (6) Showing exporting large data sets from the
DBMS is a bottleneck, even with bulk export utilities, which
is counter-intuitive. (7) Highlighting how key mathematical
equations are evaluated with UDFs. Also, understanding
the impact of query optimizations, turning them on an off.
(8) Emphasizing extra benefits like ad-hoc queries, data set
transformations and secure access.

In our demonstration the user will be able to experience
a complete data mining run, going from choosing a data set
to actually querying a model. Initially, the user can get a
list of all available models, together with their main proce-
dure call (i.e. a help text). Then the user can see a script
with sample procedure calls or the user can type one sim-
ple procedure call, specifying model, data set, columns and
parameters (if any). Such parameters include optimizations
and most parameters have defaults. For supervised models
the demonstration will have two subparts: one to build the
model and a second one to test the model on a different set
of records (i.e. scoring) on a table with the same columns
(i.e. to independently test accuracy). Then the user will
run the algorithm (by submitting the procedure call, like
submitting a query), which should finish in a few seconds
(for most data sets), The user will be able to verify PCA,
K-means clustering, Näıve Bayes, and linear regression can
be computed in a single table scan by comparing with a
sum() aggregation. The user can optionally exploit sam-

Figure 2: Computing models with simple procedure

calls and browsing them with queries in a DBMS.

pling to quickly get accurate approximate models on larger
data sets (e.g. n ≥ 1M). More importantly, the user will
be able to query model tables, linking them back with the
input data set, if necessary. For supervised models the user
can evaluate model accuracy on a blind test with an inde-
pendent set of records (i.e. training and testing). Figure
2 shows two simple stored procedure calls, to compute NB
and PCA models as well as queries to browse each model.

To test processing performance, the user can compare
DBMS processing time with external data mining tools (e.g.
Weka, R package) and a C++ program, both working on flat
files and computing the same model. UDFs will be shown
to be competitive with C++ and much faster than exter-
nal data mining tools. In addition, the user will be able to
understand exporting large data sets, even with bulk util-
ities, is a bottleneck, making external processing unattrac-
tive. The user will be able to understand the impact of opti-
mizations (UDFs, rewritten queries, sampling and caching)
turning them on and off. If a user is interested we can
go deeper, providing an overview of internals of our system
(modules, tables, configuration files) and explaining repre-
sentative aggregate UDFs and SQL queries. We will explain
how UDFs avoid joins, enable incremental model computa-
tions and push matrix processing into main memory.

4. REFERENCES
[1] M. Navas, C. Ordonez, and V. Baladandayuthapani.

On the computation of stochastic search variable
selection in linear regression with UDFs. In Proc. IEEE
ICDM Conference, pages 941–946, 2010.

[2] C. Ordonez. Building statistical models and scoring
with UDFs. In Proc. ACM SIGMOD Conference, pages
1005–1016, 2007.

[3] C. Ordonez. Statistical model computation with UDFs.
IEEE Transactions on Knowledge and Data
Engineering (TKDE), 22(12):1752–1765, 2010.

[4] C. Ordonez and S.K. Pitchaimalai. Fast UDFs to
compute sufficient statistics on large data sets
exploiting caching and sampling. Data and Knowledge
Engineering (DKE), 69(4):383–398, 2010.


